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Abstract

Weighted labelled transition systems are LTSs whose transitions are given weights
drawn from a commutative monoid. WLTSs subsume a wide range of LTSs, providing
a general notion of strong (weighted) bisimulation. In this paper we extend this frame-
work towards other behavioural equivalences, by considering semirings of weights. Taking
advantage of this extra structure, we introduce a general notion of weak weighted bisimula-
tion. We show that weak weighted bisimulation coincides with the usual weak bisimulations
in the cases of non-deterministic and fully-probabilistic systems; moreover, it naturally pro-
vides a definition of weak bisimulation also for kinds of LTSs where this notion is currently
missing (such as, stochastic systems). Finally, we provide a categorical account of the
coalgebraic construction of weak weighted bisimulation; this construction points out how
to port our approach to other equivalences based on different notion of observability.

1 Introduction

Many extensions of labelled transition systems have been proposed for dealing with quanti-
tative notions such as execution times, transition probabilities and stochastic rates; see e.g.
[8, 7, 20, 21, 26, 35] among others. This ever-increasing plethora of variants has naturally
pointed out the need for general mathematical frameworks, covering uniformly a wide range of
cases, and offering general results and tools. As examples of these theories we mention UL-
TraSs [7] and weighted labelled transition systems (WLTSs) [40, 25, 27]. In particular, in a
WLTS every transition is associated with a weight drawn from a commutative monoid W; the
monoid structure defines how weights of alternative transitions combine. As we will recall in
Section 2, by suitably choosing this monoid we can recover ordinary non-deterministic LTSs,
probabilistic transition systems, and stochastic transition systems, among others. WLTSs offer
a notion of (strong) W-weighted bisimulation, which can be readily instantiated to particular
cases obtaining precisely the well-known Milner’s strong bisimulation [32], Larsen-Skou’s strong
probabilistic bisimulation [28], strong stochastic bisimulation [21], etc.

However, in many situations strong bisimulations are too fine, and many coarser relations
have been introduced since then. Basically, these observational equivalences do not distinguish
systems differing only for unobservable or not relevant transitions. Likely the most widely known
of these observational equivalences is Milner’s weak bisimulation for non-deterministic LTSs
[32] (but see [41, 42] for many variations). Weak bisimulations focus on systems’ interactions
(communications, synchronizations, etc.), ignoring transitions associated with systems’ internal
operations, hence called silent (and denoted by the τ).

Unfortunately, weak bisimulations become quite more problematic in models for stochas-
tic systems, probabilistic systems, etc. The conundrum is that we do not want to observe
τ -transitions but at the same time their quantitative effects (delays, probability distributions)
are still observable and hence cannot be ignored. In fact, for quantitative systems there is
no general agreement of what a weak bisimulation should be. As an example, consider the
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stochastic system S1 executing an action a at rate r, and a system S2 executing τ at rate r1,
followed by an a at rate r2: should these two systems be considered weakly bisimilar?

S1

a, r
S2

τ, r1 a, r2

Some approaches restrict to instantaneous τ -actions (and hence r2 = r) [6]; others require
that the average times of a’s executions are the same the two systems - but still these can be
distinguished by looking at the variances [5]. Therefore, it is not surprising that many definitions
proposed in literature are rather ad-hoc, and that a general mathematical theory is still missing.

This is the problem we aim to address in this paper. More precisely, in Section 3 we
introduce the uniform notion of weak weighted bisimulation which applies to labelled transition
systems weighted over a semiring. The multiplication operation of semirings allows us to
compositionally extend weights to multi-step transitions and traces. In Section 4 we show that
our notion of weak bisimulation coincides with the known ones in the cases of non-deterministic
and fully probabilistic systems, just by changing the underlying semiring. Moreover it naturally
applies to stochastic systems, providing an effective notion of weak stochastic bisimulation. As
a side result we introduce a new semiring of stochastic variables which generalizes that of rated
transition systems [26].

Then, in Section 5 we present the general algorithm for computing weak weighted bisimu-
lation equivalence classes, parametric in the underlying semiring. This algorithm is a variant
of Kanellakis-Smolka’s algorithm for deciding strong non-deterministic bisimulation [23]. Our
solution builds on the refinement technique used for the coarsest stable partition, but instead
of “strong” transitions in the original system we consider “weakened” ones. We prove that this
algorithm is correct, provided the semiring satisfies some mild conditions, i.e. it is ω-complete.
Finally, we discuss also its complexity, which is comparable with Kanellakis-Smolka’s algorithm.
Thus, this algorithm can be used in the verification of many kinds of systems, just by replacing
the underlying semiring (boolean, probabilistic, stochastic, tropical, arctic, . . . ) and taking
advantage of existing software packages for linear algebras over semirings.

In Section 6 we give a brief categorical account of weak weighted bisimulations. These
will be characterized as cocongruences between suitably saturated systems, akin to the elegant
construction of ε-elimination given in [36].

In Section 7 we give some final remarks and directions for further work.

2 Weighted labelled transition systems

In this section we recall the notion of labelled transition systems weighted over a commutative
monoid, showing how these subsume non-deterministic, stochastic and probabilistic systems,
among many others. Weighted LTSs were originally introduced by Klin in [25] as the prosecution
and generalization of the work on stochastic SOS presented in [26] with Sassone and were further
developed in [27].

In the following let W denote a generic commutative (aka abelian) monoid (W,+, 0), i.e.
a set equipped with a distinguished element 0 and a binary operation + which is associative,
commutative and has 0 as left and right unit.

Definition 1 (W-LTS [25, Def. 1]). Given a commutative monoid W = (W,+, 0), a W-
weighted labelled transistion system is a triple (X,A, ρ) where:

• X is a set of states (processes);

• A is an at most countable set of labels;

• ρ : X ×A×X →W is a weight function, mapping each triple of X ×A×X to a weight.

(X,A, ρ) is said to be image finite (resp. countable) iff for each x ∈ X and a ∈ A, the set
{y ∈ X | ρ(x, a, y) 6= 0} is finite (resp. countable). A state x ∈ X is said terminal iff for every
a ∈ A and y ∈ X: ρ(x, a, y) = 0.
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For adherence to the notation used in [25] and to support the intuitions based on classical

labelled transition systems we shall often write ρ(x
a−→ y) for ρ(x, a, y); moreover, following a

common notation for stochastic and probabilistic systems, we will write also x
a,w−−→ y to denote

ρ(x, a, y) = w.
The monoidal structure was not used in Definition 1 but for the existence of a distinguished

element required by the image finiteness (resp. countability) property. The commutative mon-
oidal structure of weights comes into play in the notion of bisimulation, where weights of
transitions with the same labels have to be “summed”. This operation is commonplace for
stochastic LTSs, but at first it may appear confusing with respect to the notion of bisimulation
of non-deterministic LTSs; we will explain it in Section 2.1.

Definition 2 (Strong W-bisimulation [25, Def. 3]). Given a W-LTS (X,A, ρ), a (strong) W-
bisimulation is an equivalence relation R on X such that for each pair (x, x′) of elements of X,
(x, x′) ∈ R implies that for each label a ∈ A and each equivalence class C of R:∑

y∈C
ρ(x

a−→ y) =
∑
y∈C

ρ(x′
a−→ y).

Processes x and x′ are said to be W-bisimilar (or just bisimilar when W is understood) if there
exists a W-bisimulation ∼W such that x ∼W x′.

Clearly W-bisimulations are closed under arbitrary unions ensuring the W-bisimilarity on
any W-LTS to be the largest W-bisimulation over it.1

Remark 1. In order for the above definition to be well-given, summations need to be well-
defined. Intuitively this means that the W-LTS (X,A, ρ) does not exceed the expressiveness of
its underlying monoid of weights W. Reworded, the system has to be image finite if the monoid
admits only finite summations; image countable if the monoid admits countable summations,
and so on.

In [25, 27], for the sake of simplicity the authors restrict themselves to image finite systems
(which is not unusual in the coalgebraic setting). In the present paper we extend their definitions
to the case of countable images. This generalization allows to capture a wider range of systems
and is crucial for the definition of weak and delay bisimulations.

In practice, Remark 1 is not a severe restriction, since the commutative monoids relevant
for most systems of interest admit summations over countable sets. To supports this claim,
in the rest of this Section we illustrate how non-deterministic, stochastic and probabilistic
labelled transition systems can be recovered as systems weighted over commutative monoids
whit countable sums. These kind of commutative monoids are often called commutative ω-
monoids2.

2.1 Non-deterministic systems are WLTS

This section illustrates how non-deterministic labelled transition systems [32] can be recovered
as systems weighted over the commutative ω-monoid of logical values equipped with logical
disjunction 2 , ({tt, ff},∨, ff).

