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Abstract. The classification of the fragments of Halpern and Shoham’s
logic with respect to decidability/undecidability of the satisfiability prob-
lem is now very close to the end. We settle one of the few remaining
questions concerning the fragment AĀBB̄, which comprises Allen’s in-
terval relations “meets” and “begins” and their symmetric versions. We
already proved that AĀBB̄ is decidable over the class of all finite linear
orders and undecidable over ordered domains isomorphic to N. In this
paper, we first show that AĀBB̄ is undecidable over R and over the class
of all Dedekind-complete linear orders. We then prove that the logic is
decidable over Q and over the class of all linear orders.

1 Introduction

Even though it has been authoritatively and repeatedly claimed that interval-
based formalisms are the most appropriate ones for a variety of application
domains, e.g., [6], until very recently interval temporal logics were a largely un-
explored land. There are at least two explanations for such a situation: compu-
tational complexity and technical difficulty. On the one hand, the seminal work
by Halpern and Shoham on the interval logic of Allen’s interval relations (HS for
short) showed that such a logic is highly undecidable over all meaningful classes
of linear orders [5], and ten years later Lodaya proved that a restricted fragment
of it, denoted BE, featuring only two modalities (those for Allen’s relations begins
and ends), suffices for undecidability [7]. On the other hand, formulas of interval
temporal logics express properties of pairs of time points rather than of single
time points, and are evaluated as sets of such pairs, that is, binary relations.
As a consequence, there is no reduction of the satisfiability/validity in interval
logics to monadic second-order logic, and thus Rabin’s theorem (the standard
proof machinery) is not applicable here.

In the last decade, a systematic investigation of HS fragments has been car-
ried out. Their classification with respect to the decidability/undecidability of
their satisfiability problem is now very close to the end. The outcome of the
analysis is that undecidability rules over HS fragments [1, 8], but some mean-
ingful exceptions exist [2, 3, 4, 10, 11]. While setting the status of most and
least expressive interval logics is relatively straightforward, e.g., undecidability
of full HS can be shown by a reduction from the non-halting problem for Turing
machines, decidability of the logic of Allen’s relations begins and begun by BB̄
can be proved by a reduction to the (point-based) linear temporal logic of future



and past, dealing with those fragments that lie on the marginal land between
decidability and undecidability is much more difficult. (Un)decidability of HS
fragments depends on two factors: their set of interval modalities and the class
of linear orders over which they are interpreted. While the first one is fairly
obvious, the second one is definitively less immediate. Some HS fragments be-
have the same over all classes of linear orders. This is the case with the logic
of temporal neighbourhood AĀ, which is NEXPTIME-complete over all relevant
classes of linear orders [3]. A real character is, on the contrary, the temporal logic
of sub-intervals D: its satisfiability problem is PSPACE-complete over the class
of dense linear orders [2] and undecidable over the classes of finite and discrete
linear orders [8] (it is still unknown over the class of all linear orders).

In this paper, we focus our attention on the satisfiability problem for the
logic AĀBB̄, which pairs the decidable fragments AĀ and BB̄. In [11], we proved
that the problem is decidable, but not primitive recursive, over finite linear
orders, and undecidable over the natural numbers. Here, we first show that
undecidability can be lifted to the temporal domain R, as well as to the class of
all Dedekind-complete linear orders. Then, we consider the order Q. We devise
two semi-decision procedures: the first one terminates if and only if the input
formula is unsatisfiable over Q, while the second one terminates if and only if
the input formula is satisfiable over Q. Running the two procedures in parallel
gives a decision algorithm for AĀBB̄ over Q. We conclude the paper by showing
that decidability over the class of all linear orders follows from that over Q. All
proofs are given in the Appendix.

2 The logic

We begin by introducing the logic AĀBB̄. Let Σ be a set of proposition
letters. The logic AĀBB̄ consists of formulas built up from letters in Σ using the
Boolean connectives ¬ and ∨ and the unary modalities ⟨A⟩, ⟨Ā⟩, ⟨B⟩, and ⟨B̄⟩. We
will often make use of shorthands like ϕ1 ∧ϕ2 = ¬(¬ϕ1 ∨¬ϕ2), [A]ϕ = ¬⟨A⟩¬ϕ,
[B]ϕ = ¬⟨B⟩¬ϕ, true = a ∨ ¬a, and false = a ∧ ¬a, for a ∈ Σ.

To define the semantics of AĀBB̄ formulas, we consider a linear order D =
(D,<), called temporal domain, and we denote by ID the set of all closed intervals
[x, y] over D, with x ≤ y. We call interval structure any Kripke structure of the
form I = (ID, σ,A, Ā,B, B̄), where σ ∶ ID →P(Σ) is a function mapping intervals
to sets of proposition letters and A, Ā, B, and B̄ are the Allen’s relations “meet”,
“met by”, “begun by”, and “begins”, which are defined as follows: [x, y] A
[x′, y′] iff y = x′, [x, y] Ā [x′, y′] iff x = y′, [x, y] B [x′, y′] iff x = x′ ∧ y′ < y, and
[x, y] B̄ [x′, y′] iff x = x′ ∧ y < y′. Formulas are interpreted over a given interval
structure I = (ID, σ,A, Ā,B, B̄) and a given initial interval I ∈ ID in the natural
way, as follows: I, I ⊧ a iff a ∈ σ(I), I, I ⊧ ¬ϕ iff I, I /⊧ ϕ, I, I ⊧ ϕ1 ∨ ϕ2 iff
I, I ⊧ ϕ1 or I, I ⊧ ϕ2, and, most importantly, for all relations R ∈ {A, Ā,B, B̄},

I, I ⊧ ⟨R⟩ϕ iff there is J ∈ ID such that I R J and I, J ⊧ ϕ.

We say that a formula ϕ is satisfiable over a class C of interval structures if
I, I ⊧ ϕ for some I = (ID, σ,A, Ā,B, B̄) in C and some interval I ∈ ID.
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For example, the formula [B]false (hereafter abbreviated π) hold over all and
only the singleton intervals [x,x]. Similarly, the formula [B][B]false (abbreviated
unit) holds over the unit-length intervals of a discrete order, e.g. over the intervals
of Z of the form [x,x + 1]. The formula [Ā][Ā][A][A]ϕ ([G]ϕ for short) forces
ϕ to hold universally, that is, over all intervals. The formula [G] (¬π → ⟨B⟩¬π )
(ϕdense for short) holds over all and only the interval structures with a dense
domain, e.g., the order Q of the rationals.

Logical types. We now introduce basic terminology and notation that are
common in the temporal logic setting. The closure of a formula ϕ is defined as
the set closure(ϕ) of all sub-formulas of ϕ and all their negations (we identify
¬¬ψ with ψ, ¬⟨A⟩ψ with [A]¬ψ, etc.). For a technical reason that will be clear
soon, we also introduce the extended closure of ϕ, denoted closure+(ϕ), that
extends closure(ϕ) by adding all formulas of the form ⟨R⟩ψ and [R]ψ, with
R ∈ {A, Ā,B, B̄} and ψ ∈ closure(ϕ).

Let I = (ID, σ,A, Ā,B, B̄) be an interval structure. We associate with each in-
terval I ∈ ID its ϕ-type typeϕ

I
(I), defined as the set of all formulas ψ ∈ closure+(ϕ)

such that I, I ⊧ ψ (when no confusion arises, we omit the parameters I and ϕ).
A particular role will be played by those types F that contain the subformula
[B]false, which are necessarily associated with singleton intervals. When no in-
terval structure is given, we can still try to capture the concept of type by means
of a maximal “locally consistent” subset of closure+(ϕ). Formally, we call ϕ-atom
any set F ⊆ closure+(ϕ) such that (i) ψ ∈ F iff ¬ψ /∈ F , for all ψ ∈ closure+(ϕ), (ii)
ψ ∈ F iff ψ1 ∈ F or ψ2 ∈ F , for all ψ = ψ1 ∨ ψ2 ∈ closure+(ϕ), (iii) if [B]false ∈ F
and ψ ∈ F , then ⟨A⟩ψ ∈ F and ⟨Ā⟩ψ ∈ F , for all ψ ∈ closure(ϕ), (iv) if [B]false ∈ F
and ⟨A⟩ψ ∈ F , then ψ ∈ F or ⟨B̄⟩ψ ∈ F , for all ψ ∈ closure(ϕ). We call π-atoms
those atoms that contain the formula [B]false, which are thus candidate types
of singleton intervals. We denote by atoms(ϕ) the set of all ϕ-atoms.

Given an atom F and a relation R ∈ {A, Ā,B, B̄}, we let reqR(F ) be the set
of requests of F along direction R, namely, the formulas ψ ∈ closure(ϕ) such that
⟨R⟩ψ ∈ F . Similarly, we let obs(F ) be the set of observables of F , namely, the
formulas ψ ∈ F ∩closure(ϕ) – intuitively, the observables of F are those formulas
ψ ∈ F that fulfil requests of the form ⟨R⟩ψ from other atoms. Note that, for all
π-atoms F , we have reqA(F ) = obs(F ) ∪ reqB̄(F ) and reqĀ(F ) ⊇ obs(F ).
Compass structures. Formulas of interval temporal logics can be equivalently
interpreted over the so-called compass structures [14]. These structures can be
seen as two-dimensional spaces in which points are labelled with complete logical
types (atoms). Such an alternative interpretation exploits the existence of a
natural bijection between the intervals I = [x, y] over a temporal domain D and
the points p = (x, y) in the D×D grid such that x ≤ y. It is convenient to introduce
a dummy atom ∅, distinct from all other atoms, and assume that it labels all
and only the points (x, y) such that x > y, which do not correspond to intervals.
We fix the convention that obs(∅) = ∅ and reqR(∅) = ∅ for all R ∈ {A, Ā,B, B̄}.

Formally, a compass ϕ-structure over a linear order D is a labelled grid G =
(D×D, τ), where the function τ ∶ D×D→ atoms(ϕ)⊎ {∅} maps any point (x, y)
to either a ϕ-atom (if x ≤ y) or the dummy atom ∅ (if x > y).
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We observe that Allen’s relations over intervals have analogue relations over
points. Figure 1 gives a geometric interpretation of relations A, Ā,B, B̄ (by a

B

B̄
A

Ā

Fig. 1. Geometric interpre-
tation of Allen’s relations.

slight abuse of notation, we use the same letters
for the corresponding relations over the points of
a compass structure). Thanks to such an interpre-
tation, any interval structure I can be converted
to a compass one G = (D × D, τ) by simply letting
τ(x, y) = type([x, y]) for all x ≤ y ∈ D. The con-
verse, however, is not true in general, as the atoms
associated with points in a compass structure may
be inconsistent with respect to the underlying geo-
metrical interpretation of Allen’s relations. To ease a
correspondence between interval and compass struc-
tures, we enforce suitable consistency conditions on
compass structures. For this, we introduce two rela-
tions over atoms F,G:

F ↑ G iff F
↰

G iff

⎧⎪⎪⎪⎨⎪⎪⎪⎩

reqB̄(F ) ⊇ obs(G) ∪ reqB̄(G)
reqB(G) ⊇ obs(F ) ∪ reqB(F )
reqĀ(F ) = reqĀ(G)

{ reqA(F ) = obs(G) ∪ reqB(G) ∪ reqB̄(G)
reqĀ(G) ⊇ obs(F ).

Note that the relation ↑ is transitive, while

↰

only satisfies

↰ ○ ↑ ⊆ ↰

. Observe
also that, for all interval structures I and all intervals I, J in it, if I B̄ J (resp.,
I A J), then typeI(I) ↑ typeI(J) (resp., typeI(I)

↰

typeI(J)). Hereafter, we
tacitly assume that every compass structure G = (D × D, τ) satisfies analogous
consistency properties with respect to its atoms, namely, for all points p = (x, y)
and q = (x′, y′) in D × D, with x ≤ y and x′ ≤ y′, if p B̄ q (resp., p A q), then
τ(p) ↑ τ(q) (resp., τ(p) ↰ τ(q)). In addition, we say that a request ψ ∈ reqR(τ(p))
of a point p in a compass structure G = (D ×D, τ) is fulfilled if there is another
point q such that p R q and ψ ∈ obs(τ(q)) – in this case, we say that q is a
witness of fulfilment of ψ from p. The compass structure G is said to be globally
fulfilling if all requests of all its points are fulfilled.

We can now recall the standard correspondence between interval and compass
structures (the proof is based on a simple induction on sub-formulas):

Proposition 1 ([11]). Let ϕ be an AĀBB̄ formula. For every globally fulfilling
compass structure G = (D×D, τ), there is an interval structure I = (ID, σ,A, Ā,B,
B̄) such that, for all x ≤ y ∈ D and all ψ ∈ closure+(ϕ), I, [x, y] ⊧ ψ iff ψ ∈ τ(x, y).

In view of Proposition 1, the satisfiability problem for a given AĀBB̄ formula
ϕ reduces to the problem of deciding the existence of a globally fulfilling compass
ϕ̃-structure G = (D×D, τ), with ϕ̃ = ⟨G⟩ϕ (⟨G⟩ϕ is a shorthand for ¬[G]¬ϕ), that
features the observable ϕ̃ in every point, that is, ϕ̃ ∈ obs(τ(x, y)) for all x ≤ y ∈ D.