Definition 3 (Non-deterministic LTS). A non-deterministic labelled transition system is a
triple (X,A,→) where:

• X is a set of states (processes);

• A is an at most countable set of labels (actions);

• → ⊆ X ×A×X is the transition relation.

1Actually, strong W-bisimulation has been proven to be a strong bisimulation in coalgebraic sense [25].
2Monoids can be readily extended to ω-monoids adding either colimits freely or an “∞” element.
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As usual, we shall denote an a-labelled transition from x to y i.e. (x, a, y) ∈ → by x
a−→ y. A

state y is called successor of a given state x iff x
a−→ y. If x has no successors then it is said to be

terminal. If every state has a finite set of successors then the system is said to be image finite.
Likewise it is said to be image countable if each state has at most countably many successors.

Every 2-valued weight function is a predicate defining a subset of its domain, turning ρ :
X ×A×X → 2 equivalent to the classical definition of the transition relation → ⊆ X ×A×X.

Definition 4 (Strong non-deterministic bisimulation). Let (X,A,→) be an LTS. An equivalence
relation R ⊆ X ×X is a (strong non-deterministic) bisimulation on (X,A,→) iff for each pair
of states (x, x′) ∈ R, for any label a ∈ A and each equivalence class C ∈ X/R:

∃y ∈ C.x a−→ y ⇐⇒ ∃y′ ∈ C.x′ a−→ y′.

Two states x and x′ are said bisimilar iff there exists a bisimulation relation ∼l such that x ∼l y.
The greatest bisimulation for (X,A,→) uniquely exists and is called (strong) bisimilarity.

Strong 2-bisimulation and strong non-deterministic bisimulation coincide, since logical dis-
junction over the states in a given class C encodes the ability to reach C making an a-labelled
transition.

2.2 Stochastic systems are WLTS

Stochastic systems have important application especially in the field of quantitative analysis,
and several tools and formalisms to describe and study them have been proposed (e.g. PEPA
[21], EMPA [8] and the stochastic π-calculus [35]). Recently, rated transition systems [26, 27,
33, 7] emerged as a convenient presentation of these kind of systems.

Definition 5 (Rated LTS [26, Sec. 2.2]). A rated labelled transition system is a triple (X,A, ρ)
where:

• X is a set of states (processes);

• A is a countable set of labels (actions);

• ρ : X ×A×X → R+
0 is the rate function.

Semantics of stochastic processes is usually given by means of labelled continuous time
Markov chains (CTMC). The real number ρ(x, a, y) is interpreted as the parameter of an ex-
ponential probability distribution governing the duration of the transition from state x to y by
means of an a-labelled action and hence encodes the underlying CTMC (for more information
about CTMCs and their presentation by transition rates see e.g. [20, 21, 34, 35]).

Definition 6 (Strong stochastic bisimulation). Given a rated system (X,A, ρ) an equivalence
relation R ⊆ X ×X is a (strong stochastic) bisimulation on (X,A, ρ) (or strong equivalence
[21]) iff for each pair of states (x, x′) ∈ R, for any label a ∈ A and each equivalence class
C ∈ X/R: ∑

y∈C
ρ(x, a, y) =

∑
y∈C

ρ(x′, a, y).

Two states x and x′ are said bisimilar iff there exists a bisimulation relation ∼s such that x ∼s y.
The greatest bisimulation for (X,A,→) uniquely exists and is called (strong) bisimilarity.

Rated transition systems (hence stochastic systems) are precisely WLTS weighted over
the commutative monoid of nonnegative real numbers (closed with infinity) under addition

(R+

0 ,+, 0) and stochastic bisimulations correspond to R+

0 -bisimulations, as shown in [25]. More-

over, R+

0 is an ω-monoid since non-negative real numbers admit sums over countable families.
In particular, the sum of a given countable family {xi | i ∈ I} is defined as the supremum of
the set of sums over its finite subfamilies:∑

i∈I
xi , sup

{∑
i∈J

xi | J ⊆ I, |J | < ω

}
.
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2.3 Probabilistic systems are (Constrained) WLTS

This section illustrates how probabilistic LTSs are captured by weighted ones. We focus on fully
probabilistic systems (also known as generative systems) [14, 28, 4] but in the end we provide
some hints on other types of probabilistic systems.

Fully probabilistic system can be regarded as a specializations of non-deterministic transition
systems where probabilities are used to resolve nondeterminism. From a slightly different point
of view, they can also be interpreted as labelled Markov chains with discrete parameter set [24].

Definition 7 (Fully probabilistic LTS). A fully probabilistic labelled transition system is a
triple (X,A,P) where:

(1) X is a set of states (processes);

(2) A is a countable set of labels (actions);

(3) P : X ×A×X → [0, 1] is a function such that for any x ∈ X P(x, , ) is either a discrete
probability measures for A×X or the constantly 0 function.

In “reactive” probabilistic systems, in contrast to fully probabilistic systems, transition
probability distributions are dependent on the occurrences of actions i.e. for any x ∈ X and
a ∈ A P(x, a, ) is either a discrete probability measures for X or the constantly 0 function.

Strong probabilistic bisimulation has been originally introduced by Larsen and Skou [28] for
reactive systems and has been reformulated by van Glabbeek et al. [14] for fully probabilistic
systems.

Definition 8 (Strong probabilistic bisimilarity). Let (X,A,P) be a fully probabilistic system.
An equivalence relation R ⊆ X ×X is a (strong probabilistic) bisimulation on (X,A,P) iff for
each pair of states (x, x′) ∈ R, for any label a ∈ A and any equivalence class C ∈ X/R:

P(x, a, C) = P(x′, a, C)

where P(x, a, C) ,
∑
y∈C P(x, a, y).

Two states x and x′ are said bisimilar iff there exists a bisimulation relation ∼p such that
x ∼p y. The greatest bisimulation for (X,A,P) uniquely exists and is called bisimilarity.

It would be tempting to recover fully probabilistic systems as LTS weighted over the prob-
abilities interval [0, 1] but unfortunately the addition does not define a monoid on [0, 1] since it
is not a total operation when restricted [0, 1]. There exist various commutative monoids over
the probabilities interval, leading to different interpretations of probabilistic systems (as will
be shown in Section 4.4), but since in Definition 8 we sum probabilities of outgoing transitions
(e.g. to compute the probability of reaching a certain set of states), the real number addition
has to be used.

Remark 2 (On partial commutative monoids). The theory of weighted labelled transition sys-
tems can be extended to consider partial commutative monoids (i.e. a+ b may be undefined but
when it is defined then also b + a is and commutativity holds) or commutative σ-monoids to
handle sums over opportune countable families (thus relaxing the requirement of weights form-
ing ω-monoids). However, every σ-semiring can be turned into an ω-complete one by adding a
distinguished +∞ element and resolving partiality accordingly.

Klin [25] suggested to consider probabilistic systems as systems weighted over (R+
0 ,+, 0) but

subject to suitable constraints ensuring that the weight function is a state-indexed probability
distribution and thus satisfies Definition 7. These constrained WLTSs were proposed to deal
with reactive probabilistic systems.

Definition 9 (constrained W-LTS). Let W be a commutative monoid and C be a constraint
family. A C-constrained W-weighted labelled transistion system is a W-LTS (X,A, ρ) such that
its weight function ρ satisfies the constraints C over W.
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Then, fully probabilistic labelled transition systems are precisely constrained R+
0 -LTSs

(X,A, ρ) subject to the constraint family:∑
a∈A,y∈X

ρ(x, a, y) ∈ {0, 1} for x ∈ X.

Likewise, reactive probabilistic systems are R+
0 -LTSs subject to the constraint family:∑

y∈X
ρ(x, a, y) ∈ {0, 1} for x ∈ X and a ∈ A.

Therefore strong bisimulations for these kind of systems are exactly strong R+
0 -bisimulations.

3 Weak bisimulations for WLTS over semirings

In the previous section we illustrated how weighted labelled transitions systems can uniformly
express several kinds of systems such as non-deterministic, stochastic and probabilistic sys-
tems. Remarkably, bisimulations for these systems were proved to be instances of weighted
bisimulations.

In this section we show how other observational equivalences can be stated at the general
level of the weighted transition system offering a treatment for these notions uniform across the
wide range of systems captured by weighted ones. Due to space constraints we focus on weak
bisimulation but eventually we discuss briefly how the proposed results can cover other notions
of observational equivalence.

3.1 From transitions to execution paths

Let (X,A + {τ}, ρ) be a W-LTS. A finite execution path π for this system is a sequence of
transition i.e. an alternating sequence of states and labels like

π = x0
a1−→ x1

a2−→ x2 . . . xn−1
an−−→ xn

such that for each transition xi−1
ai−→ xi in the path:

ρ(xi−1
ai−→ xi) 6= 0.

Let π denote the above path, then set:

length(π) = n first(π) = x0 last(π) = xn trace(π) = a1a2 . . . an.

to denote the length, starting state, ending state and trace of π respectively.
In order to extend the definition of the weight function ρ to executions we need some addi-

tional structure on the domain of weights, allowing us to capture concatenation of transition.
To this end, we require weights to be drawn from a semiring, akin to the theory of weighted
automata. Recall that a semiring is a set W equipped with two binary operations + and ·
called addition and multiplication respectively and such that:

• (W,+, 0) is a commutative monoid and (W, ·, 1) is a monoid;

• multiplication left and right distributes over addition:

a · (b+ c) = (a · b) + (a · c) (a+ b) · c = (a · c) + (b · c)

• multiplication by 0 annihilates W :

0 · a = 0 = a · 0.
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Basically, the idea is to express parallel and subsequent transitions (i.e. branching and
composition) by means of addition and multiplication respectively. Therefore, multiplication is
not required to be commutative (cf. the semiring of formal languages). Distributivity ensures
that execution paths are independent from the alternative branching i.e. given two executions
sharing some sub-path, we are not interested in which is the origin of the sharing; as the
following diagram illustrates:

a

b c

a

b

a

c c

a b
a

c

b

c

≡ ≡ (1)

Finally, since weights of (proper) transitions are always different from 0, the annihilation prop-
erty means that no proper execution can contain improper transitions.

Then, the weight function ρ extends to finite paths by semiring multiplication (therefore we
shall use the same symbol):

ρ(x0
a1−→ x1 . . .

an−−→ xn) ,
n∏
i=1

ρ(xi−1, ai, xi)

In the following let W be a semiring (W,+, 0, ·, 1).
Semirings offer enough structure to extend weight function to finite execution paths com-

positionally but executions can also be (countably) infinite. Likewise countable branchings (cf.
Remark 1), paths of countable length can be treated requiring multiplication to be defined
also over (suitable) countable families of weights and obviously respect the semiring structure.
However, the additional requirement for (W, ·, 1) can be avoided by dealing with suitable sets
of paths as long as these convey enough information for the notion of weak bisimulation (and
observational equivalence in general). In particular, a finite path π determines a set of paths
(possibly infinite) starting with π, thus π can be seen as a representative for the set. Moreover,
the behavior of a system can be reduced to its complete executions: a path is called complete
(or “full” [4]) if it is either infinite or ends in a terminal state.

Intuitively, we distinguish complete paths only up to the chosen representatives: longer
representative may generate smaller sets of paths, and this can be thought in “observing more”
the system. If two complete paths are distinguishable, we have to be able to distinguish them in
a finite way i.e. there must be two representative with enough information to tell one set from
the other. Otherwise, if no such representative exist, then the given complete paths are indeed
equivalent. Therefore, it is enough to be able to compositionally weight (finite) representatives
in order to distinguish any complete path.

The remaining of the subsection elaborates the above intuition defining a σ-algebra over
complete paths (for each state). The method presented is a generalization to semirings of the
one used in [2]. This structure allows to deal with sets of finite paths avoiding redundancies
(cf. Example 3) and define weights compositionally.

Let Paths(x), CPaths(x) and FPaths(x) denote the sets of all, complete and finite paths
starting in the state x ∈ X respectively. Likewise, we shall denote the corresponding sets
of paths w.r.t. any starting state as Paths, CPaths and FPaths respectively (e.g. Paths =
∪x∈XPaths(x)). Paths naturally organize into a preorder by the prefix relation. In particular,
given π, π′ ∈ Paths(x) define π � π′ if and only if one of the following holds:

1. π ≡ x
a1−→ x1 . . .

an−−→ xn and π′ ≡ x
a′1−→ x′1 . . .

a′n−−→ x′n′ (both finite), xi = x′i and ai = a′i
for i ≤ n ≤ n′;

2. π ≡ x
a1−→ x1 . . .

an−−→ xn and π′ ≡ x
a′1−→ x′1 . . . (one finite and the other infinite), xi = x′i

and ai = a′i for i ≤ n;

3. π = π′ (both infinite).
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For each finite path π ∈ FPaths(x) define the cone of complete paths generated by π as follows:

π↑ , {π′ ∈ CPaths(x) | π � π′}.

Cones are precisely the sets we were sketching in the intuition above and form a subset of the
parts of CPaths(x):

Γ , {π↑ | π ∈ FPaths(x)}.

This set is at most countable since the set FPaths(x) is so and every two of its elements are
either disjoint or one the subset of the other as the following Lemmas state.

Lemma 1. For any state x ∈ X, the set of finite paths FPaths(x) of an image countable
W-LTS is at most countable.

Proof. By induction on the length k of paths in FPaths(x), these are at most countable. In
fact, for k = 0 there is exactly one path, ε and, taken the set of paths of length k be at most
countable, then the set of those with length k + 1 is at most countable because the system is
assumed to be image countable. Then FPaths(x) is at most countable since it is the disjoint
union of

{π ∈ Paths(x) | length(π) = k}

for k ∈ N.

Lemma 2. Two cones π↑1 and π2↑ are either disjoint or one the subset of the other.

Proof. For any π ∈ CPaths(x), we have by definition:

π ∈ π1↑ ⇐⇒ π1 � π and π ∈ π2↑ ⇐⇒ π2 �

Then, if π1 � π2 then π ∈ π2↑ ⇒ π ∈ π1↑ (likewise for π2 � π1). For the other case, since
π1 6� π2 ∧ π2 6� π1 there is no π such that π1 � π ∧ π2 � π.

Given Π ⊆ FPaths(x), the set of all cones generated by its elements is denoted by Π↑ and
defined as the (at most countable) union of the cones generated by each π ∈ Π. If this union is
over disjoint cones then Π is said to be minimal.

Minimality is not preserved by set union even if operands are disjoint and both minimal.
As a counter example consider the sets {π} and {π′} for π ≺ π′ ∈ FPaths(x); both are minimal
and disjoint, but their union is not minimal since π′↑ ⊆ π↑. However, Π always has at least a
subset Π′ being minimal and such that

Π↑ = Π′↑. (2)

and among these there exists exactly one which is also minimal in the sense of prefixes:

Lemma 3. For Π ⊆ FPaths(x), there exists a minimal subset Π′ ⊆ Π which satisfies (2), i.e.
for any Π′′ ⊆ Π satisfying (2) we have: ∀π′′ ∈ Π′′ ∃π′ ∈ Π.π′ � π′′. We denote such Π′ by Π↓.

Proof. Clearly Π↑ = ∅ iff Π = ∅ since there are no infinite prefix descending chains. Then
(Π↓)↑ ⊆ Π↑ since Π↓ ⊆ Π is minimal. For every π ∈ Π there exists π′ ∈ Π↓ such that π′ � π
and by Lemma 2 π↑ ⊆ π′↑ i.e. Π↑ ⊆ (Π↓)↑. Therefore Π↑ = (Π↓)↑. Consider Π′ as in the
enunciate, then, for every π ∈ Π there exists π′ ∈ Π↓ such that π′ � π and in particular if
π ∈ Π′. Uniqueness follows straightforwardly.

The set Π↓ is called minimal support of Π and intuitively correspond to the “minimal”
set of finite executions needed to completely characterize the behavior captured by Π and the
complete paths it induces. Any other path of Π is therefore redundant (cf. Example 3).

The idea of which complete paths are distinguishable and then “measurable” (i.e. that can
be given weight) is captured precisely by the notion of σ-algebra. In fact, the set of all cones Γ
(together with the emptyset) induce a σ-algebra, as they form a semiring of sets (in the sense
of [44]).
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Lemma 4. The set Γ ∪ {∅} is a semiring of sets and uniquely induces a σ-algebra over
CPaths(x).

Proof (Sketch). Γ∪{∅} is closed under finite intersections since cones are always either disjoint
or one the subset of the other. Set difference follows from the existence of minimal supports.

As discussed before, in general the weight of Π ⊆ FPaths(x) cannot be defined as the sum
of the weights of its elements, due to redundancies. However, what we are really interested in
is the unique set of behaviors described by Π, i.e. the complete paths it subsumes. Therefore
we first extend ρ to minimal Π, as follows:

ρ(Π) ,
∑
π∈Π

ρ(π) for Π minimal.

then, for all Π, we simply take
ρ(Π) , ρ(Π↓).

Because Π can be countably infinite, semiring addition has to support countable additions over
these sets (cf. Remark 1).

3.2 Well-behaved semirings

Definition 10. Let the semiring W be endowed with a preorder v. We call the semiring
well-behaved if, and only if, for any two Π1 and Π2 the following holds:

Π1 ⊆ Π2 ⇒ ρ(Π1) v ρ(Π2).