3 Satisfiability over finite and Dedekind-complete orders

The satisfiability problem for AĀBB̄ was originally addressed in [11]. We first
proved that AĀBB̄ is decidable if interpreted over finite linear orders, but not
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primitive recursive. The decidability result rests on a contraction method that,
given a formula ϕ and a finite compass structure satisfying ϕ, shows that, under
suitable conditions, the compass structure can be reduced in size while pre-
serving consistency and fulfilment properties. This leads to a non-deterministic
procedure that decides whether ϕ is satisfiable by exhaustively searching all
contraction-free compass structures. The proof of termination relies on Dick-
son’s lemma, while non-primitive recursiveness is proved via a reduction from
the reachability problem for lossy counter machines [13]. Then, we showed that
the problem becomes undecidable if we interpret AĀBB̄ over a temporal do-
main isomorphic to N (in fact, this is already the case with the proper fragment
AĀB). The proof is based on a reduction from an undecidable variant of the
reachability problem for lossy counter machines, called structural termination
[9], which consists of deciding whether a given lossy counter machine admits a
halting computation starting from a given location and some arbitrary initial
assignment for the counters. Due to an oversight, in [11] we claimed that such
an undecidability result can be transferred to any class of linear orders in which
N can be embedded. As a matter of fact, Dedekind completeness is a necessary
condition. The following theorem properly states undecidability results for AĀB.

Theorem 1. The satisfiability problem for AĀB interpreted over N, R, and the
class of all Dedekind-complete linear orders is undecidable.

In view of the above theorem and the decidability results in [11], the satisfia-
bility problem for AĀBB̄ over Q, as well as over the class of all interval structures,
remains open. In the next section, we will show that, quite surprisingly, both
problems are decidable with non-primitive recursive complexity.

4 Satisfiability over the rationals and all linear orders

We begin by describing a fairly simple semi-decision procedure for the un-
satisfiability of AĀBB̄ formulas over interval structures with a dense temporal
domain. The crucial observation is that, whenever a formula ϕ is unsatisfiable
over Q, this can be witnessed by a finite set of intervals with inconsistent requests.
Based on this observation, one can enumerate all finite compass structures that
witness ϕ and are distinct up to isomorphism, following the partial order induced
by the embedding relation (this relation is defined as an isomorphism between
the smaller structure and the restriction of the larger structure to a suitable
subset of its temporal domain). The only way the enumeration procedure can
terminate is when no refinement is applicable: in this case, one proves that the
input formula ϕ is not satisfiable. Conversely, if the enumeration procedure does
not terminate, then the formula ϕ is satisfied by some compass structure that
is obtained from the limit of an infinite series of refinements (suitable fairness
conditions for the generated refinements guarantee that the temporal domain of
the limit compass structure is isomorphic to Q).

The rest of the section is devoted to finding a semi-decision procedure that
receives an input formula ϕ and terminates (successfully) iff ϕ is satisfiable
over an interval structure with a dense temporal domain. Differently from the
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previous procedure, this one is based on enumerating suitable finite abstractions
of compass structures, which is far from being an easy task.

Fig. 2. Decomposition of a compass structure.

A first step consists of simpli-
fying the consistency and fulfil-
ment conditions. More precisely,
we show how to turn them into
more “local” constraints, so as to
ease, later, the abstraction task.
To this end, recall that the ra-
tional line is isomorphic to any
countable dense ordering with
neither a minimal element nor a maximal one. This means that, for the pur-
pose of studying satisfiability over Q, it does not matter if we consider interval
structures over Q or over any subset of it that is dense and contains no extremal
elements. Similarly, the complexity of the satisfiability problem does not change
if we add minimal and maximal elements to the underlying temporal domain – for
the sake of brevity, we call the resulting order a dense order with endpoints. Now,
to turn the consistency and fulfilment conditions into local constraints, we de-
compose any dense order with endpoints D into some infinite, finitely-branching
tree T whose nodes represent pairs of elements of D of the form s = (y1, y2),
with y1 < y2, and whose edges connect nodes (y1, y2) ∈ T to tuples of nodes
s1 = (z1, z2), ..., sn = (zn, zn+1), with n ≥ 2 and y1 = z1 < z2 < ... < zn < zn+1 = y2

(see Figure 2). Note that the domain D is not necessarily entirely covered by the
time points that appear in the nodes of a decomposition T . Moreover, since all
dense orders with endpoints are isomorphic, we will not be concerned with the
coordinates of the nodes of T and we will often overlook them in the construc-
tions that follow.

Using decompositions of temporal domains we can extract “horizontal slices”
of a compass structure. More precisely, given a compass structure G = (D×D, τ)
and a node s = (y1, y2) of a decomposition T of D, we define the slice of G in
s as the induced sub-structure Gs = (D × {y1, y2}, τ). Intuitively, the slice Gs
is obtained from G by selecting the rows with coordinates y1 and y2 and by
restricting the labelling function τ to them (to reduce the notational overload,
we denote such a restriction of the labelling function by τ).

Below, we introduce suitable abstractions, called profiles, for the labels that
can appear in a slice of a compass structure. Intuitively, for each slice Gs =
(D × {y1, y2}, τ) and each pair of atoms (F,G), where possibly F = ∅ or both
F = ∅ and G = ∅ (dummy atoms), we keep track of the number of coordinates
x ∈ D such that τ(x, y1) = F and τ(x, y2) = G. In particular, in these abstractions,
we forget the occurrence order of the pairs of atoms along the x-axis. To this
end, we make extensive use of multisets. Given a multiset M and an element e in
M , we denote by M(e) the multiplicity, that is, the number of occurrences, of e
in M , and we write M(e) =∞ when M contains infinitely many occurrences of
e. We freely use set-theoretic notations with multisets. For example, we denote
membership by e ∈M , containment by M ⊆ N , etc. Moreover, given a multiset M
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of n-tuples and a set I ⊆ {1, . . . , n} of component indices, we denote by M ∣I the
projection of M onto I, that is, the multiset that contains exactly ∑e∣I=fM(e)
occurrences of each I-tuple f (note that the sum ranges over all n-tuples e
that coincide with f on the components indexed in I). Note that, differently
from set projections, projections of multisets are injective, as they send distinct
occurrences of tuples to distinct occurrences of tuples. In particular, ∣I defines
a bijection from multiset M to multiset M ∣I . Finally, we denote by set(M) the
support of a multiset M , that is, the set of all elements e such that M(e) ≥ 1.

We associate with each slice Gs = (D × {y1, y2}, τ) of a globally fulfilling
compass structure G, the multiset M defined by M(F,G) = ∣{x ∈ D ∶ τ(x, y1) =
F, τ(x, y2) = G}∣ for all (F,G) ∈ (atoms(ϕ) ⊎ {∅})2. We call this multiset the
profile of the slice Gs and we denote it by profile(Gs). Note that the projection
profile(Gs)∣1 (resp., profile(Gs)∣2) onto the first (resp., second) component is a
multiset that represents the number of occurrences of each atom along the lower
(resp., upper) row of the slice Gs. Definition 1 below captures a more general
notion of profile that does not refer to a particular compass structure. We will
then introduce trees labelled with profiles as abstractions of compass structures.

Definition 1. A profile is a multiset M of pairs of (possibly dummy) atoms
(F,G) ∈ (atoms(ϕ) ⊎ {∅})2 such that: (i) for all (F,G) ∈ M , if F ≠ ∅, then
G ≠ ∅ and F ↑ G; (ii) for all (F,G), (F ′,G′) ∈ M , reqA(F ) = reqA(F ′) and
reqA(G) = reqA(G′); (iii) M contains infinitely many occurrences of pairs (∅,G)
with G ≠ ∅; (iv) M contains exactly one occurrence of a pair (F,G) with F
π-atom and exactly one occurrence of a pair (∅,H) with H π-atom (for short,
we denote the two pairs (F,G) and (∅,H) by Mπ and Mπ, respectively); (v)
if Mπ = (F,G), then reqĀ(F ) = ⋃(F ′,G′) ∈M obs(F ′); similarly, if Mπ = (∅,H),
then reqĀ(H) = ⋃(F ′,G′) ∈M obs(G′).

Definition 2. A profile tree is an infinite finitely-branching tree T = (T,N,E),
where T is a decomposition of some dense order with endpoints, N is a function
mapping nodes of T to profiles, and E is a function mapping nodes of T to
multisets of tuples of atoms, such that:

– (profile-match) every node s ∈ T has at least two children, say, s1, . . . , sn,
with n ≥ 2, and E(s) is a multiset of (n + 1)-tuples such that E(s)∣1,n+1 =
N(s) and E(s)∣i,i+1 = N(si) for all 1 ≤ i ≤ n;

– (profile-finite-req) for every node s ∈ T and pair (F1, Fn+1) ∈ N(s), with
F1 ≠ ∅, if N(s)(F1, Fn+1) < ∞, then E(s) contains exactly N(s)(F1, Fn+1)
occurrences of tuples (F1, . . . , Fn+1) such that reqB̄(F1) = ⋃2≤i≤n+1 obs(Fi)∪
reqB̄(Fn+1) and reqB(Fn+1) = ⋃1≤i≤n obs(Fi) ∪ reqB(F1);

– (profile-infinite-req) for every node s ∈ T and pair (F1, Fn+1) ∈ N(s), with
F1 ≠ ∅, if N(s)(F1, Fn+1) = ∞, then E(s) contains at least one occurrence
of a tuple (F1, . . . , Fn+1) such that reqB̄(F1) = ⋃2≤i≤n+1 obs(Fi)∪ reqB̄(Fn+1)
and reqB(Fn+1) = ⋃1≤i≤n obs(Fi) ∪ reqB(F1);

– (profile-dummy) for every node s ∈ T and pair (∅,G) ∈ N(s), with G ≠ ∅,
E(s) contains at least one occurrence of a π-tuple, i.e., a tuple with a π-atom,
of the form (F1, . . . , Fn+1), with F1 = ∅ and Fn+1 = G.
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In addition, if the profile at the root s0 of T contains only the pair Nπ(s0) =
(F,G), with F π-atom and reqB̄(G) = ∅, and some pairs of the form (∅,H),
with H ≠ ∅ and reqB̄(H) = ∅, then T is said to be a full profile tree.

The first item of Definition 2 enforces the matching conditions between the
pairs in the profile of a node and the pairs in the profiles of its children. The
second item requires that all requests that appear in a pair (F,G) of the profile
of a node s are either “locally fulfilled” by the observables of corresponding pairs
in the profiles of the children or transferred to other nodes of the profile tree at
the same level as s. This condition, however, concerns only those pairs (F,G)
that have finite multiplicity in the profile; for the remaining pairs, we enforce a
similar, but weaker condition (third item of the definition). Finally, the fourth
item requires that for each atom G, if the profile N(s) contains the pair (∅,G),
then at least one occurrence of this pair is “refined” in the multiset E(s) by an
occurrence of a tuple of the form (∅, . . . ,∅, F, . . . ,G) that contains a π-atom F
(such a tuple is called for short π-tuple) and that ends with the atom G (possibly
F = G). We will see later that this condition is necessary for the fulfilment of
the requests along the direction Ā.

Below, we show that full profile trees are correct (though not yet finite)
abstractions of globally fulfilling compass structures. We present this result with
two statements showing, respectively, completeness and a weak form of soundness
of profile trees. Note that the two-way correspondence is sufficient for witnessing
satisfiability of AĀBB̄ formulas by means of profile trees.

Proposition 2. For every globally fulfilling compass structure G = (D × D, τ)
over a dense order with endpoints D, there is a full profile tree T = (T,N,E)
such that T is a decomposition of D and, for all nodes s ∈ T , N(s) = profile(Gs).
Conversely, for every full profile tree T = (T,N,E), with T decomposition
of some dense order with endpoints D, there is a globally fulfilling compass
structure G = (D′ × D′, τ), with D′ ⊆ D dense order with endpoints, such that
set(profile(Gs)) = set(N(s)) for all s ∈ T .

Below, we show how to further restrict ourselves to a complete subset of full
profile trees and derive finite representations of them. The general idea is to
normalise profile trees so as to obtain structures that are sufficiently “regular”
to be represented by finite trees. To this end, we introduce a finite variant of the
notion of profile tree, called finite profile tree, that is obtained by enforcing the
conditions of Definition 2 to internal nodes only (accordingly, since the multisets
E(s) that are associated with the leaves s in a finite profile tree are not anymore
relevant, one can assume that the function E is undefined on the leaves). We also
introduce a strengthening of the containment relation on multisets, denoted by
⊑ and defined as follows: M ⊑ N iff set(M) = set(N) and M(F̄ ) ≤ N(F̄ ) (resp.,
M(F̄ ) = N(F̄ )) for all tuples F̄ (resp., π-tuples F̄ ). The following definition
captures precisely the set of profile trees we are interested in.