If the semiring is well-behaved then addition unit 0 is necessarily the bottom of the preorder
because ρ(∅) , 0. Moreover, the semiring operations have to respect the preorder e.g.:

a v b⇒ a+ c v b+ c.

As a direct consequence, annihilation of parallel is avoided by the zerosumfree property of the
semiring i.e. the sum of weighs of proper transition always yield the weight of a proper transition
where proper means different from the addition unit.

Well-behaved semirings are precisely positively (partially) ordered semirings and it is well
known that these admit the natural preorder:

a E b
4⇐⇒ ∃c.a+ c = b

which is respected by the semiring operation and has 0 as bottom. The natural preorder is the
weaker preorder rendering a semiring positively ordered (hence well-behaved) where weaked
means that for any such preorder v and elements a, b

a E b =⇒ a v b.

The converse holds only when also the other order is natural.

Lemma 5. The natural preorder is the weaker preorder rendering the semiring well-behaved.

Note that any idempotent semiring bares a natural preorder and hence is well-behaved and
the same holds for every semiring considered in the examples illustrated in this paper (cf. Section
4). For instance, some arithmetic semirings like (R,+, 0, ·, 1) are not positively ordered because
of negatives; moreover their are not ω-semirings (there is no limit for 1 + (−1) + 1 + (−1) . . . ).
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3.3 Weak W-bisimulation

Weak bisimulations weakens the notion of strong bisimulation by allowing sequences of silent
action before and after any observable one. Then, we are now dealing with (suitable) paths
instead of single transitions and the states are compared on the bases of how opportune classes
of states are reached from these by means of the paths allowed (i.e. making some silent actions,
before and after an observable, if any). Therefore, the notion of how a class state is reached
and what paths can be used in doing this is crucial in the definition of the notion of weak
bisimulation.

For instance, for non-deterministic LTSs, the question of how and if a class is reached
coincides and then it suffices to find a (suitable) path leading to the class. This allows weak
bisimulation for non-deterministic LTSs to rely on the reflexive and transitive closure of τ -
labelled transition of a system (cf. Definition 12) to blur the distinction between sequences of
silent actions which can then be “skipped”. In fact, the τ -closure at the base of (3) defines a
new LTS over the same state space of the previous and such that every weak bisimulation for
this new system is a weak bisimulation for the given one and vice versa.

In [11] Buchholz and Kemper extends this notion to a class of automatons weighted over
suitable semirings i.e. those having operations commutative and idempotent (e.g. w+w = w).
This class includes interesting examples such as the boolean and bottleneck semiring (cf. Section
4.4) but not the semiring of non-negative real numbers and therefore does not cover the cases of
fully probabilistic systems. Modulo some technicality connected to initial and accepting states,
their results can be extended to labelled transition systems and holds also for LTSs weighted
over suitable semirings.

Their interesting construction relies on the τ -closure of a system and it is known that this
closure does not cover the general case. For instance, it can not be applied to recover weak
bisimulation for generative systems as demonstrated by Baier and Hermanns (cf. [2]). The
following example gives an intuition of the issue.

Example 3. Consider the W-LTS below.

x

x1 x2

x3

x4 x5

x6

b, w1

b, w2

b, w3

a,w7a,w4

b, w5

a,w6

C

There are four finite paths going from state the x to the class C. Their weights are:

ρ(x
b−→ x1

b−→ x2) = w1 · w2

ρ(x
b−→ x1

b−→ x2
b−→ x3

a−→ x5) = w1 · w2 · w3 · w7

ρ(x
a−→ x4) = w4

ρ(x
a−→ x4

b−→ x5) = w4 · w5

Let us suppose to define the weight of the set of these paths as the sum of its elements weights
and suppose that the system is generative; then the probability of reaching C from x would
exceed 1. Likewise, in the case of a stochastic system, the rate of reaching C cannot consider
paths passing through C before ending in it. If we are interested in how C is reached from x
with actions yielding a trace in the set b∗ab∗, paths w1 · w2 and w5 · w6 are ruled out because
the first has a different trace and the second reaches C before it ends.

Then, given a set of traces T , a state x and a class of states C, the set of finite paths of the
given transition system reaching C from x with trace in T that should be considered is:

Hx, T, CI ,

{
π

∣∣∣∣∣ π ∈ FPaths(x), last(π) ∈ C, trace(π) ∈ T ,
∀π′ � π : trace(π′) ∈ T ⇒ last(π′) /∈ C

}
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since these are all and only the finite executions of the system starting going from x to C with
trace in T and never passing through C except for their last state. Redundancies highlighted
in the example above are ruled out since no execution path in this set is the prefix of an other
in the same set. In particular Hx, T, CI is the minimal support of the set of all finite paths
reaching C from x with trace in T :

Hx, T, CI = {π | πFPaths(x), last(π) ∈ C, trace(π) ∈ T}↓.

Therefore, weight functions can be consistently extended to these sets by point-wise sums:

ρ(Hx, T, CI) =
∑

π∈Hx,T,CI

ρ(π).

The sum is at most countable since FPaths(x) so is FPaths(x) and Hx, T, CI ⊆ FPaths(x). Then,
the addition operation of the semiring will support countable sums as discussed in Remark 1.

When clear from the context, we may omit the bag brackets from ρ(Hx, T, CI).
We are now ready to state the notion of weak bisimulation of a labelled transition system

weighted over any semiring admitting sums over (not necessarily every) countable family of
weights. The notion we propose relies on the weights of paths reaching every class in the
relation but making at most one observable and hence the importance of defining sets of paths
reaching a class consistently.

Definition 11 (Weak W-bisimulation). Let (X,A+{τ}, ρ) be a LTS weighted over the semiring
W. A weak W-bisimulation is an equivalence relation R on X such that for all x, x′ ∈ X,
(x, x′) ∈ R implies that for each label a ∈ A and each equivalence class C of R:

ρ(x, τ∗aτ∗, C) = ρ(x, τ∗aτ∗, C)

ρ(x, τ∗, C) = ρ(x, τ∗, C).

States x and x′ are said to be weak W-bisimilar (or just weak bisimilar), written x ≈W x′, if
there exists a weak W-bisimulation R such that xRx′.

The approach we propose applies to other behavioural equivalences. For instance, delay
bisimulation can be recovered for WLTSs by simply considering in the above definition of weak
bisimulations sets of paths of the sort of Hx, τ∗, CI and Hx, τ∗a,CI. The notion of branching
bisimulation relies on paths with the same traces of those considered for defining weak bisimu-
lation but with some additional constraint on the intermediate states. In particular, the states
right before the observable a have to be in the same equivalence class and likewise the states
right after it. Definition 11 is readily adapted to branching bisimulation by considering these
particular subsets of Hx, τ∗aτ∗, CI.

4 Examples of weak W bisimulation

In this Section we instantiate Definition 11 to the systems introduced in Section 2 as instances
of LTSs weighted over commutative ω-monoids.

4.1 Non-deterministic systems

Let us recall the usual definition of weak bisimulation for LTS [32].

Definition 12 (Weak non-deterministic bisimulation). An equivalence relation R ⊆ X × X
is a weak (non-deterministic) bisimulation on (X,A + {τ},→) iff for each (x, x′) ∈ R, label
α ∈ A+ {τ} and equivalence class C ∈ X/R:

∃y ∈ C.x α
=⇒ y ⇐⇒ ∃y′ ∈ C.x′ α=⇒ y′ (3)

where ⇒ ⊆ X × (A ] {τ}) × X is the well-known τ -reflexive and τ -transitive closure of the
transition relation →. Two states x and x′ are said weak bisimilar iff there exists a weak
non-deterministic bisimulation relation ≈n such that x ≈n y.

11



Clearly, a weak bisimulation is a relation on states induced by a strong bisimulation of a suit-
able LTS with the same states and actions. In particular, weak bisimulations for (X,A+{τ},→)
are strong bisimulations for (X,A+{τ},⇒) and viceversa. The transition system (X,A+{τ},⇒
) is sometimes referred as saturated or weak (e.g. in [22]). This observation is at the base of some
algorithmic and coalgebraic approaches to weak non-deterministic bisimulations (cf. Section 5
and Section 6 respectively).

Section 2.1 illustrated that non-deterministic LTSs are 2-WLTSs. The commutative mon-
oid 2 is part of the boolean semiring of logical values under disjunction and conjunction
({tt, ff},∨, ff,∧, tt) which we shall also denote as 2. Then, by straightforward application
of the definitions, the notions of weak non-deterministic bisimulation and weak 2-bisimulation
coincide.

Proposition 6. Definition 12 is equivalent to Definition 11 with W = 2.

It easy to check that a similar correspondence holds for branching and delay bisimulations.