Definition 3. Let T be a finite or infinite profile tree. We say that T is pseudo-
regular iff for all paths π, there are s, s′ ∈ π, with s proper ancestor of s′, such
that N(s) ⊑ N(s′) and N(s)(∅,G) = N(s′)(∅,G) for all atoms G.
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In the following, we mainly work with profiles that appear at the roots of
infinite profile trees (feasible profiles for short). We observe that the restriction
of the partial order ⊑ to feasible profiles is a well partial order: indeed, the
definition of profile tree implies that every π-tuple has multiplicity either 0 or
1 in any feasible profile, which in turn means that ⊑ is the conjunction of the
well partial order ⊆ and an equivalence of finite index. Hence, by a combination
of Dickson’s and König’s lemmas, every infinite pseudo-regular tree has a finite
prefix that is also pseudo-regular (a prefix of a tree is any restriction of it to an
upward-closed set of nodes). A converse result also holds:

Proposition 3. For every finite pseudo-regular profile tree T , there is an infinite
profile tree T ′ that has the same profile as T at the root.

The crux of our semi-decision procedure for testing the satisfiability of AĀBB̄
formulas is to enumerate all atoms that appear in feasible profiles. Proposition
3 allows us to use finite pseudo-regular profile trees as witnesses of existence of
some of these atoms. Unfortunately, this is not yet the end of the story, because
not all profile trees are pseudo-regular and hence, a priori, there might exist
atoms that appear only in infinite profile trees that are not pseudo-regular. The
last piece of the puzzle amounts at showing that this is not the case and that we
can indeed safely restrict ourselves to atoms appearing in pseudo-regular profile
trees. We will prove this result by normalizing infinite profile trees via a series
of operations that “inflate” the profiles as much as possible.

An important aspect that must be taken into account while inflating the
profiles in a tree is that there are matching constraints to satisfy. As a matter
of fact, these constraints induce dependencies between the multiplicities of pairs
(∅, F ) in the profile associated with a node s and the multiplicities of corre-
sponding pairs (F,G) in the profile associated with the right sibling of s. As
a consequence, there will be differences in the treatment of pairs of the form
(∅, F ) and pairs of the form (F,G), with F ≠ ∅. We take a brief interlude to
give an example of the type of dependencies that can be enforced.

Example 1. Consider a formula ϕ that contains, among other conjuncts, the
subformula [G](a → [B]¬a ∧ [B̄]¬a). Figure 3 describes a slice of a compass
structure that may satisfy ϕ, with some distinguished points annotated with
observables and requests. The formula requires that all a-labelled points lie on
distinct vertical axes; on the other hand, it allows arbitrarily many a-labelled
points to be horizontally aligned. This is a representative example because, in
general, forbidding multiple occurrences of an observable along the same hori-
zontal line can be only done using the modal operator [E], which is not available
in the logic. As concerns the multiplicities of the example profile, we observe
that by inserting multiple a-labelled points along a single horizontal line and by
accordingly modifying the upper part of the compass structure, one can get as
many pairs of atoms (F,G), where ⟨B̄⟩a ∈ F and [B̄]¬a ∈ G. On the other hand,

⟨B̄⟩a ⟨B̄⟩a ⟨B̄⟩a
⟨Ā⟩a

⟨Ā⟩a
a

[B̄]¬a

a
a

[B̄]¬a [B̄]¬a ⟨B̄⟩a⟨B̄⟩a

Fig. 3. Dependencies between multiplicities.

to increase the number of pairs
(∅, F ), where ⟨B̄⟩a ∈ F , one has to
introduce new horizontal lines end-
ing with π-atoms H such that ⟨Ā⟩a ∈
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H: this is not always possible as
other conjuncts of ϕ may enforce
bounds to the number of π-atomsH.

As shown by the above example, the simplest way one can inflate a profile,
while preserving its feasibility, is by increasing the multiplicites associated with
the pairs (F,G), where F ≠ ∅. We formalise this in the next lemma.

Lemma 1. If N is a feasible profile and N ′ is a profile such that N ⊑ N ′ and
N(∅,G) = N ′(∅,G) for all atoms G, then N ′ is feasible too. Moreover, a profile
tree with root profile N ′ can be obtained from a profile tree with root profile N
without modifying the underlying decomposition tree.

We describe a second inflation method, which depends on the previous one
and can be used to further simplify the reasoning on the matching conditions of
a profile tree T = (T,N,E). In particular, it shows that w.l.o.g. one can assume
that the finiteness of the multiplicity of any tuple (F1, . . . , Fn+1) in a multiset
E(s) depends only on the multiplicity of the first component F1 in E(s)∣1. This
property is formalized below by the definition of “pointwise fair” profile tree,
followed by a corresponding lemma that shows how to enforce the property.

Definition 4. A multiset E of (n + 1)-tuples is fair if for all (n + 1)-tuples
(F1, . . . , Fn+1) ∈ E, with F1 ≠ ∅, E∣1(F1) = ∞ implies E(F1, . . . , Fn+1) = ∞. A
profile tree T = (T,N,E) is pointwise fair if all multisets E(s) are fair.

Lemma 2. For every feasible profile N , there is an infinite pointwise fair profile
tree that has root profile N ′ ⊒ N . Moreover, one can assume that, for all pairs
of atoms (F,G), if N ∣1(F ) <∞, then N(F,G) = N ′(F,G).

A third inflation method makes use of the fact that the partial order ⊑ re-
stricted to the set of feasible profiles is ω-complete.

Lemma 3. Every sequence of feasible profiles N0 ⊑ N1 ⊑ ... has a supremum
supiNi, defined by (supiNi)(F,G) = supi∈N (Ni(F,G)) for all atoms F,G, that
is a feasible profile.

We have described three ways of increasing the multiplicities of profiles at
the roots of profile trees. In general, these techniques are not applicable to nodes
that are strictly below the root. This is why we introduce a new partial order ⊴,
incomparable with ⊑, that is defined only over feasible profiles N,N ′ as follows:

N ⊴ N ′ iff

⎧⎪⎪⎪⎨⎪⎪⎪⎩

N ⊆ N ′

set(N ∣2) = set(N ′∣2)
N(F,G) = N ′(F,G) for all atoms F,G ≠ ∅.

We observe that from any infinite ⊴-chain of feasible profiles, one can extract an
infinite sub-sequence that is also a ⊑-chain. Thus, an immediate consequence of
Lemma 3 is that every ⊴-chain has an upper bound. In its turn, the existence
of upper bounds on ⊴-chains implies the existence of feasible profiles that are
maximal with respect to ⊴ (this can be seen as a consequence of Zorn’s Lemma):

Corollary 1. For all feasible profiles N , there is a ⊴-maximal profile N ′ ⊵ N .
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Based on existence of ⊴-maximal profiles, we say that a profile tree is point-
wise ⊴-maximal if all its profiles are ⊴-maximal. Below, we show that all atoms
of feasible profiles appear at the roots of some pseudo-regular profile trees.

Proposition 4. For every infinite pointwise fair profile tree with root profile
N , there is an infinite pointwise fair and pointwise ⊴-maximal profile tree with
root profile N ′ ⊵ N .

Proposition 5. Every infinite pointwise fair and pointwise ⊴-maximal profile
tree is pseudo-regular.

Wrapping up, we can devise a semi-decision procedure that tests the satisfia-
bility of a formula ϕ over Q. The procedure works as follows. It first transforms ϕ
into an equi-satisfiable formula ϕ] [ interpreted over a dense order with endpoints
D. Then, the procedure enumerates all finite full pseudo-regular trees, until a tree
is found that contains the formula ⟨G⟩ϕ] [ as an observable of one of its atoms.
The above semi-decision procedure is correct, namely, it terminates successfully
iff the input formula ϕ is satisfiable over Q. Indeed, if ϕ is satisfiable over Q,
then ϕ] [ is satisfiable over a dense order with endpoints D, and hence there is a
globally fulfilling compass structure G that contains ⟨G⟩ϕ] [ as an observable of
all its atoms. By Propositions 4 and 5, there is also an infinite, pseudo-regular
full profile tree T that witnesses ⟨G⟩ϕ] [ at the root profile. By the remarks that
follow Definition 3, there is also a prefix of T that is a finite pseudo-regular full
profile tree, and eventually this tree must be discovered by the procedure. Con-
versely, if the procedure terminates with a finite pseudo-regular full profile tree
witnessing ⟨G⟩ϕ] [, then by Proposition 3 there is an infinite full profile tree T ,
and hence a compass structure G, that witness the satisfiability of ⟨G⟩ϕ] [ over
D. One can then conclude that ϕ is satisfiable over Q.

A full decision procedure that solves the satisfiability problem for AĀBB̄ over
Q can simply run in parallel the two semi-decision procedures that we described
for unsatisfiability and satisfiability of AĀBB̄ formulas.

As for the satisfiability problem over the class of all interval structures, one
can simply observe the following. The logic AĀBB̄, as any other HS fragment,
can be viewed as a fragment of first-order logic that uses binary relations to
express properties of pairs of elements of the underlying temporal domain. The
relation < of the temporal domain can be easily constrained by a first-order
formula so as to define a linear order, and Allen’s relations can be expressed
in first-order logic in term of <. From Löwenheim-Skolem theorem, it follows
that every interval structure can be assumed to contain only countably many
intervals. Moreover, since every countable linear order can be embedded inside
Q, satisfiability of formulas of a given HS fragment over the class of all linear
orders can be reduced to their satisfiability over Q, provided that the fragment
is powerful enough to express such an embedding. This is the case with AĀBB̄:
it suffices to introduce a distinguished proposition letter #, to constrain all #-
labelled intervals to be singletons ([G](#→ π)), and to relativize all modalities
to intervals with endpoints labelled by # (intervals that satisfy ⟨B⟩# ∧ ⟨A⟩#).
We conclude by establishing the precise complexity of the satisfiability problem.
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Theorem 2. The satisfiability problem for AĀBB̄ interpreted over Q, as well as
over the class of all linear orders, is decidable, but not primitive recursive.

5 Conclusions

In this paper we close the open questions concerning the satisfiability problem
for the interval temporal logic AĀBB̄. First, we generalized the undecidability
result from [11] to R and to the class of all Dedekind-complete linear orders, and
then we proved that it is decidable in two interesting cases: Q and the class of
all interval structures. To decide satisfiability of AĀBB̄ formulas over Q we used
a combination of techniques from [4] (tree-shaped decomposition of models) and
[11] (encoding of models by systems with counters), plus new key ingredients
(separation into two semi-decision procedures, Konig’s lemma). As concerns the
second result, the decidability of AĀBB̄ over the class of all interval structures
follows from the decidability over Q and from Löwenheim-Skolem theorem, which
allows us to assume, without loss of generality, that the interval structures are
countable and hence embeddable inside Q. The fact that AĀBB̄ is powerful
enough to express the embedding of a countable order inside Q completes the
reduction. It is worth pointing out that the same technique cannot be applied to
all HS fragments; for instance, the satisfiability problem for the temporal logic
of sub-/super-intervals DD̄ is known to be decidable over Q [2, 10], but it is open
for the class of all interval structures.
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A Appendix

A.1 Undecidability over Dedekind-complete orders embedding N

Theorem 1. The satisfiability problem for AĀB interpreted over N, R, and the
class of all Dedekind-complete linear orders is undecidable.

Proof. The proof is divided into two parts. In the first part, we reduce a vari-
ant of an undecidable reachability problem for lossy counter machines to the
satisfiability problem for AĀB interpreted over the temporal domain N. In the
second part we show how to lift such an undecidability result to the temporal
domain R and to the class of all Dedekind-complete linear orders. The proof for
the first part was essentially given already in [11] (we only made some small
improvements to the proof); we report it to make the proof self-contained.

As a preliminary step, we recall the precise definition of a lossy (Minsky)
counter machine. This is a triple of the form M = (Q,k, δ), where Q is a finite
set of control states, k is the number of counters, whose values range over N,
and δ is a function that maps each state q ∈ Q to a transition rule having one of
the following forms:
– inc(i) and goto(q′), where i ∈ {1, ..., k} is a counter and q′ ∈ Q is a state.

The meaning of this transition is that, whenever M is in state q, then M
must increment the value of counter i and switch to state q′.

– if i = 0 then goto(q′) else dec(i) and goto(q′′), where i ∈ {1, ..., k} is
a counter and q′, q′′ ∈ Q are states. The meaning of this transition is that,
whenever M is in state q and the value of the counter i is 0 (resp., greater
than 0), thenM must switch to state q′ (resp., it must decrement the value
of the counter i and switch to state q′′).

In addition, from each configuration (q, z̄) ∈ Q×Nk,M can non-deterministically
activate an internal (lossy) transition and move to a configuration (q, z̄′), with
z̄′ ≤ z̄ (the relation ≤ is defined componentwise on the values of the counters). A
computation ofM is any sequence of configurations that respects the semantics
of the transition relation.

The variant of the reachability problem we want to reduce from is called
structural termination and consists of deciding, given a lossy counter machine
M = (Q,k, δ) and a pair of control states qinit and qhalt, whether every com-
putation of M that stars at state qinit, with any arbitrary assignment for the
counters, eventually reaches the state qhalt, again with an arbitrary assignment
for the counters. We know from the results in [9] that structural termination is
undecidable.

To explain the reduction from structural termination of a lossy counter ma-
chine M to satisfiability of an AĀB formula, consider a generic infinite compu-
tation of M of the form

(q1, z̄1) (q2, z̄2) . . .

that starts at the initial state q1 = qinit and that avoids the halting state qhalt,
that is, qt ≠ qhalt for all t ≥ 1. We encode the above computation into a suitable
interval structure I = (IN, σ,A, Ā,B).
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⋯ inc ⋯
qt« z̄t(1)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ z̄t(2)« z̄t(3)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ qt+1« z̄t+1(1)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ z̄t+1(3)«

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
It

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
It+1

g1

g1

g3

Fig. 4. Encoding of part of a computation of a lossy counter machine.