4.2 Probabilistic systems

In the definition of weak bisimulation for fully probabilistic systems we are interested in the
probability of reach a class of states. This aspect is present also in the case of strong bisimula-
tion, but things become more complex for weak equivalences due to silent actions and multi-step
executions. Moreover, σ-additivity is no longer available since the probability of reaching a class
of states is not the sum of the probabilities of reaching every single state in that class. (On the
contrary, a class is reachable if any of its state is so which is the property we are interested in
when dealing with non-deterministic systems.)

Weak bisimulation for fully probabilistic systems was introduced by Baier and Hermanns
in [4, 2]. Here we recall briefly their definition; we refer the reader to loc. cit. for a detailed
presentation.

Definition 13 (Weak probabilistic bisimilarity [4, 2]). Given a fully probabilistic system (X,A+
{τ},P), an equivalence relation R on X is a weak (probabilistic) bisimulation iff for (x, x′) ∈ R,
for any a ∈ A and any equivalence class C ∈ X/R:

Prob(x, τ∗aτ∗, C) = Prob(x′, τ∗aτ∗, C)

Prob(x, τ∗, C) = Prob(x′, τ∗, C).

Two states x and x′ are said weak bisimilar iff there exists a weak probabilistic bisimulation
relation ≈p such that x ≈p y.

The function Prob is the extension over finite execution paths of the unique probability
measure induced by P over the σ-field of the basic cylinders of complete paths.

Proposition 7. Definition 12 is equivalent to Definition 11 with W = (R+
0 ,+, 0, ·, 1).

The function P is a weight function such that P(x, , ) is a probability measure (or the
constantly 0 measure) which extends to the unique σ-algebra on CPaths(x) (Lemma 4). This
defines precisely Prob. In particular, for any x ∈ X and Π ⊆ FPaths(x) Prob(Π) = Prob(Π↓) =
P(Π↓) = P(Π) where P is seen as the weigh function of a R+

0 -LTS.

4.3 Stochastic systems

As we have seen in Section 2.2, stochastic transition systems can be captured as WLTSs over

(R+

0 ,+, 0) by describing the exponential time distributions of a CTMC by their rates [26]. Un-
fortunately, this does not extend to paths because the sequential composition of two exponential
distributions does not yield an exponential distribution, and hence it can not be represented

by an element of R+

0 . Moreover, there are stochastic systems (e.g. TIPP [15], SPADES [12])
whose transition times follow generic probability distributions.

12



To overcome this shortcoming, in this Section we introduce a semiring of weights called
stochastic variables which allows to express stochastic transition system with generic distri-
butions as WLTSs. Then the results of this theory can be readily applied to define various
behavioural equivalences, ranging from strong bisimulation to trace equivalence, for all these
kind of systems. In particular, we define weak stochastic bisimulation by instantiating Defini-
tion 11 on the semiring of stochastic variables.

The carrier of the semiring structure we are defining is the set T of transition-time random
variables i.e. random variables on the nonnegative real numbers (closed with infinity) which
describes the nonnegative part of the line of time.

Given two (possibly dependent) random variables X and Y from T, let min(X,Y ) be the
minimum random variable yielding the minimum between X and Y . If the variables X and Y
characterize the time required by two transitions then their combined effect is defined by the
stochastic race between the two transitions; a race that is “won” by the transition completed

earlier and hence the minimum. For instance, given two stochastic transitions x
X−→ x′ and

y
Y−→ y′ the transition time for their “combination” going from {x, y} to {x′, y′} is characterized

by the random variable min(X,Y ) i.e. the overall time is given by the first transition to be
completed on the specific run.

Minimum random variables defines the operation min over T with a constantly +∞ contin-
uous random variable T+∞ (its density is the Dirac delta function δ+∞) as the unit. Random
variables of the sort of T+∞ are self-independent and since they always always yield +∞ we
shall make no distinction between them and refer to the T+∞ random variable. In general,
time-transition variables do not have to be self-independent since the events they describe usu-
ally depends on themselves. Intuitively, it is like racing against ourself i.e. we are the only racer
and therefore min(X,X) = X. Formally:

P(min(X,X) > t) = P(X > t ∩X > t) = P(X > t) · P(X > t | X > t) = P(X > t).

Let X and Y be two continuous random variables from T with probability density functions
fX and fY respectively. The density fmin(X,Y ) describing min(X,Y ) is:

fmin(X,Y )(z) = fX(z) + fY (z)− fX,Y (z, z).

When X and Y are independent (but not necessarily i.i.d.) fmin(X,Y ) can be simplified as:

fmin(X,Y )(z) = fX(z) ·
∫ +∞

z

fY (y)dy + fY (z) ·
∫ +∞

z

fX(x)dx.

Intuitively, the likelihood that one variable is the minimum must be “weighted” by the probabil-
ity that the other one is not. In particular, for independent exponentially distributed variables
X and Y , min(X,Y ) is exponentially distributed and its rate is the sum of the rates of the neg-
ative exponentials characterizing X and Y . Therefore, the commutative monoid (T,min, T+∞)

faithfully generalizes the monoid (R+

0 ,+, 0) used in Section 2.2 to capture CTMCs as WLTSs
During the execution of a given path, the time of every transition in the sequence sums to

the overall time. Therefore, the transition time for e.g. x
X−→ y

Y−→ z is characterized by the
random variable X + Y sum of the variable characterizing the single transitions composing the
path. Sum and the constantly 0 continuous variable T0 define a commutative monoid over T.
The operation has to be commutative because the order a path imposes to its steps does not
change the total time of execution.

Let X and Y be two continuous random variables from T with probability density functions
fX and fY respectively. The probability density function fX+Y is:

fX+Y (t) =

∫ t

0

fX,Y (s, t− s)ds

and, if X and Y are independent (but not necessarily i.i.d.), fX+Y is the convolution:

fX+Y (t) =

∫ t

0

fX(s) · fY (t− s)ds.
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It is easy to check that sum distributes over minimum:

X + min(Y,Z) = min(X + Y,X + Z)

by taking advantage of the latter operation being idempotent. Then, because of sum being com-
mutative, left distributivity implies right one (and vice versa). Thus S , (T,min, T+∞,+, T0)
is a (commutative and idempotent) semiring and stochastic systems can be read as S-LTS. This
induces immediately a strong bisimulation (by instantiating Definition 2) which corresponds to
strong stochastic bisimulations on rated LTS (Definition 6). Moreover, following Definition 11,
we can readily define the weak stochastic bisimulation as the weak S-bisimulation.

In literature there are some (specific and ad hoc) notions of weak bisimilarity for stochastic
systems. The closest to our is the one given by Bernardo et al. for CTMCs extended with
passive rates and instantaneous actions [6, 5]. Their definition is finer than our weak S-
bisimulation since they allow to merge silent actions only when these are instantaneous and
hence unobservable also w.r.t. the time. Instead, in our definition sequences of τ actions are
equivalent as long as their overall “rates” are the same (note that in general, the convolution
of exponentially distributed random variables is no longer exponentially distributed but an
hyper-exponential). In [5], Bernardo et al. relaxed the definition given in [6] to account also
for non-instantaneous τ -transitions. However, to retain exponentially distributed variables,
they approximate hyper-exponentials with exponentials with the same average. This approach
allows them to obtain a saturated system that still is a CTMC but loosing precision since, in
general, the average is the only momentum preserved during the operation. On the opposite,
our approach does not introduce any approximation.

In [30] López and Núñez proposed a definition of weak bisimulation for stochastic transition
systems with generic distributions. Their (rather involved) definition is a refinement of the
notion they previously proposed in [31] and relies on the reflexive and transitive closure of
silent transitions. However, their definition of strong bisimulation does not correspond to the
results from the theory of WLTSs, so neither the weak one does.

4.4 Other examples

The definition of weak W-bisimulation applies to many other situations. In the following we
briefly illustrate some interesting cases.

Tropical and arctic semirings These semirings are used very often in optimization prob-
lems, especially for task scheduling and routing problems. Some examples are: (R,min,+∞,+, 0);
(R,max,−∞,+, 0); (R,min,+∞,max,−∞).

In these contexts, weak bisimulation would allow to abstract from “unobservable” tasks e.g.
internal tasks and treat a cluster of machines as a single one, reducing the complexity of the
problem.

Truncation semiring ({0, . . . , k},max, 0,min{ + , k}, k). It is variant of the above ones,
and it is used to reason “up-to” a threshold k. A weak bisimulation for this semiring allows us
to abstract from how the threshold is violated, but only if this happens.

Probabilistic semiring Another semiring used for reasoning about probabilistic events is
([0, 1],max, 0, ·, 1). This is used to model the maximum likelihood of events, e.g. for trou-
bleshooting, diagnosis, failure forecasts, worse cases, etc. A weak bisimulation on this semiring
allows to abstract from “unlikely” events, focusing on the most likely ones.

Formal languages A well-known semiring is that of formal languages over a given alphabet
(℘(Σ∗),∪, ∅, ◦, ε). Here, a weak bisimulation is a kind of determinization w.r.t. to words assigned
to τ transitions.
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5 A parametric algorithm for computing weak W-bisim-
ulations

In this section we present an algorithm for computing weak W-bisimulation equivalence classes
which is parametric in the semiring structure W. Being parametrized, the same algorithm
can be used in the mechanized verification and analysis of many kinds of systems. This kind
of algorithms is often called universal since they do not depend on any particular numerical
domain nor its machine representation. In particular, algorithms parametric over a semiring
structure have been successfully applied to other problems of computer science, especially in
the field of system analysis and optimization (cf. [29]).

The algorithm we present is a variation of the well-known Kanellakis-Smolka’s algorithm
for deciding strong non-deterministic bisimulation [23]. Our solution is based on the same
refinement technique used for the coarsest stable partition, but instead of “strong” transitions
in the original system we consider “weakened” or saturated ones. The idea of deciding weak
bisimulation by computing the strong bisimulation equivalence classes for the saturated version
of the system has been previously and successfully used e.g. for non-deterministic or probabilistic
weak bisimulations [2]. The resulting complexity is basically that of the coarsest stable partition
problem plus that introduced by the construction of the saturated transitions. The last factor
depends on the properties and kind of the system and, in our case, on the properties of the
semiring W (the algorithm and its complexity will be discussed with more detail in Section 5.2).

Before outlining the general idea of the algorithm let us introduce some notation. For a
finite set X we denote by X a partition of it i.e. a set of pairwise disjoint sets B0, . . . , Bn
covering X:

X =
⊎
X =

⊎
{B0, . . . , Bn}.

We shall refer to the elements of the partition X as blocks or classes since every partition
induces an equivalence relation

⋃
B∈X B ×B on X and vice versa.

Given a finite W-LTS (X,A + {τ}, ρ) the general idea for deciding weak W-bisimulation
by partition refinement is to start with a partition of the states X0 coarser than the weak
bisimilarity relation e.g. {X} and then successively refine the partition with the help of a
splitter (i.e. a witness that the partition is not stable w.r.t. the transitions). This process
eventually yields a partition Xk being the set of equivalence classes of the weak bisimilarity. A
splitter of a partition X is a pair made of an action and a class of X that violates the condition
for X to be a weak bisimulation. Reworded, a pair 〈α,C〉 ∈ (A + {τ}) × X is a splitter for X
if, and only if, there exist B ∈ X and x, y ∈ B such that:

ρ(x, α̂, C) 6= ρ(y, α̂, C) (4)

where α̂ is a short hand for the sets of traces τ∗ and τ∗aτ∗ when α = τ and α = a ∈ A
respectively. Then Xi+1 is obtained from Xi splitting every3 B ∈ Xi accordingly to the selected
splitter 〈α,C〉.

Xi+1 ,
⋃{

B/≈
α,C
| B ∈ Xi

}
(5)

where ≈
α,C

is the equivalence relation on states induced by the splitter and such that:

x ≈
α,C

y
4⇐⇒ ρ(x, α̂, C) = ρ(y, α̂, C).

Note that the block B can be split in more than two parts (which is the case of non-deterministic
systems) since splitting depends on weights of outgoing weak transitions.

3In Kanellakis and Smolka’s algorithm, only the block B is split but in our case we need to evaluate every
block anyway because of saturation, cf. Section 5.1.
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5.1 Computing weak transitions

The algorithm outlined above follows the classical approach to the coarsest stable partition
problem where stability is given in terms of weak weighted transitions like Hx, τ∗, CI (and
in general weighted sets of paths e.g. Hx, T, CI) but nothing is assumed on how these values
are computed. In this section, we show how weights of weak transitions can be obtained as
solutions of systems of linear equations over the semiring W. Clearly, for some specific cases
and sets of paths, there may be more efficient ad-hoc technique (e.g. saturated transitions
can be precomputed for non-deterministic LTSs) however the linear system at the core of our
algorithm is a general and flexible solution which can be readily adapted to other observational
equivalences (cf. Example 4).

Let C be a class. For every x ∈ X and α ∈ A + {τ} let xα be a variable with domain the
semiring carrier. Intuitively, once solved, these will represent:

xτ = ρ(Hx, τ∗, CI) xa = ρ(Hx, τ∗aτ∗, CI)

The linear system is given by the equation families (6), (7) and (8) which capture exactly the
finite paths yielding the cones covering weak transitions.

xτ = 1 for x ∈ C (6)

xτ =
∑
y∈X

ρ(x
τ−→ y) · yτ for x /∈ C (7)

xa =
∑
y∈X

ρ(x
a−→ y) · yτ +

∑
y∈X

ρ(x
τ−→ y) · ya (8)

The system is given as a whole but it can be split in smaller sub-systems improving the efficiency
of the resolution process. In fact, unknowns like xa depend only on those indexed by τ or a and
unknowns like xτ depend only on those indexed by τ . Hence instead of a system of |A+{τ}|·|X|
equations and unknowns, we obtain |A+ {τ}| systems of |X| equations and unknowns by first
solving the sub-system for xτ and then a separate sub-system of each action a ∈ A (where xτ
are now constant).

Example 4 (Delay bisimulation). Delay bisimulation is defined at the general level of WLTSs
simply by replacing Hx, τ∗aτ∗, CI with Hx, τ∗a,CI in Definition 11. Then, delay bisimulation
equivalence classes can be computed with the same algorithm simply by changing the saturation
part at its core. Weights of sets like Hx, τ∗a,CI are computed as the solution to the linear
equation system:

xa =
∑
y∈X

ρ(x
τ−→ y) · ya +

∑
y∈C

ρ(x
a−→ y).

5.1.1 Solvability

Decidability of the algorithm depends on the solvability the equation system at its core. In
particular, on the existence and uniqueness of the solution. In section we prove that this holds
for every positively ordered ω-semiring. The results can be extended to σ-semirings provided
that their σ-algebra covers the countable families used by Theorem 10.

The linear equation systems under consideration bare a special form: they have exactly the
same number of equations and unknowns (say n) and every unknown appears alone on the left
side of exactly one equation. Therefore, these systems are defining an operator

F (x) = M × x+ b (9)

over the space of n-dimensional vectors Wn where M and b are a n-dimensional matrix and
vector respectively defined by the equations of the system. Then, the solutions of the system
are precisely the fix-points of the operator F and since the number of equations and unknowns
is the same, if F has a fix-point, it is unique.
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Let the semiring W be positively ordered. These semirings admit a natural preorder E
which subsumes any preorder v respecting the structure of the semiring; hence we restrict
ourselves to the former. The point-wise extension of E to n-dimensional vectors defines the
partial order with bottom (Wn, Ė, 0n); suprema are lifted pointwise from (W,E, 0) where are
sum-defined. Therefore, ω-chains suprema exists only under the assumption of addition over
at most countable families and viceversa.

Lemma 8. (Wn, Ė, 0n) is ω-complete iff W admits countable sums.

The operator F manipulates its arguments only by additions and constant multiplications
which respect the natural order. Thus F is monotone with respect to Ė. Moreover, F preserves
ω-chains suprema (and in general ω-families) because suprema for E are defined by means of
additions and the order is lifted point-wise.

Lemma 9. The operator F over (Wn, Ė, 0n) is Scott-continuous.

Finally, we can state the main result of this Section from which decidability follows as a
corollary.

Theorem 10. Systems in the form of (9) have unique solutions if the underlying semiring is
well-behaved and ω-complete.

Proof. By Lemma 8, Lemma 9 and Kleene Fix-point Theorem F has a least fix point. Because
the linear equation system has the same number of equations and unknowns, this solution is
unique.

The linear equation systems defined by the equation families (6), (7) and (8) have exactly
one solution and hence the algorithm proposed is decidable. Moreover this holds also for
any behavioural equivalence whose saturation can be expressed in a similar way e.g. delay
bisimulation (cf. Example 4).

5.1.2 Adequacy

If x ∈ C, then the empty execution ε is the only element of the set Hx, τ∗, CI, (by definition of
reachability) ρ(ε) is the value of the 0-fold multiplication i.e. the unit 1. This case falls under
(6) and hence xτ is ρ(x, τ∗, C) when x ∈ C.

On the other hand, if x /∈ C, then every path reaching C from x needs to have length strictly
greater than 0; reworded, it starts with a transition x

τ−→ y and from y heads towards C. The
weight of Hx, ττ∗, CI is the sum of the weights of its paths which are themselves the ordered
multiplication of their steps. Then by grouping paths by their second state the remaining parts
are exactly the paths in the set Hy, τ∗, CI. Then we obtain the unfolding

ρ(Hx, ττ∗, CI) =
∑
y∈X

ρ(x
τ−→ y) · ρ(Hy, τ∗, CI)

which recursively defines the weight of these sets as the unfolding of executions. In particular,
the base case is precisely (7) and the inductive one is (6).