First, we divide the temporal domain N into an infinite sequence of intervals
I1 = [x1, x2], I2 = [x2, x3], . . ., called blocks, where 1 = x1 < x2 < . . . and xt+1−xt =
1 + ∑1≤i≤k z̄t(i) for all t ≥ 1. We also introduce an additional dummy block
I0 = [0,1] to correctly move between the various blocks via the modal operators
⟨A⟩ and ⟨Ā⟩. We observe that all pairs of consecutive blocks It, It+1 satisfy the
“meet” relation A, namely, It A It+1 for all all t ≥ 0.

Next, we introduce ∣Q∣ + k proposition letters that will label the unit-length
intervals [x,x + 1] that are contained in each block It: the first ∣Q∣ proposition
letters will be identified with the control states q ∈ Q of M, while the last k
proposition letters, denoted c1, . . . , ck, will represent the names of the k counters
of M. Let C = {c1, . . . , ck}. The labelling function σ associate a unique propo-
sition letter in Q ∪ C with each unit-length sub-interval of each block It, with
t ≥ 1, as follows:

1. the interval [xt, xt + 1] is labelled by the control state qt;
2. for every 1 ≤ i ≤ k, the number of ci-labelled intervals of the form [x,x + 1],

with xt < x < xt+1, coincides with the value z̄t(i) of the counter i;
3. all other intervals do not carry any letter from Q ∪C
(note that there exist different encodings of the same computation of M).

As an example, Figure 4 represents part of an encoding of a computation for
a lossy counter machine M with two control states, whose occurrences are rep-
resented by black-colored and white-colored intervals, and three counters, whose
values are represented by the numbers of occurrences of intervals colored, respec-
tively, by red, blue, and green (the meaning of the dashed arrows is explained
below).

The next ingredient of the reduction consists of defining the validity of the
encoding by means of a suitable AĀB formula ϕM. In the following, we will prove
that ϕM is satisfiable over the temporal domain N if and only if M admits an
infinite computation starting at state qinit and avoiding the halting state qhalt,
that is, if and only if M is a negative instance of the structural termination
problem.

We are specifically interested in enforcing inequalities between counters of
the form z̄t+1(i) ≤ z̄t(i) + h, with h ∈ {−1,0,1}. We first explain how this can
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be done for the case h = 0. By definition, enforcing a constraint of the form
z̄t+1(i) ≤ z̄t(i) is equivalent to enforcing the existence of a surjective partial
function gi from the set of ci-labelled sub-intervals of It to the set of ci-labelled
sub-intervals of It+1. As an example, the dashed arrow labelled by g3 in Figure 4
represents one instance of a surjective partial function encoding a constraint of
the form z̄t+1(3) ≤ z̄t(3). In its turn, every partial function gi can be represented
by a set of intervals of the form [x, gi(x)], with xt < x < xt+1 < gi(x) < xt+2

and σ([x,x + 1]) = σ([gi(x), gi(x) + 1]) = ci, which can then be labelled by a
fresh proposition letter gi. The relevant properties of these gi-labelled intervals
are translated to a suitable formula ϕ≤i evaluated over the block It. Precisely, we
define

ϕ≤i = [B][A] (gi → (ϕ∃!
Q ∧ [B]¬gi ∧ ⟨B⟩ci ∧ ⟨A⟩ci)) ∧

[B][A] ((ϕ∃!
Q ∧ ⟨A⟩ci)→ ⟨A⟩⟨Ā⟩gi),

where ϕ∃!
Q = ⟨B⟩⟨A⟩⋁q∈Q q ∧ [B]([A]⋁q∈Q q → [B][A]⋀q∈Q ¬q). Intuitively, ϕ∃!

Q

holds at some interval J iff J contains exactly one unit-length sub-interval la-
belled by some proposition letter in Q. The first line of the formula ϕ≤i above
enforces the condition that the set of gi-labelled intervals that start inside It
represents a partial function from the ci-labelled sub-intervals of It to the ci-
labelled sub-intervals of It+1. The second line of ϕ≤i guarantees that such a partial
function is surjective.

In a similar way, one can enforce a constraint of the form z̄t+1(i) ≤ z̄t(i) − 1
(resp., z̄t+1(i) ≤ z̄t(i) + 1) by means of a formula ϕ≤

dec(i)
(resp., ϕ≤

inc(i)
). This

is done by excluding from the domain (resp., from the range) of the surjective
partial function gi exactly one ci-labelled sub-interval of It (resp., It+1), which is
thus distinguished by means of an additional proposition letter dec (resp., inc).
Precisely, we let

ϕ≤
dec(i)

= ϕ∃!
{dec} ∧

[B][A] ( gi → (ϕ∃!
Q ∧ [B]¬gi ∧ ⟨B⟩(ci∧¬dec) ∧ ⟨A⟩ci) ) ∧

[B][A] ( (ϕ∃!
Q ∧ ⟨A⟩ci) → ⟨A⟩⟨Ā⟩gi )

ϕ≤
inc(i)

= ⟨A⟩ ( [B](¬π → [A]⋀q∈Q ¬q) ∧ ⟨A⟩(⋁q∈Q q ∧ ϕ∃!
{inc}) ) ∧

[B][A] ( gi → (ϕ∃!
Q ∧ [B]¬gi ∧ ⟨B⟩ci ∧ ⟨A⟩(ci∧¬inc)) ) ∧

[B][A] ( (ϕ∃!
Q ∧ ⟨A⟩(ci ∧ ¬inc)) → ⟨A⟩⟨Ā⟩gi )

where ϕ∃!
X is defined as before for a generic set X of proposition letters.

It now remains to translate each transition rule δ(q) ofM into a correspond-
ing formula ϕδq taking into account the various possible cases. This can be done
as follows:
1. if δ(q) is a transition rule of the form inc(i) and goto(q′), then we put

ϕδq = ⟨A⟩q′ ∧ ϕ≤
inc(i)

∧⋀j≠i ϕ≤j ;
2. if δ(q) is a transition rule of the form if i = 0 then goto(q′) else dec(i)

and goto(q′′), then we put ϕδq = ([B][A]¬ci → ϕδq,0) ∧ (⟨B⟩⟨A⟩ci → ϕδq,1),

where ϕδq,0 = ⟨A⟩q′ ∧⋀1≤i≤k ϕ
≤
i and ϕδq,1 = ⟨A⟩q′′ ∧ ϕ≤

dec(i)
∧⋀j≠i ϕ≤j .
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The set of all infinite computations of M that start at qinit and avoid qhalt is
captured by the following AĀB formula:

ϕM = [G] ((⟨A⟩¬π ∧ ⟨Ā⟩¬π ∧ unit) → ( ⋁
a∈Q∪C

a ∧ ⋀
a≠b∈Q∪C

¬(a∧b))) ∧

[G] (((unit ∧ ([A]π ∨ [Ā]π)) ∨ ¬unit) → ⋀
a∈Q∪C∪{inc,dec}

¬a) ∧

[G] ⋀
q∈Q

(⟨B⟩q → ⟨Ā⟩⟨A⟩ϕδq) ∧ [G]¬qhalt ∧ ⟨G⟩qinit.

It can be easily checked that ϕM is satisfiable over N if and only if there exists
an initial configuration of the form (qinit, z̄), with z̄ ∈ Nk, from which the lossy
counter machine M never halts.

We show now that the above undecidability result can be transferred to AĀB
formulas interpreted over the order R of the reals, or even over the class of all
Dedekind-complete linear orders. To this end, we introduce a fresh proposition
letter #, which labels singleton intervals only. To lift the undecidability result
from N to R it suffices to enforce that the set of all #-labelled singleton intervals,
with the ordering inherited from R, is isomorphic to N. This can be done by
means of the following AĀB formula ϕ#:

ϕ# = [G](#→ π) ∧ ⟨G⟩(# ∧ [Ā](¬π → (¬# ∧ [Ā]¬#))) ∧
[G](#→ ⟨A⟩(¬π ∧ ⟨A⟩# ∧ [B](¬π → [A]¬#))) ∧
[G]((π ∧ [Ā](¬π → ⟨B⟩⟨A⟩#))→ [A][A]¬#).

The three components (lines) of ϕ# respectively enforce the following conditions:
(i) all #-labelled intervals are singletons and there exists one such interval that
has no other #-labelled intervals strictly to the left, (ii) every #-labelled interval
is followed strictly to the right by another #-labelled interval and in between
there are no other #-labelled intervals (existence of immediate #-successors),
(iii) for every point y in the temporal domain R, if there are occurrences of #
arbitrarily close to y from the left (namely, if y is a right accumulation point of
#), then there is no occurrence of # at y or to its right. In particular, since R,
where ϕ# is interpreted, is Dedekind complete, the last condition implies that
every #-labelled interval sees only finitely many occurrences of # to the left
(otherwise, there would exist an accumulation point y violating the condition),
and thus the set of #-labelled singleton intervals is isomorphic to N.

Now, in order to correctly encode the set of relevant computations of a lossy
counter machine M into an interval structure I = (IR,A, Ā,B, σ), it suffices to
pair ϕ# with the formula obtained from ϕM by constraining each modality to
range only over the intervals that satisfy ⟨B⟩# ∧ ⟨A⟩#, that is, those intervals
with endpoints labelled by # (a correspondence between these intervals and the
intervals over N can be naturally established). This shows that the satisfiability
problem for AĀB interpreted over R is undecidable.

Finally, we extend the above undecidability result to the class of all Dedekind-
complete linear orders. To this end, it suffices to add a fourth conjunct to the
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ϕ̃← ⟨G⟩ϕ

G0 ← empty compass ϕ̃-structure
T ← singleton tree with G0 as root
Q← empty queue
z′ ← new element
AddRefinements (T,Q,G0, z

′, (z′, z′), ϕ̃)

while Q ≠ ∅

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

obj← dequeue(Q)

for all leaves G in T

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

let G = (D ×D, τ)
if obj = (z,min) and z = min(D) then

{
let z′ be a new element with z′ < z
AddRefinements (T,Q,G, z′, (z′, z′), true)

if obj = (z,max) and z = max(D) then

{
let z′ be a new element with z′ > z
AddRefinements (T,Q,G, z′, (z′, z′), true)

if obj = (z1, z2) and
z1, z2 are consecutive in D then

{
let z′ be a new element with z1 < z

′
< z2

AddRefinements (T,Q,G, z′, (z′, z′), true)

if obj = ((x, y),R,ψ) and ∀x′, y′ ∈ D.
(x, y) R (x′, y′) → ψ /∈ obs(τ(x′, y′)) then
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

let D = {z1 < . . . < zn}
for all i = 0 . . . n

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

let z′ be a new element with
z1 < . . . < zi < z

′
< zi+1 < . . . < zn

D′
← D ∪ {z′}

for all (x′, y′) ∈ (D′
×D′

) ∖ (D ×D)

with (x, y) R (x′, y′)
AddRefinements (T,Q,G, z′, (x′, y′), ψ)

function AddRefinements (T,Q,G, z′, (x, y), ψ)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

let G = (D ×D, τ) with D = {z1 < . . . < zn}

for all atoms F , H1, . . . ,Hn, V1, . . . , Vn

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

D′
← D ∪ {z′}

τ ′ ← τ ∪ {(z′, z′)↦ F}

∪ {(zi, z
′
)↦Hi ∶ 1 ≤ i ≤ n}

∪ {(z′, zi)↦ Vi ∶ 1 ≤ i ≤ n}
G
′
← (D′

×D′, τ ′)

if τ ′(x, y) ⊧ ψ and G′ is consistent then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

insert G′ as a new child of G in T

if z′ = min(D′
) then

enqueue(Q, (z′,min))

else

{
z ← predecessor of z′ in D′

enqueue(Q, (z, z′)

if z′ = max(D′
) then

enqueue(Q, (z′,max))

else

{
z ← successor of z′ in D′

enqueue(Q, (z′, z)

for all (x′, y′) ∈ (D′
×D′

) ∖ (D ×D),
R′

∈ {A, Ā,B, B̄},
ψ′ ∈ reqR′(τ

′
(x′, y′))

enqueue(Q, ((x′, y′),R′, ψ′))

Fig. 5. A semi-decision procedure that checks unsatisfiability of an AĀBB̄ formula ϕ.

above formula that selects a (Dedekind-complete) dense order, e.g.,

ϕdense = [G](¬π → ⟨B⟩¬π).

A.2 Enumerating unsatisfiable formulas over Q

Here we provide a fairly simple semi-decision procedure that receives a for-
mula ϕ of AĀBB̄ as input and terminates (successfully) if and only if ϕ is unsat-
isfiable over any interval structure with Q as temporal domain. The procedure
is outlined in Figure 5. It starts by defining ϕ̃ as ⟨G⟩ϕ and by constructing the
finite collection of all (consistent, but possibly not globally fulfilling) compass
ϕ̃-structures that contain exactly one point and that feature the formula ϕ̃ as an
observable. Clearly, every model of ϕ over the rationals, if it exists, embeds at
least one of these compass structures (the embedding relation is defined here as
an isomorphism between the smaller structure and the restriction of the larger
structure to a suitable subset of its temporal domain).

Next, the procedure repeatedly refines the compass structures in the col-
lection by both forcing their temporal domains to be dense and fulfilling all
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requests of all their points. More precisely, a refinement step consists of adding
a new element z′ to the domain D of a compass structure and guessing, in a
way consistent with the previous choices, the ordering of z′ with respect to the
elements in D and the atoms for the emerging points, namely, the points of the
form (x, z′) and (z′, y), with x, y ∈ D ∪ {z′} and x ≤ z′ ≤ y.

The generated compass structures are stored as nodes of a tree T , whose
edges represent the refinement relation over compass structures. In addition,
the procedure adopts a refinement strategy which guarantees, in the limit, the
following conditions for all compass structures G in the tree-shaped collection T :

1. along every infinite refinement path departing from G = (D×D, τ), the mini-
mal (resp., maximal) element z of the domain D is eventually replaced, in the
role of minimal (resp., maximal) element, by a new minimal (resp., maximal)
element z′ < z (resp., z′ > z);

2. along every infinite refinement path departing from G = (D×D, τ), every two
consecutive elements z1, z2 in the domain D are eventually separated by a
new element z′, with z1 < z′ < z2;

3. along every infinite refinement path departing from G = (D × D, τ), every
request ψ ∈ reqR(τ(x, y)), for every point (x, y) of G and every direction
R ∈ {A, Ā,B, B̄}, is eventually fulfilled by the observables of another point.

To enforce the above properties, the procedure chooses in a fair way one among
the following objects: (i) an element z from the domain of some compass structure
of T , (ii) a pair of elements z1 < z2 from the domain of some compass structure of
T , (iii) a point (x, y) and a request ψ of it, for some direction R ∈ {A, Ā,B, B̄}, in
some compass structure of T . Next, the procedure scans all compass structures
that appear at the leaves of T , trying to satisfy finitary variants of conditions 1, 2,
and 3 above. Specifically, if the selected object is the minimal (resp., maximal)
element z of the domain D of a leaf G = (D × D, τ) of T , then the procedure
appends to G as many children as there are (non-isomorphic) refinements G′ =
(D′ × D′, τ ′) of G such that z ≠ min(D′) (resp., z ≠ max(D′)) – in this way the
element z is replaced, in the role of minimal (resp., maximal) element, by a
new element z′ ∈ D′ ∖ D. Similarly, if the selected object is a pair of elements
z1 < z2 that are consecutive in the domain D of a leaf G = (D ×D, τ) of T , then
the procedure appends to G as many children as there are (non-isomorphic)
refinements G′ = (D′ ×D′, τ ′) such that z1 < z′ < z2 for some z′ ∈ D′ ∖D. Finally,
if the selected object consists of a point (x, y) and a request ψ ∈ reqR(τ(x, y))
that is not fulfilled in a leaf G = (D ×D, τ) of T , then the procedure appends to
G as many children as there are (non-isomorphic) refinements G′ = (D′ ×D′, τ ′)
such that ψ ∈ obs(τ ′(x′, y′)) for some point (x′, y′) ∈ D′ × D′ ∖ D × D, with
(x, y) R (x′, y′).

Intuitively, the above refinement strategy guarantees that for every (finite)
compass structure G in the tree-shaped collection T and for every (infinite)
compass structure G⋆ over the rationals, if there exists an embedding of G inside
G⋆, then this embedding can be extended to an embedding of a child of G inside
the same structure G⋆. In particular, the only way the procedure can terminate
is when no refinement is applicable to the frontier of the tree-shaped collection
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of compass structures, and hence when ϕ is unsatisfiable over the rationals, as
stated by the following proposition.

Proposition 6. Let ϕ be an AĀBB̄ formula. If the procedure of Figure 5 ter-
minates on ϕ, then ϕ is unsatisfiable over the class of interval structures with Q
as their temporal domain.

Proof. We prove the claim by contraposition, that is, we show that if ϕ has a
model over Q, then the procedure does not terminate. Thanks to Proposition
1, we can assume that there exists an infinite compass structure G⋆ = (Q ×
Q, τ⋆) such that the formula ϕ̃ = ⟨G⟩ϕ occurs positively in every atom of it. We
proceed as follows. At the beginning of the i-th iteration of the while-loop of the
procedure, we will make use of G⋆ to identify a suitable leaf Gi = (Di × Di, τi)
in the tree-shaped collection Ti, which is stored in the variable T , that can be
embedded inside it. At the same time, by exploiting an inductive argument, we
will prove that the content of the queue Q is non-empty and it contains at least
one object that can be used to refine Gi, that is, a pair (z,min), with z = min(Di),
a pair (z,max), with z = max(Di), a pair (z1, z2), with z1, z2 consecutive elements
of D, or a triple ((x, y),R,ψ), with (x, y) ∈ Di×Di and ψ being a request of (x, y)
along direction R which is not yet fulfilled in Gi. This last invariant enables the
inductive argument and, as a by-product, it implies that the procedure never
terminates.

As for the inductive base, at the beginning of the first iteration of the while-
loop, the frontier of T consists of all and only the singleton compass structures
that feature the formula ϕ̃. We arbitrarily choose any such structure whose atom
appears also in G⋆ and we denote it by G1 = (D1×D1, τ1). By construction, G1 can
be embedded inside G⋆. Moreover, it is easy to check that the queue Q contains,
among others, the objects (z,min) and (z,max), with D1 = {z}.

As for the inductive step, we assume that, at the beginning of the i-th iter-
ation of the while-loop, we have identified a leaf Gi of Ti that can be embedded
inside G⋆, and that the queue Q contains at least one object that, once processed,
will induce a proper refinement of Gi. We distinguish some cases depending on
the type of object that is removed from the head of Q during such an iteration:
1. If the object that is removed from Q does not affect Gi, that is, if at the

end of the i-th iteration Gi is still a leaf of Ti, then we simply let Gi+1 =
(Di+1 × Di+1, τi+1) = Gi. By the inductive hypothesis, Q still contains an
object that can be used to refine Gi+1.

2. Otherwise, suppose that the object removed from Q leads, during the ex-
ecution of the i-th iteration, to some refinements of Gi = (Di × Di, τi), say,
Gi,1, . . . ,Gi,n, with Gi,j = (Di,j ×Di,j , τi,j) for all 1 ≤ i ≤ n. First, we observe
that the temporal domain Di,j of each refinement Gi,j is obtained from the
temporal domain Di of Gi by inserting a single new element z′i,j with some
specific relative order. Moreover, it can be easily seen that the embedding re-
lation of Gi inside G⋆ = (Q×Q, τ⋆) can be described by two order-preserving
functions fi, gi ∶ Di → Q such that τi(x, y) = τ⋆(fi(x), gi(y)) for all x, y ∈ Di.
Finally, since Q is a dense order, we can extend both functions fi, gi to two
new order-preserving functions fi,j , gi,j ∶ Di,j → Q. By a close inspection

20



to the code of Figure 5 (in particular, to the subroutine AddRefinements),
one can easily check that there must exist an index 1 ≤ j ≤ n for which we
have precisely τi,j(x, y) = τ⋆(fi,j(x), gi,j(y)) for all points (x, y) ∈ Di,j ×Di,j
with x = z′i,j or y = z′i,j It immediately follows that the refined compass
structure Gi,j , hereafter denoted simply by Gi+1, can also be embedded in-
side G⋆. To conclude, it suffices to observe that the call to the subroutine
AddRefinements, with G = Gi and z′ = z′i,j as arguments, inserts in Q all new
objects that can be used to further refine the structure Gi+1, which originate
from the addition of the element z′i,j to the domain Di of Gi.

This allows us to conclude that the proposed semi-decision procedure does not
terminate when ϕ is satisfiable over Q.

A converse result holds as well: if the procedure does not terminate, then the
formula ϕ is satisfied by some compass structure G with a temporal domain iso-
morphic to Q. The proof stems on two crucial properties: Konig’s Lemma, which
implies that every finitely-branching tree with infinitely many nodes contains an
infinite path, and the existence of a limit construction for an infinite sequence
of finer and finer compass structures.

Proposition 7. Let ϕ be an AĀBB̄ formula. If the procedure of Figure 5 does
not terminate on ϕ, then there exists a globally fulfilling compass structure G⋆ =
(Q ×Q, τ) whose atoms contain the observable ⟨G⟩ϕ, and hence ϕ is satisfiable
over the class of interval structures with Q as their temporal domain.

Proof. Suppose that the procedure does not terminate on ϕ and, for every for
i ≥ 1, let Ti be the tree-shaped collection of compass structures which is generated
by the i-th iteration of the while-loop. By construction, the tree Ti+1 is a proper
extension of the tree Ti, and it is obtained by Ti by appending a finite number of
nodes to some of its leaves. Moreover, the limit of the sequence of trees T1, T2, . . .
exists and it is a finitely-branching tree T containing infinitely many nodes.
By Konig’s Lemma, T features at least one infinite path ρ. Let G0,G1, . . . be
the infinite sequence of compass structures appearing along the path ρ, with
Gi = (Di ×Di, τi) for all i ≥ 0. We have that G1 consists of a single point, whose
atom contains the observable ϕ̃ = ⟨G⟩ϕ, and, for every i ≥ 1, Gi+1 is a proper
refinement of Gi.

Now, let G be the limit of the sequence G1,G2, . . ., which is defined as G =
(D × D, τ), where D = ⋃i≥1 Di and, for all (x, y) ∈ D × D, τ(x, y) = τi(x, y) for
sufficiently large indices i ≥ 1. Below, we show that G is a consistent and globally
fulfilling compass structure over a temporal domain isomorphic to Q.

Consistency of G follows easily from the observation that all compass struc-
tures along ρ are consistent and that consistency is compatible with limit con-
structions (it is basically a universal property over pairs of points).

To prove that G is globally fulfilling, let us consider a generic point (x, y)
in D × D and a generic request ψ ∈ reqR(τ(x, y)) of it along a direction R ∈
{A, Ā,B, B̄}. By construction, there exists an index i such that (x, y) is added
during the step that refines Gi into Gi+1, that is, (x, y) ∈ (Di+1×Di+1)∖(Di×Di).
During this refinement step (see the last lines of the subroutine AddRefinements),
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the triple ((x, y),R,ψ) is inserted in Q. The same triple ((x, y),R,ψ) will be
eventually removed from Q and processed, say, at the execution of the j-th
iteration of the while-loop, for some j > i. It can be easily checked that, during
the refinement of Gj into Gj+1, the request ψ will be fulfilled thanks to the
insertion of a point (x′, y′) such that (x, y) R (x′, y′) and ψ ∈ obs(τj+1(x′, y′)).
As Gj+1 is embedded inside G, this proves that every request is fulfilled in G.

In a similar way, we can prove that the temporal domain of G is isomorphic
to Q, that is, it is dense and it contains neither a minimum element nor a
maximum one. Each element z that, at the i-th iteration of the while-loop,
becomes the minimal (resp., maximal) element of the domain Di forces an object
(z,min) (resp., (z,max)) to be inserted in Q, and thus it will be eventually
replaced, in its role of minimal (resp., maximal) element, by another element
in a subsequent refinement step. Analogously, every pair of elements z, z′ that,
at the i-th iteration of the while-loop, become consecutive in the domain Di is
added to Q and eventually processed and separated by the insertion of a third
element between them in a subsequent refinement step. As a consequence, the
domain D of the limit structure G neither features a minimal (resp., maximal)
element nor a pair of consecutive elements.

This allows us to conclude that the G is a consistent and globally fulfill-
ing compass structure witnessing the satisfiability of ϕ over a temporal domain
isomorphic to Q.

A.3 Enumerating satisfiable formulas over Q

Here we give the proofs of the results concerning the enumeration of AĀBB̄
formulas satisfiable over Q.

We begin by describing how we can replace, without loss of generality, the
temporal domain Q with a dense order with endpoints, namely, a linear ordering
D that has minimal and maximal elements. Suppose that a formula ϕ is given
that is interpreted over Q. Then this formula can be rewritten into an equi-
satisfiable formula ϕ] [ that is interpreted over a dense order with endpoints D,
by simply restricting all quantifications of ϕ to range over intervals satisfying
⟨Ā⟩¬π ∧ ⟨A⟩¬π, that is, intervals that neither start nor end at the endpoints
of D. Symmetrically, every formula ϕ interpreted over a dense order with end-
points D can be turned into an equi-satisfiable formula ϕ[ ] interpreted over Q, by

relativising all quantifications to intervals satisfying ⟨Ā⟩closed∧ ⟨A⟩closed, where
closed is a fresh propositional letter satisfying [G](closed→ π) ∧ [G]((⟨Ā⟩closed∧
⟨A⟩closed)→ ([B]⟨Ā⟩closed)) ∧ ⟨G⟩(closed∧ [Ā](π∨ [Ā]¬closed)) ∧ ⟨G⟩(closed∧
[A](π∨[A]¬closed)) – technically speaking, the set of closed-labelled time points
defined by the latter formula is a closed convex subset of Q. The above corre-
spondence allows us to reduce satisfiability of an AĀBB̄ formula ϕ over Q to the
existence of a compass structure G = (D × D, τ), where D is a dense order with
endpoints, that contains the observable ⟨G⟩ϕ] [ in all its atoms.