Every path in the set Hx, τ∗aτ∗, CI contains exactly one transition labelled by the action a
and hence it has a transition, to some state y, and is labelled with either a or τ . In the first case
, the observable a is consumed and remaining path is necessarily in the set Hy, τ∗, CI covered
above. In the second case, the only observable of the path has not been consumed yet and thus
the remaining part of the path should be in the set Hy, τ∗aτ∗, CI completing the case for (8).

Proposition 11. Let W be a positively ordered ω-semiring. For any C, α and x, solutions for
(6), (7) and (8) are exactly the weights of Hx, α̂, CI.
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1: X ← {X}
2: X ′ ← ∅
3: repeat
4: changed← false
5: X ′′ ← X
6: for all C ∈ X \ X ′ do
7: for all α ∈ A+ {τ} do
8: if 〈α,C〉 is a split then

9: X ←
⋃
{B/≈

α,C
| B ∈ X}

10: changed← true
11: end if
12: end for
13: end for
14: X ′ ← X ′′
15: until not changed
16: return X

Figure 1: The algorithm for weak W-bisimulation.

5.2 The algorithm and its complexity

In this section we describe the algorithm and study its worst case complexity. The algorithm
and the resulting analysis follow the structure of the Kanellakis-Smolka’s result. However, some
assumptions available in the case of strong bisimulation for non-deterministic systems are not
available in this settings. For instance, transitions have to be computed on the fly. Moreover,
like many other algorithms parametrized over semirings, no hypotheses are made over the
numerical domain nor over its machine representation. As a consequence, we can not assume
constant-time random access data-structures or linearly order the elements of the semiring.
However, since many practical semirings admit total-orderings and efficient data structures, we
will describe also this second case providing a more efficient version of the algorithm for the
general case.

The first algorithm we propose is reported in Figure 1. Given a finite W-LTS (X,A+{τ}, ρ)
as input, it returns a partition X of X inducing a weak W-bisimulation for the system.

The partition X is initially assumed to have the set of states X as its only block and
corresponds to the assumption of the largest possible equivalence relation on X being also a
weak bisimulation. In general, any partition coarser than some weak bisimulation would be a
suitable initial partition.

The purpose of the two auxiliary partitions X ′ and X ′′ is to keep track of which classes were
added to X during the previous iteration of the repeat-until loop and thus avoiding to reuse a
split candidate. We used these additional partitions for readability but the same result may be
achieved, for instance, having two colours distinguishing blocks already checked. Moreover, X ′
and X ′′ make the flag changed redundant.

The algorithms iterates over each split candidate 〈α,C〉 and tries to split the partition by
checking whatever (4) holds. If the partition “survives” to every split test then it is stable and
in particular it describes a weak W-bisimulation relation. The saturated transitions required
to test 〈α,C〉 are computed by solving the linear equations system described before. Overall,
we have to solve |A|+ 1 systems of |X| linear equations and unknowns for each C.

The complexity of solving these systems depends on the underling semiring structure. For
instance, solving a system over the semiring of non-negative real numbers is in P [1], whereas
solving a system over the tropical (resp. arctic) semiring is in NP ∩ coNP (cf. [16]). Since
the algorithm is parametrized by the semiring, its complexity will be parametrized by the one
introduced by the solution of these linear equation systems. Therefore we shall denote by LW(n)
the complexity of solving a system of n linear equations in n variables over W.

Remark 5. The complexity of the split test can be made preciser since we are not solving a
general linear system, but a specific sub-class of these. For instance, solving a linear system
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1: X ← {X}
2: X ′ ← ∅
3: repeat
4: changed← false
5: for all C ∈ X \ X ′ do
6: for all α ∈ A+ {τ} do
7: compute and sort ρ(x, α̂, C) by block and weight
8: end for
9: if there is any split then

10: X ′ ← X
11: X ← refine(X , C)
12: changed← true
13: end if
14: end for
15: until not changed
16: return X

Figure 2: An alternative algorithm for linearly ordered blocks and weights.

over the boolean semiring is NP-Complete in general, whereas we are interested in a specific
subclass of those encoding a reachability problem over a directed graph which is in P.

Let n and m denote the cardinality of states and labels respectively. For each block C used
to generate splits, there are exactly m candidates requiring to solve m split tests and perform at
most m updates to X . Splits can be thought describing a tree whose nodes are the various blocks
encountered by the algorithm during its execution and whose leaves are exactly the elements of
the final partition. Because the cardinality of X is bound by n, the algorithm can encounter at
most O(n) blocks during its entire execution and hence it performs at most O(n) updates of X
(which happens when splits describe a perfect tree with n leaves). Therefore, in the worst case,
the algorithm does O(nm) split tests and O(n) partition refinements. Partition refinements
and checks of (4) can be both done in O(n2) without any additional assumption about X, A
and W nor the use of particular data structures or primitives. Therefore the asymptotic upper
bound for time complexity of the proposed algorithm is O(nm(LW(n) + n2)) where LW(n) is
the upper bound for the complexity introduced by computing the weak transitions for a given
set of states.

The time complexity can be lowered by means of more efficient representations of systems,
partitions and weights. For instance, the structure of every semiring can be used to define
an ordering for its elements (cf. [17]) allowing the use of lookup data structures. Under the
assumption of some linear ordering for weights and blocks (at least within the same partition)
the operations of refinement and split testing can be carried out more efficiently by sorting
lexicographically the transitions ending in the splitting block C. The resulting algorithm is
reported in Figure 2.

This allows the algorithm to carry out the refinement of X while it is reading the lexico-
graphically ordered list of the saturated transitions. In fact, a block B is split by 〈α,C〉 if
the list contains different weights in the portion of the list where B appears. A change in the
weights correspond to two states x and y such that (4) holds. For each 〈α,C〉 there are at most
n weak transitions ρ(x, α̂, C) and these are sorted in O(nln(n)) – or in O(n) using a classical
algorithm from [1]. On the worst case the algorithm encounters O(n) blocks during its entire
execution yielding a worst case time complexity in O(nm(LW(n) + n)).

Overall, we have proved the following result:

Proposition 12. The asymptotic upper bound for time complexity of the algorithm is in
O(nm(LW(n) + n2)), for the general case, and in O(nm(LW(n) + n)) given a linear order-
ing for blocks and weights. Both algorithms have space complexity in O(mn2).
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6 Coalgebraic perspective

In this Section we illustrate the categorical construction behind Definition 11. The presentation
is succinct due to space constraints but it is based on general results from coalgebraic theory.
In particular, we define weak bisimulations as cocongruences of saturated or weak systems
extending the elegant approach proposed by Silva and Westerbaan in [36].

This is not the first work on a coalgebraic perspective of weak bisimulations coalgebraically,
as in the recent years there have been several works in this direction. In general, the approach
is to recover weak bisimulation as the coalgebraic bisimulation of saturated systems. In [38, 39]
Sokolova et al. studied the case of action-based coalgebras and demonstrated their results on
the cases of non-deterministic and fully-probabilistic systems. In particular, the latter required
to change the category of coalgebras. Recently, Brengos [9, 10] proposed an interesting con-
struction based on ordered-functors which yields saturated coalgebras for the same behavioural
functor. Both these constructions are parametric in the notion of saturation and are therefore
way more general; [10] describes an algebraic structure and some conditions yielding precisely
saturations for weak bisimulations. However, this approach does not cover the case of genera-
tive and stochastic systems [9, Sec. 6] yet. In [37] Sobociński describes a neat account of weak
(bi)simulation for non-deterministic systems and proves that saturation via the double-arrow
construction (i.e. τ -closure) results from a suitable change of base functor having a left adjunct
in the 2-categorical sense.

Likewise, we rely on saturation of the given systems but we do not require any additional
parameter. Moreover, we base our definition on cocongruences which allow us to work explicitly
with the equivalence classes and saturate the given coalgebras such that these describes how
each class is reached by each state without the need to alter the behavioural functor.

Our saturation construction builds on the account of ε-transitions recently given in [36] and
on the neat coalgebraic perspective of trace equivalence given by Hasuo in [18]. Therefore the
same settings are assumed, i.e. we consider coalgebras for functors like TF where T and F are
endofunctors over a category C with all finite limits and ω-colimits; (T, µ, η) is a monad; there
exists a natural transformation λ distributing F over T ; the Kleisli category Kl(T ) is CPPO-
enriched and has, for any X ∈ C, a final ( + X)-coalgebra. Before describing the saturation
construction let us state the main definition of this Section.