We now turn to proving that full profile trees are correct abstractions of glob-
ally fulfilling compass structures. We give separate proofs for the two statements
of Proposition 2.
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Proposition 2 (first statement). For every globally fulfilling compass struc-
ture G = (D × D, τ) over a dense order with endpoints D, there is a full profile
tree T = (T,N,E) such that T is a decomposition of D and, for all nodes s ∈ T ,
N(s) = profile(Gs).

Proof. The proof of this first statement is quite standard, as it amounts at
defining an appropriate decomposition T of the domain of the compass structure
G. This is done by induction by considering a pair s = (y1, y2) that is already
defined to be a node of T and by introducing sufficiently many children of s with
appropriate coordinates, so as to satisfy all the conditions of Definition 2. We
give the full details below.

Let G = (D×D, τ) be a globally fulfilling compass structure over a dense order
with endpoints D. Below we define a suitable decomposition T of the domain D
and the corresponding labeling for the profile tree T = (T,N,E) by exploiting
an induction.

In the base case, we simply let the root of T be the pair s0 = (min(D),max(D))
and let N(s0) be the profile of the outermost slice Gs0 of G. We then ob-
serve that N(s0) contains only one occurrence of a pair (F,G), with F =
τ(min(D),min(D)) and G = τ(min(D),max(D)), plus some occurrences of pairs
of the form (∅,G), with G = τ(x,max(D)) and x > min(D). Moreover, for all
pairs (F,G) ∈ N(s0), we have that reqB̄(G) = ∅ since G is a globally fulfilling
compass structure. It follows that, if the tree T = (T,N,E) that will result in
the limit construction is a profile tree, then it is also a full profile tree.

For the induction step, let s = (y1, y2) be an already-defined node of T (a leaf
of the current partial tree) and N(s) = profile(Gs) be the associated profile. We
define the children s1, . . . , sn of s in T and the multisets E(s), N(s1), . . . ,N(sn)
as follows. The number n of children of s, as well as their coordinates, will depend
on the arrangement of the points in the slice Gs that witness the pairs of the
profile N(s). In particular, to define these children we need to distinguish in
N(s) the pairs that occur with finite multiplicity from those that occur with
infinite multiplicity.

Since N(s) = profile(Gs), for each pair (F,G) with N(s)(F,G) < ∞, there
exist exactly N(s)(F,G) pairwise distinct coordinates x ∈ D such that τ(x, y1) =
F and τ(x, y2) = G. We collect all these coordinates into a set XF,G of finite
cardinality N(s)(F,G), for each pair (F,G) with N(s)(F,G) <∞. Moreover, for
each pair (F,G) with N(s)(F,G) =∞, we choose a coordinate x∞F,G from the set
D ∖⋃N(s)(F,G)<∞XF,G in such a way that τ(x∞F,G, y1) = F and τ(x∞F,G, y2) = G.
We then define

X = ⋃
N(s)(F,G)<∞

XF,G ∪ ⋃
N(s)(F,G)=∞

{x∞F,G}

Next, we consider the requests that originate from the points of the slice Gs
that intercept the coordinates of X. More precisely, for each x ∈ X and each
ψ ∈ reqB̄(τ(x, y1))∖ reqB̄(τ(x, y2)), we choose a point (x, yx,ψ), with y1 < yx,ψ <
y2, such that ψ ∈ obs(τ(x, yx,ψ)) (recall that the compass structure G is globally
fulfilling). Similarly, for each x ∈X and each ψ′ ∈ reqB(τ(x, y2))∖reqB(τ(x, y1)),
we choose a point (x, yx,ψ′), with y1 < yx,ψ

′ < y2, such that ψ′ ∈ obs(τ(x, yx,ψ′)).
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We collect all coordinates yx,ψ and yx,ψ
′

into a finite set Y . Finally, we define
the set

Z = {y1, y2} ∪ Y ∪ {x ∈X ∶ y1 < x < y2}

and we order its elements as follows: y1 = z1 < z2 < . . . < zn < zn+1 = y2. Without
loss of generality, we can assume that n ≥ 2: if this was not the case, then we
could have chosen an arbitrary pair (∅,G) with infinite multiplicity in N(s)
(there exists at least one such pair) and, instead of a single coordinate x∞F,G, we
could have taken two such coordinates.

The children of the node s in T are precisely defined as the n pairs s1 =
(z1, z2), . . ., sn = (zn, zn+1). We observe that ∣X ∣ ≤ ∑N(s)(F,G)<∞N(s)(F,G) +
∑N(s)(F,G)=∞ 1 and hence ∣Z ∣ ≤ 2+ 2∣X ∣ ⋅ ∣closure(ϕ)∣+ ∣X ∣. From this, by consid-
ering ϕ as a fixed parameter, we derive that the number n of children of s is
O(∑N(s)(F,G)<∞N(s)(F,G) + ∑N(s)(F,G)=∞ 1).

The labelling on node s is defined as follows. We let E(s) be the multiset that
contains any (n + 1)-tuple of atoms F̄ = (F1, . . . , Fn+1) ∈ (atoms(ϕ) ⊎ {∅})n+1

with the following multiplicity:

E(s)(F̄ ) = ∣{x ∈ D ∶ τ(x, z1) = F1, . . . , τ(x, zn+1) = Fn+1}∣.
In addition, we define N(si) = E(s)∣i,i+1 for all 1 ≤ i ≤ n.

It remains to verify that all the conditions of Definition 2 are satisfied for
a generic node s ∈ T . The first condition (profile-match) is clearly satisfied,
since s has n ≥ 2 children s1, . . . , sn, E(s)∣1,n+1 = N(s), and E(s)∣i,i+1 = N(si)
for all 1 ≤ i ≤ n. To verify the second condition (profile-finite-req), we con-
sider a tuple (F1, . . . , Fn+1) in E(s) such that F1 ≠ ∅ and N(s)(F1, Fn+1) <∞.
We first observe that the inclusions reqB̄(F1) ⊇ ⋃2≤i≤n+1 obs(Fi) ∪ reqB̄(Fn+1)
and reqB(Fn+1) ⊇ ⋃1≤i≤n obs(Fi) ∪ reqB(F1) follow trivially from the fact that
N(s) = profile(Gs) and from the consistency conditions satisfied by the atoms
in compass structure G. As for the converse inclusions, let ψ be a request in
reqB̄(F1) ∖ reqB̄(Fn+1). We know from the constructions above that the finite
set X contains all the (finitely many) coordinates x ∈ D such that (x, zi) is an
Fi-labelled point for all 1 ≤ i ≤ n + 1. In particular, for all such coordinates
x ∈ X, there exists yx,ψ ∈ Y such that ψ ∈ obs(τ(x, yx,ψ)). Again by construc-
tion, we know that for some 2 ≤ i ≤ n + 1, yx,ψ = zi and hence ψ ∈ obs(Fi). This
shows that reqB̄(F1) ⊆ ⋃2≤i≤n+1 obs(Fi) ∪ reqB̄(Fn+1). Symmetric arguments
can be used to prove that reqB(Fn+1) ⊆ ⋃1≤i≤n obs(Fi) ∪ reqB(F1). The third
condition (profile-infinite-req) is proved in a similar way. We now verify the last
condition (profile-dummy). Let (∅,G) be a pair that occurs in N(s). We know
from the previous constructions that the set X contains at least one coordinate
x for which τ(x, y1) = ∅ and τ(x, y2) = G. This coordinate x coincides with
one of the coordinates zi that we collected in Z. It follows that the multiset
E(s) contains an occurrence of a tuple (F1, . . . , Fn+1), where F1 = τ(x, z1), . . .,
Fn+1 = τ(x, zn+1). In particular, we have that Fn+1 = τ(x, zn+1) = τ(x, y2) = G
and that Fi = τ(x, zi) = τ(x,x) is a π-atom. This proves that T = (T,N,E) is a
profile tree. Previous arguments imply that it is also a full profile tree. Finally,
it follows by construction that N(s) = profile(Gs) for all nodes s ∈ T .
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Proposition 2 (second statement). For every full profile tree T = (T,N,E),
with T decomposition of some dense order with endpoints D, there is a glob-
ally fulfilling compass structure G = (D′ × D′, τ), with D′ ⊆ D dense order with
endpoints, such that set(profile(Gs)) = set(N(s)) for all s ∈ T .

The proof of this second statement is more technical. The general idea is to
construct the domain D′ that underlies the compass structure generated from
T = (T,N,E) as the union of the sets {y1, y2} over all nodes s = (y1, y2) ∈ T (note
that it may happen that D′ ⊊ D). The definition of the labelling τ ∶ D′ × D′ →
atoms(ϕ) ⊎ {∅} exploits several conditions from Definition 1 and Definition 2,
plus some counting arguments on multisets. A crucial step consists of extend-
ing in an appropriate way the matching conditions of Definition 2 across several
nodes that lie at the same level of the tree T . Roughly speaking, this step can be
though of as a “composition” of the multisets E(s1), . . ., E(sn`

) that are asso-
ciated with the nodes s1, . . . , sn`

at level `. However, the composition operation
is non-deterministic and committing to certain choices can sometimes result in
a compass structure that is not globally fulfilling. The correct composition op-
eration is captured by Lemma 5 below.

Before proving the lemma, however, we need to introduce other preliminary
definitions and results, which will be used later to iteratively refine multisets of
tuples. We begin by introducing a strengthening of the containment relation on
multisets, denoted by ⊑ and defined as follows:

M ⊑ N iff

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

set(M) = set(N)
M(F̄ ) ≤ N(F̄ ) for all tuples F̄ of atoms

M(F̄ ) = N(F̄ ) for all π-tuples F̄ .

It is worth pointing out that, unlike the containment order, ⊑ is not a well
partial order, namely, it may admit infinite anti-chains. However, ⊑ becomes a
well partial order when restricted to multisets containing at most one occurrence
of each π-tuple (examples of such multisets are those associated with the nodes
in a profile tree).

We then introduce an operation of “insertion” for multisets:

Definition 5. Given two multisets L and E, consisting of occurrences of (m+1)-
tuples and (n+ 1)-tuples, respectively, and given a position 1 ≤ j ≤m, we define
an insertion of E into L at position j as a function f ∶ L → E that satisfies the
following conditions:

– f maps any occurrence of a tuple (G1, . . . ,Gm+1) in L to an occurrence of a
tuple (F1, . . . , Fn+1) in E such that F1 = Gj and Fn+1 = Gj+1;

– f is surjective, namely, every occurrence of a tuple in E is the image via f
of some occurrence of a tuple in L;

– the restriction of f that ranges over the occurrences of the π-tuples of E is
injective, namely, there exist no pairs of distinct occurrences of tuples in L
that are mapped via f to the same occurrence of a π-tuple of E.
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It is easy to see that the existence of an insertion of E into L at position j is
equivalent to the relationship

E∣1,n+1 ⊑ L∣j,j+1.

Next, we establish the following rather simple lemma.

Lemma 4. Let m,n > 0, 1 ≤ j ≤ m, let L and E be multisets of (m + 1)-tuples
and (n+1)-tuples, respectively, and let f be an insertion of E into L at position
j. There is a multiset L′ of (m + n)-tuples such that

L = L′∣{1,...,j}∪{j+n,...,m+n}

E ⊑ f(L) = L′∣{j,...,j+n}.

Proof. In this proof it is convenient to think of the insertion f as a multi-relation,
namely, as a multiset R that maps every pair (Ḡ, F̄ ) consisting of an (m + 1)-
tuple Ḡ ∈ set(L) and an (n + 1)-tuple F̄ ∈ set(E) to the number of occurrences
of Ḡ in L that are mapped via f to some occurrences of F̄ in E. In particular,
we have ∑F̄ R(Ḡ, F̄ ) = L(Ḡ) and ∑ḠR(Ḡ, F̄ ) = f(L)(F̄ ).

We begin by defining L′ as a multiset of (m+n)-tuples of the form (G1, . . . ,Gj ,
F2, . . . , Fn, Gj+1, . . . ,Gm+1). More precisely, each tuple (G1, . . . ,Gj , F2, . . . , Fn,
Gj+1, . . . ,Gm+1) occurs in L′ with multiplicity exactly equal to R(Ḡ, F̄ ), where
Ḡ = (G1, . . . ,Gj , Gj+1, . . . ,Gm+1) and F̄ = (Gj , F2, . . . , Fn, Gj+1).

By construction, every tuple in L can be obtained from a tuple in L′ by
removing the intermediate components F2, . . . , Fn and, vice versa, every tuple
in L′ can be obtained from a tuple in L by inserting appropriate components,
determined by G1, . . . ,Gm+1 using f . This amounts to say that there is a bijec-
tion g from L to L′ that maps any occurrence of a tuple (G1, . . . ,Gm+1) to a
distinguished occurrence of a tuple (G1, . . . ,Gj , F2, . . . , Fm,Gj+1, . . . ,Gn+1); the
inverse of g is nothing but the projection that hides the intermediate components
F2, . . . , Fm:

L = L′∣{1,...,j}∪{j+n,...,m+n}.

To prove the second property, we recall that the function f is surjective, and,
furthermore, it is injective when restricted to range over occurrences of π-
tuples of E. This immediately implies E ⊑ f(L). Finally, the fact that f(L) =
L′∣j,...,j+n follows easily from the definition of R and L′, namely, for all tuples
F̄ = (Gj , F2, . . . , Fn,Gj+1), we have:

L′∣{j,...,j+n}(F̄ ) = ∑
G1,...,Gj−1
Gj+2,...,Gm+1

L′(G1, . . . ,Gj , F2, . . . , Fn, Gj+1, . . . ,Gm+1)

= ∑
Ḡ=(G1,...,Gm+1)

R(Ḡ, F̄ )

= f(L)(F̄ ).

Below, we prove the crucial lemma underlying the translation from full profile
trees to globally fulfilling compass structures. According this lemma, for every
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Fig. 6. Graphical representation of the refinement step from L(`, i − 1) to L(`, i).

` ∈ N and 1 ≤ j ≤ n`, the multiset L(`) contains exactly one occurrence of
a tuple of the form (G1, . . . ,Gn`

), where Gj is a π-atom (having more than
one occurrence would violate the fourth condition of Definition 1 for the profile
N(s`,j)). The intuition is that the π-atom Gj in the above tuple represents
the type of the singleton interval [y`,j , y`,j]. Accordingly, the labelling τ of the
compass structure that we construct from T associates with each point p = (x, y),
where x = y`,j and y = y`,i, the i-th atom Gi in the above tuple. Once the compass
structure G = (D′×D′, τ) is defined, it remains to check that it is indeed consistent
and globally fulfilling.

Lemma 5. Let T = (T,N,E) be a full profile tree and, for each ` ∈ N, let
s`,1 = (y`,1, y`,2), . . ., s`,n`

= (y`,n`
, yn`+1) be the nodes, listed from left to right,

that lie at level ` in the decomposition tree T . One can construct a function L
that maps any number ` ∈ N to a multiset of (n` + 1)-tuples of atoms such that:
– N(s0,1)=L(0) and N(s`,i)⊑L(`)∣i,i+1 for all 1 ≤ i ≤ n`;
– E(s`,i) ⊑ L(` + 1)∣{j,...,j+n}, where s`+1,j , . . . , s`+1,j+n−1 are the children of

s`,i;
– L(`)∣{i1,...,ih} = L(`′)∣{i′1,...,i′h} for all `′ ≥ `, 1 ≤ i1 < . . . < ih ≤ n` + 1, and

1 ≤ i′1 < . . . < i′h ≤ n`′ + 1, with y`,i1 = y`′,i′1 , . . . , y`,ih = y`′,i′
h
;

– reqB̄(Gk) = ⋃k<h≤n`+1 obs(Gh) for all π-tuples (G1, . . . ,Gn`+1) ∈ L(`) and all
1 ≤ k ≤ n` + 1, with Gk ≠ ∅;

– reqB(Gk) = ⋃1≤h<k obs(Gh) for all π-tuples (G1, . . . ,Gn`+1) ∈ L(`) and all
1 ≤ k ≤ n` + 1, with Gk ≠ ∅.

Proof. To start with, we define L(0) as the profile N(s0,1) associated with the
root s0,1 of the profile tree T = (T,N,E). To define L(` + 1), for every ` ≥ 0, we
construct some multisets L(`, i) parametrised by two indices ` and i, with ` ≥ 0
and 0 ≤ i ≤ n`. Intuitively, each multiset L(`, i) represents a refinement of the
multiset L(`) with the successors of the first i nodes at level ` in the profile tree
T (see Figure 6). In particular, we have L(`, n`) = L(` + 1), for all ` ∈ N.

The definition of the multisets L(`, i) will exploit a double induction on the
parameters ` and i, as briefly outlined in the following. We let by convention
L(` + 1,0) = L(`, n`), for all ` ∈ N. Then, given ` ∈ N and 1 ≤ i ≤ n` (resp., ` > 0
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and i = 0), we construct the multiset L(`, i) via an application of Lemma 4 that
takes into account the previously defined multiset L(`, i−1) (resp., L(`−1, n`−1))
and the multiset E(s`,i) associated with the i-th node of T at level `. To let the
induction go through, we will also enforce the following invariants for all indices
` ∈ N and 0 ≤ i, i′ ≤ n`:
1. if i′ ≤ i and s`+1,k is a child of s`,i′ , then N(s`+1,k) ⊑ L(`, i)∣k,k+1;
2. if i′ > i and s`+1,k is the last child of s`,i, thenN(s`,i′) ⊑ L(`, i)∣k+(i′−i),k+(i′−i)+1;
3. if (G1, . . . ,Gm+1) is a π-tuple in L(`, i), then for all 1 ≤ k ≤ m + 1 either

Gk ≠ ∅ or reqB̄(Gk) = ⋃k<h≤m+1 obs(Gh);
4. if (G1, . . . ,Gm+1) is a π-tuple in L(`, i), then for all 1 ≤ k ≤ m + 1, either

Gk = ∅ or reqB(Gk) = ⋃1≤h<k obs(Gh).
Once all L(`, i) are defined, we will verify that the multisets L(`) (= L(`,0))
satisfy the conditions of the lemma.

The base case of the inductive construction holds when ` = 0 and i = 0, and it
consists of defining L(0,0) as L(0). This definition clearly satisfies the invariants
I1–I4.

In the inductive step, we fix ` ∈ N and 1 ≤ i ≤ n`, we assume L(`, i − 1) to be
defined as a multiset of (m + 1)-tuples (recall that L(`,0) = L(` − 1, n`−1)), and
we construct the next multiset L(`, i).

To this end, we consider the node s`,i together with its children (ordered
from left to right), say, s`+1,j , . . ., s`+1,j+n−1, for some j ≥ 1 and some n ≥ 2. By
definition, E(s`,i) consists of (n + 1)-tuples of atoms. The definition of profile
tree and invariant I2 imply that

E(s`,i)∣1,n+1 = N(s`,i) ⊑ L(`, i − 1)∣j,j+1.

This means that there is an insertion f of E(s`,i) into L(`, i − 1) at position j.

We now state an important property of the function f . Consider a generic
tuple (F1, . . . , Fn+1) ∈ E(s`,i), with F1 ≠ ∅, and suppose that the pair (F1, Fn+1)
has finite multiplicity in N(s`,i). By condition (profile-finite-req) of Definition
2, it immediately follows that reqB̄(F1) = ⋃1<h≤n+1 obs(Fh) ∪ reqB̄(Fn+1) and
reqB(Fn+1) = ⋃1≤h<n+1 obs(Fh) ∪ reqB(F1). This property will be used later
to prove that the resulting multiset L(`, i) satisfies the invariants I3 and I4.
As a matter of fact, to prove these invariants we need to enforce an additional
constraint on f , which concerns those pairs (F1, Fn+1), with F1 ≠ ∅, that have
infinite multiplicity in N(s`,i). Let (F1, Fn+1) be any such pair (if there is none,
then the assumption that follows is simply vacuous). Condition (profile-infinite-
req) of Definition 2 requires the existence of a tuple F̄ = (F1, . . . , Fn+1) in
E(s`,i) such that reqB̄(F1) = ⋃1<h≤n+1 obs(Fh) ∪ reqB̄(Fn+1) and reqB(Fn+1) =
⋃1≤h<n+1 obs(Fh) ∪ reqB(F1). We fix any such tuple F̄ , that is, we commit to
a specific choice for the atoms F2, . . . , Fn, and we consider the occurrences of
tuples in L(`, i − 1) that are mapped by f to occurrences of π-tuples of E(s`,i),
namely, we let Eπ(s`,i) be the restriction of the multiset E(s`,i) to its π-tuples
and we define Lπ(`, i − 1) = f−1(Eπ(s`,i)) (clearly, Lπ(`, i − 1) is contained, as a
multiset, in L(`, i − 1)). Since f is an insertion, its restriction to Lπ(`, i − 1) is
injective. Moreover, by the definitions of profile and profile tree (specifically, by
the fourth item of Definition 1 and the first item of Definition 2), all multiplicities
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of Eπ(s`,i) must be 1. By the Pigeonhole Principle, it follows that all multiplic-
ities of Lπ(`, i − 1) are finite. Since the sum of the multiplicities of the tuples
(G1, . . . ,Gm+1) in L(`, i − 1) such that Gj = F1 and Gj+1 = Fn+1 is infinite (re-
call that, by assumption, N(s`,i)(F1, Fn+1) = ∞ and N(s`,i) ⊑ L(`, i − 1)∣j,j+1),
we can enforce f to map all occurrences of tuples of Lπ(`, i − 1) of the form
(G1, . . . ,Gm+1), with Gj = F1 and Gj+1 = Fn+1, to the same occurrence of the
tuple F̄ , and this can be done without violating the property of being an inser-
tion.

We are now ready to define the multiset L(`, i) recursively from L(`, i − 1),
E(s`,i), and f , by exploiting Lemma 4, in such a way that

L(`, i − 1) = L(`, i)∣{1,...,j}∪{j+n,...,m+n}

E(s`,i) ⊑ f(L(`, i − 1)) = L(`, i)∣{j,...,j+n}

(recall that j is the index that identifies the first child s`+1,j of s`,i at level `+1).

Let us verify that the defined multiset L(`, i) satisfies all the invariants I1–
I4. The first invariant holds for all i′ < i thanks to the inductive hypothesis.
Moreover, it also holds for i′ = i and all k = j + h, with 1 ≤ h ≤ n, thanks
to the fact that N(s`+1,k) = E(s`,i)∣h,h+1 ⊑ L(`, i)∣{k,k+1}. Similarly, the second
invariant holds for all i′ > i thanks to the inductive hypothesis and the fact that
L(`, i − 1)∣{j+1,...,m+1} = L(`, i)∣{j+n,...,m+n}. As for the invariant I3, we consider
a π-tuple (G1, . . . ,Gm+n) in L(`, i) and a non-dummy atom Gk in it, for some
1 ≤ k ≤m+n. We distinguish two cases, depending on which among the two sub-
sequences (G1, . . . ,Gj ,Gj+n, . . . ,Gm+n) and (Gj+1, . . . ,Gj+n−1) is a π-tuple. If
the former sub-sequence is a π-tuple, then it also occurs in L(`, i− 1) and hence
the invariant reqB̄(Gk) = ⋃k<h≤m+n obs(Gh) follows easily from the inductive
hypothesis. Otherwise, we know that (Gj , . . . ,Gj+n) is also a π-tuple that occurs
in E(s`,i) (⊑ f(L(`, i − 1))). Moreover, thanks to the properties satisfied by the
insertion f , we derive that reqB̄(Gk) = ⋃k<h≤j+n obs(Gh) ∪ reqB̄(Gj+n). Using
the fact that reqB̄(Gj+n) = ⋃j+n<h≤m+n obs(Gh), we conclude that reqB̄(Gk) =
⋃k<h≤m+n obs(Gh). Similar arguments can be used to prove that the invariant
I4 holds for any π-tuple (G1, . . . ,Gm+n) in L(`, i) and any atom Gk in it.

Now that we have defined the multisets L(`, i), we let L(`) = L(`,0) for
all ` ∈ N. To complete the proof, we must show that the multisets L(`) satisfy
the properties stated in the lemma. First of all, we observe that the last two
properties follow easily from the invariants I3 and I4 when we let i = 0. Moreover,
if s`+1,j , . . . , s`+1,j+n−1 are the children of the i-th node s`,i at level ` in T , then
the second property follows easily by construction:

E(s`,i) ⊑ L(`, i)∣{j,...,j+n} = L(`, n`)∣{j,...,j+n} = L(` + 1)∣{j,...,j+n}.
Similarly, if s`+1,k is the h-th children of s`,i, then k = j + h − 1, and hence the
first property also holds:

N(s0,1) = L(0)
N(s`+1,k) = E(s`,i)∣h,h+1 ⊑ (L(` + 1)∣{j,...,j+n})∣h,h+1

= L(` + 1)∣k,k+1.
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It remains to verify the third property. For this, we consider the coordinates
(y`,i, y`,i+1) associated with each node s`,i in T and we let I` = {i ∶ 1 ≤ i ≤ n`+1}
and Y` = {y`,i ∶ i ∈ I`}, for all ` ∈ N. Moreover, we denote tuples of indices from I`
by ī = (i1, . . . , ih) and, by a slight abuse of notation, we denote the corresponding
tuples of coordinates by y(`, ī) = (y`,i1 , . . . , y`,ih). The property to be proved can
be rewritten as follows:

∀` ≤ `′ ∀ī ∈ I` × . . . × I` ∀ī′ ∈ I`′ × . . . × I`′
y(`, ī) = y(`′, ī′) implies L(`)∣̄i = L(`′)∣̄i′ (⋆)

We recall that T is a decomposition of a dense order D, and hence Y0 ⊆ Y1 ⊆
. . . ⊆ D. We can thus associate with each pair (`, `′) ∈ N2, with ` ≤ `′, an injective
function g`,`′ from I` to I`′ in such a way that

∀` ≤ `′ ∀i ∈ I` ∀i′ ∈ I`′ g`,`′(i) = i′ iff y`,i = y`′,i′ (†)

Note that the above functions are additive, namely, g`,`′′ = g`′,`′′ ○ g`,`′ , for all
` ≤ `′ ≤ `′′. By exploiting the additivity of the functions g`,`′ and a simple
induction on ∣`′ − `∣, one can easily verify that

L(`) = L(`′)∣
g−1
`,`′(I`′)

. (‡)

Finally, the desired property (⋆) follows from (†) and (‡) by observing that

g`,`′ (̄i) = ī′ implies L(`)∣ ī = (L(`′)∣
g−1
`,`′(I`′)

)∣
ī

= L(`′)∣ ī′

We are finally ready to translate full profile trees to globally fulfilling compass
structures.