Definition 14. Given two TFτ -coalgebras (X,α) and (Y, β), a span of jointly monic arrows

X
p←− R

q−→ Y describes a weak bisimulation between α and β if and only if there exists an

epic cospan X
f−→ C

g←− Y such that (R, p, q) is the final span to make the following diagram
commute:

X Y

C

TFτX TFτY

TFτC

X Y

TFτX TFτY

R

f gαw βw

γ

TFτf TFτg

α β

p q

where αw and βw are the weak saturated TFτ -coalgebras w.r.t. f and g.

Let us see how the weak saturation αw is defined. In our setting, the traces of a TF -coalgebra
α are described by the final map trα from the lifting of α in Kl(T ) to the final F -coalgebra
where F is the lifting of F to Kl(T ) induced by the distributive law λ : FT =⇒ TF (cf. [18]).
Rawly speaking, the monad T can be thought as describing the branching of the system whereas
the observables are characterized by F . Assuming this point of view, any F can be extended
with silent actions τ as the free pointed functor

Fτ , X + FX.

Now, a TFτ -coalgebra α can be “determinized” by means of its iterate [36]:

itrα , ∇FX ◦ trα
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where ∇ is the codiagonal; the traces refer to α seen as a T (X +B) for B = FX and (X, itrα)
is a TF -coalgebra. The iterate offers an elegant and general way to “compress” executions with
leading silent transitions like τ∗a into single-step transitions with exactly one observable but
retaining the effects of the entire execution within the monad T .

These results can be used to cover executions ending with an observable and hence do not
directly lend themselves to equivalences based also on trailing silent actions like in the case
τ∗aτ∗, as required by the weak bisimulation. However, let us suppose to have, for any given
TFτ -coalgebra (X,α), the T -coalgebra (X,ατ ) describing how each state reaches every class
with τ -transition only; then, the coalgebra describing reachability by τ∗aτ∗ is exactly:

α[ : X
itrα−−→ TFX

TFατ−−−−→ TFTX
λX−−→ TTFX

µ−→ TFX.

Then the saturated coalgebra αw is defined by means of the 2-cell structure of Kl(T ) as the
join described by the diagram below.

X

X FX

(X + FX)

ατ α[

ι1 ι2

αw , tv w (10)

This definition points out that τ∗ and τ∗aτ∗ are two close but different cases.
In order to define the T -coalgebra ατ , first we need to be able to consider only the silent

action of the given α. This information can be isolated from α by means of the same structure
used in (10). Therefore we define, for every TFτ -coalgebra α, its silent and observable parts,
namely αs and αo, as the (greatest) arrows to make the following diagram commute and have
α as their join.

X

X FX

(X + FX)

αs αo

ι1 ι2

α = tv w

Because ατ has to describe how each class is reached, classes can be used as the observables
needed to apply the iterate construction to ατ . However, to be able to select the class to be
reached and consider it as the only one observable by the iterate (likewise Fτ distinguish silent
and observable actions by means of a coproduct) we need X and C to be represented as indexed
coproducts of simpler canonical subobjects corresponding to the classes induced by f : X → C.
Henceforth, for simplicity we assume X ∼= X · 1 and C ∼= C · 1. For each class c : 1 → C
let X ∼= Xc + Xc be the split induced by c. This extends to the coalgebra αs (by coproduct)
determining the coalgebra: αsc : Xc → T (Xc +Xc) whose iterate is the map α+

c : Xc → T (Xc)
describing executions of silent action only ending in c (but starting elsewhere). This yields a
C-indexed family of morphisms which together describe τ+ and the information is collected
in one T -algebra as a join in the 2-cell like (10). For this join to be admissible we require T
to not exceed the completeness of 2-cells, i.e. for any x : 1 → X ∈ C the supremum of the
set Kl(T )(1, X) determined by Kl(T )(x,X) exists. Reworded if cells are κ-CPPOs, then T is
κ-finitary; e.g. in Set T -coalgebras describe image κ-bounded T -branching systems. Thus, for
every x the family of arrows {α+

c ◦ x} is limited by κ and can be joined. These are composed
in α+ as the universal arrow in the X-fold coproduct. The last step is provided by the monad
unit which is a T -coalgebra describing how states reach their containing class and can be easily
joined to the above obtaining, finally, ατ . This completes the construction of αw.

Weighted labelled transition systems Assuming at most countably many actions, image-
countable W-WLTs are in 1-1 correspondence with FW(A × )-coalgebras where (FW, µ, η) is
the monad of W-valued functions with at most countable support. In particular, FWX is the set
morphisms from Set(X,W ) factoring through N. On arrows FW is defined as FWf(ϕ)(y) ,
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∑
x∈f−1(y) ϕ(x). The unit η is defined as η(x)(y) , 1 for x = y and 0 otherwise, and the

multiplication µ is defined as µ(ψ)(x) ,
∑
ϕ ψ(ϕ) · ϕ(x).

If W is the boolean semiring, FW is precisely the countable powerset monad. Strength
and double strength readily generalize to every FW and by [19] there is a canonical law λ
distributing (A× ) over FW. The semiring W can be easily endowed with an ordering which
lifts point-wise to W-valued functions [17]. In particular, any ω-semiring with a natural order
(cf. Section 3.2) yields a CPPO-enriched Kl(FW) with bottom the constantly 0 function.

Theorem 13. Let T be FW and F and (A × ). For any given TFτ -coalgebra α and its
corresponding W-LTS, Definition 14 and Definition 11 coincide.

Proof. By unfolding of Definition 14 and by minimality of executions considered by the con-
struction of αw.

7 Conclusions and future work

In this paper we have introduced a general notion of weak weighted bisimulation which applies
to any system that can be specified as a LTS weighted over a semiring. The semiring structure
allows us to compositionally extend weights to multi-step transitions. We have shown that our
notion of weak bisimulations naturally covers the cases of non-deterministic, fully-probabilistic,
and stochastic systems, among others. We described a “universal” algorithm for computing
weak bisimulations parametric in the underlying semiring structure and proved its decidability
for every positively ordered ω-semiring. Finally, we gave a categorical account of the coalgebraic
construction behind these results, providing the basis for extending the results presented here
to other behavioural equivalences.

Our results came with a great flexibility offered, from one hand, by the possibility to instan-
tiate WLTSs to several systems (by just providing opportune semirings) and, from the other,
by the possibility to consider many other behavioural equivalences simply by changing the ob-
servation patterns used in Definition 11 and in the linear equations systems at the core of the
proposed algorithm as described by Example 4.

A possible future work is to improve the efficiency of our algorithm, e.g. by extending Paige-
Tarjan’s algorithm for strong bisimulation instead of Kannellakis-Smolka’s, or using more recent
approaches based on symbolic bisimulations [43].

The algorithm presented is based on Kanellakis-Smolka’s. A possible future work could
be to improve the efficiency of this algorithm, e.g. by extending Paige-Tarjan’s algorithm for
strong bisimulation, or more recent approaches like symbolic bisimulations (e.g. [43, 13]).

Obviously, for specific systems and semirings there are solutions more efficient than our.
For instance, in the case of systems over the semiring of non-negative real numbers (which
captures e.g. and probabilistic systems) the asymptotic upper bound for time complexity of
our algorithm is O(mn3.8) (since LR+

0
(n) is in O(n2.8) using [1]). However, deciding weak

bisimulation for fully-probabilistic systems is in O(mn3) on the worst case using the algorithm
proposed by Baier and Hermanns in [3] (the original analysis assumed A to be fixed resulting
in the worst case complexity O(n3)). Their algorithm capitalise on properties not available at
the general level of WLTSs (even under the assumption of suitable orderings), such as: sums
of outgoing transitions are bounded, there are complementary events, real numbers have more
structure than a semiring, weak and delay bisimulations coincide for finite fully-probabilistic
systems (e.g. this does not hold for non-deterministic LTSs). The aim of future work is to
generalize the efficient results of [3] to a parametrized algorithm for constrained WLTSs, or at
least for some classes of WLTSs subject to suitable families of constraints.

The construction presented in Section 6 introduces some techniques and tools that can be
used to deal with other behavioural equivalences. In fact, we think that many behavioural
equivalences can be obtained by “assembling” smaller components, by means of 2-splits, 2-
merges and iterate, as we did for weak bisimulation. We plan to provide a formal, and easy to
use, language for describing and combining these “building blocks” in a modular way.

22



An important direction for future work is to generalize our framework by weakening the
assumptions on the underlying category (introduced in order to observe and manipulate equiv-
alence classes) and by considering different behavioural functors. In particular, we intend to
extend this framework to ULTraSs, i.e. the generalization of WLTSs recently proposed by
Bernardo et al. in [7]. These are an example of staged transition systems, where several be-
havioural functors (or stages) are “stacked” together.
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