Proof of 2nd statement of Proposition 2. Let T = (T,N,E) be a full profile tree,
where T is a decomposition of some dense order with endpoints D. We first define
the domain of the compass structure G that corresponds to T . This is the subset
of D that consists of all time points appearing in the nodes of T , that is, the set
D′ = ⋃(y1,y2)∈T {y1, y2}. Clearly, D′ is a dense sub-order of D with endpoints.

To define the labelling τ of G, we exploit Lemma 5. First, we construct the
function L mapping natural numbers ` to multisets L(`) containing (n` + 1)-
tuples of atoms, where n` is the number of nodes of T at level `. For every ` ∈ N
and each 1 ≤ i ≤ n`, let s`,i = (y`,i, y`,i+1) be the i-th node from the left at level
`. By Lemma 5, it holds that:

– N(s0,1) = L(0) and N(s`,i) ⊑ L(`)∣i,i+1 for all 1 ≤ i ≤ n`;
– E(s`,i) ⊑ L(` + 1)∣{j,...,j+n}, with s`+1,j , . . ., s`+1,j+n−1 children of s`,i;
– L(`)∣{i1,...,ih} = L(`′)∣{i′1,...,i′h} for all `′ ≥ `, 1 ≤ i1 < . . . < ih ≤ n` + 1, and

1 ≤ i′1 < . . . < i′h ≤ n`′ + 1, with y`,i1 = y`′,i′1 , . . ., y`,ih = y`′,i′
h
;

– reqB̄(Gk) = ⋃k<h≤n`+1 obs(Gh) for all π-tuples (G1, . . . ,Gn`+1) ∈ L(`) and
all 1 ≤ k ≤ n` + 1, with Gk ≠ ∅;

– reqB(Gk) = ⋃1≤h<k obs(Gh) for all π-tuples (G1, . . . ,Gn`+1) ∈ L(`) and all
1 ≤ k ≤ n` + 1, with Gk ≠ ∅.
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Consider now a generic point p = (x, y), with x, y ∈ D′. We observe that the set
of coordinates Y` = {y`,i ∶ 1 ≤ i ≤ n` + 1} increases with `, that is, Y` ⊆ Y`+1,
and, for sufficiently large `, this set covers any element of the domain D′ (it
holds that ⋃`∈N Y` = D′). This means that there is a triple (`, i, j), with ` ∈ N
and 1 ≤ i, j ≤ n` + 1, such that x = y`,i and y = y`,j . The label τ(x, y) will be
defined by identifying a suitable tuple in L(`) on the basis of the index i and by
projecting it onto the j-element. As we will see, the definition does not depend
on the particular choice of the triple (`, i, j).

Given the triple (`, i, j), we first show that there exists exactly one tuple
Ḡ = (G1, . . . ,Gn`+1) in L(`) such that Gi is a π-atom. By Definition 1, the profile
N(s`,i) contains a unique occurrence of a pair of the form (F,G), with F π-atom,
and since N(s`,i) ⊑ L(`)∣i,i+1, this pair (F,G) must be the projection onto the
components Gi,Gi+1 of a unique tuple (G1, . . . ,Gn`+1) in L(`). Intuitively, the
atom Gi of the distinguished tuple Ḡ = (G1, . . . ,Gn`+1) represents the atom that
must be associated with the point (x,x); similarly, the atom Gj represents the
atom that must be associated with the point (x, y) (note that Gj = ∅ iff j < i iff
y < x). We thus define τ(x, y) = Gj .

It is worth remarking that the above definition of τ(x, y) does not depend on
the particular choice of the triple (`, i, j), as choosing any other triple (`′, i′, j′)
such that x = y`′,i′ and y = y`′,j′ would have led to the same definition of τ(x, y).
This follows essentially from the fact that the definition depends only on the
i-th and j-th components of the tuples in L(`) and from the fact that

⎧⎪⎪⎨⎪⎪⎩

y`,i = x = y`′,i′
y`,j = y = y`′,j′

implies L(`)∣i,j = L(`′)∣i′,j′

Before proving that the resulting structure G = (D′×D′, τ) is a globally fulfill-
ing compass structure, we show that for all nodes s`,i, we have set(profile(Gs`,i)) =
set(N(s`,i)). Consider a pair (F,G) that occurs in the profile of a slice Gs`,i .
Clearly, there exist two points p = (x, y`,i) and q = (x, y`,i+1) such that τ(p) =
F and τ(q) = G. By construction, there exists a quadruple (`′, i′, j′, k′) such
that x = y`′,i′ , y`′,j′ = y`,i, and y`′,k′ = y`,i+1, and hence there exists a tuple
(G1, . . . ,Gn`′+1) in L(`′) such that Gi′ is a π-atom, Gj′ = τ(p) = F , and Gk′ =
τ(q) = G. We know from the properties of L that L(`′)∣j′,k′ = L(`)∣i,i+1 ⊒ N(s`,i).
This means that the pair (F,G) occurs also in the profile N(s`,i), possibly with
a different multiplicity. The converse direction follows by symmetric arguments.

We first prove that G = (D′×D′, τ) is a consistent compass structure. Consider
two points p, q in G such that p B̄ q, say p = (x, y) and q = (x, z), with x, y, z ∈ D′

and x ≤ y < z. We know that, sufficiently down in the tree T , say at some
level `, we can find a sequence of pairwise adjacent nodes s`,i = (y`,i, y`,i+1), . . .,
s`,j = (y`,j , y`,j+1), . . ., s`,k = (y`,k, y`,k+1), with 1 ≤ i ≤ j < k ≤ n` + 1, such that
y`,i = x, y`,j = y, and y`,k = z. Let (G1, . . . ,Gn`+1) be the unique tuple in L(`)
such that Gi is a π-atom. By construction, we have that τ(x,x) = Gi, τ(p) = Gj ,
and τ(q) = Gk. We prove by induction on k − j that τ(p) = Gj ↑ Gk = τ(q)
(see Section 2 for the definition of the relation ↑). The base case k − j = 1 holds
trivially: it immediately follows from (Gj ,Gk) ∈ L(`)∣j,k ⊒ N(s`,j) and the first
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condition of Definition 1. The induction step is straightforward as well, since,
by transitivity of ↑, it reduces to the application of the inductive hypothesis: if
k − j > 1, then Gj ↑ Gk follows from Gj ↑ Gj+1 ↑ Gk.

Consider now two points p, q in G such that p A q, namely, p = (x, y) and
q = (y, z), for some x, y, z ∈ D′ with x ≤ y ≤ z. As before, at some level ` in
T , we can find a sequence of pairwise adjacent nodes s`,i = (y`,i, y`,i+1), . . .,
s`,j = (y`,j , y`,j+1), . . ., s`,k = (y`,k, y`,k+1), with 1 ≤ i ≤ j ≤ k ≤ n` + 1, such that
y`,i = x, y`,j = y, and y`,k = z. Let (G1, . . . ,Gn`+1) be the unique tuple in L(`)
such that Gi is a π-atom. Similarly, let (H1, . . . ,Hn`+1) be another unique tuple
in L(`) such that Hj is a π-atom. By construction, τ(x,x) = Gi, τ(p) = Gj ,
τ(y, y) = Hj , and τ(q) = Hk. Since both pairs (Gj ,Gj+1) and (Hj ,Hj+1) occur
in L(`)∣j,j+1 ⊒ N(s`,j) and N(s`,j) satisfies the second condition of Definition 1,
it follows that reqA(Gj) = reqA(Hj). Furthermore, since Hj is a π-atom, by the
definition of atom, it holds reqA(Hj) = obs(Hj) ∪ reqB̄(Hj). In addition, from
the first condition of Definition 1, we have Hj ↑ Hk. Putting all together, we
obtain τ(p) = Gj ↰ Hj ↑Hk = τ(q), which finally proves τ(p) ↰ τ(q).

We now prove that G = (D′ × D′, τ) is globally fulfilling. We first show that
all the requests along the direction B̄ are fulfilled. Consider a point p = (x, y) in
G and a request ψ ∈ reqB̄(τ(p)) of it. As usual, let (`, j, k) be a triple such that
x = y`,j and y = y`,k, and let (G1, . . . ,Gn`+1) be the unique tuple in L(`) such
thatGj is a π-atom. By construction, τ(p) = Gk. Moreover, by the properties of L
that we stated at the beginning of the proof, reqB̄(Gk) = ⋃k<h≤n`+1 obs(Gh), and
thus ψ ∈ obs(Gh) for some h > k. By construction, the point q = (x, y`,h) satisfies
p B̄ q and is labelled with the atom Gh, from which it follows ψ ∈ Gh = τ(q).
Similar arguments can be used to prove that all requests of p along the direction
B are fulfilled.

Next, we prove that all the requests along the direction A are fulfilled. Con-
sider a point p = (x, y) and a request ψ ∈ reqA(τ(p)). As before, let (`, j, k)
be a triple such that x = y`,j and y = y`,k, and let (G1, . . . ,Gn`+1) be the
unique tuple in L(`) such that Gj is a π-atom. Clearly, τ(p) = Gk. By def-
inition of L, N(s`,k) ⊑ L(`)∣k,k+1. Let us assume Nπ(s`,k) = (F,G) (if k is
equal to n` + 1, then a similar argument holds by substituting k − 1, k for
k, k + 1 and Nπ(s`,k−1) for Nπ(s`,k)). By the second and the fourth conditions
of Definition 1, ψ ∈ reqA(Gk) = reqA(F ) and F is a π-atom. It follows that
reqA(F ) = obs(F ) ∪ reqB̄(F ) and thus ψ is an observable of the point q = (y, y)
or a request of it along the direction B̄. In the first case, it immediately follows
that p A q; in the second case, by the previous arguments, we can conclude that
the request ψ of q along the direction B̄ is fulfilled by a third point r = (y, z),
with p A q B̄ r.

Finally, consider a request ψ ∈ reqĀ(τ(p)) of a point p = (y, z). Let (`, j, k)
be a triple such that y = y`,j and z = y`,k and let (G1, . . . ,Gn`+1) be the unique
tuple in L(`) such that Gj is a π-atom. By the previous results, it holds that
Gj ↑ Gk = τ(p), and thus reqĀ(Gj) = reqĀ(Gk) (see Section 2 for the definition
of ↑). We claim that j > 1. By contradiction, if j = 1, then (Gj ,Gj+1) = Nπ(s`,1),
as T is a full profile tree and Gj is a π-atom. Moreover, since the profile N(s`,1)
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contains only pairs (F,G) with either F = ∅ or reqĀ(F ) = ∅, by the last condition
of Definition 1, it holds that reqĀ(Gj) = ∅, which contradicts ψ ∈ reqĀ(Gk) =
reqĀ(Gj). From j > 1 and the fact that Gj is a π-atom, it immediately follows
that Gj−1 = ∅. Consider now the pair (Gj−1,Gj) = (∅,Gj), which belongs to
the profile N(s`,j−1) ⊑ L(`)∣j−1,j . From the last condition of Definition 1, we
get reqĀ(Gj) = ⋃(F,G) ∈N(s`,j) obs(F ), and hence ψ ∈ obs(G) for some pair
(F,G) ∈ N(s`,j−1) ⊑ L(`)∣j−1,j . By condition (profile-dummy) of Definition 2,
there exists a tuple (F1, . . . , Fn+1) ∈ E(s`,j−1) such that Fn+1 = G and Fi is a
π-atom for some i ≤ n+ 1. Moreover, it holds that E(s`,j−1) ⊑ L(`+ 1)∣{k,...,k+n},
for some index k, and hence (Fi,G) ∈ L(` + 1)∣k+i−1,k+n. Finally, we recall that
y`+1,k+n = y`,j = y and hence the point q = (x, y), where x = y`+1,k+i−1, satisfies
p = (y, z) Ā q and is labelled with the atom G. This proves that the request ψ
of p is fulfilled at q.

Proposition 3. For every finite pseudo-regular profile tree T , there is an infinite
profile tree T ′ that has the same profile as T at the root.

Proof. The proof of this result is not very difficult. Without loss of generality,
one can assume that the finite pseudo-regular tree T = (T,N,E) is minimal
with respect to the prefix partial order. This implies that every leaf s′ of T has a
proper ancestor s such that N(s) ⊑ N(s′) and N(s)(∅,G) = N(s′)(∅,G) for all
atoms G. One then uses the latter property as an invariant of a construction that
repeatedly extends the frontier of T by a new set of leaves, each one associated
with a profile that is roughly obtained as in an arithmetic progression. The limit
of such a construction gives an infinite pseudo-regular profile tree T ′ that extends
T .

Let T = (T,N,E) be a finite pseudo-regular profile tree. W.l.o.g., we can
assume T to be minimal with respect to the prefix partial order (if this is not the
case, then a minimal prefix of T can be obtained by pruning the sub-trees strictly
below the nodes s′ that have proper ancestors s in T satisfying N(s) ⊑ N(s′)
and N(s)(∅,G) = N(s′)(∅,G) for all atoms G). The infinite profile tree T ′ can
be obtained as the limit of a construction that repeatedly extends the frontier of
T with new leaves. More precisely, we inductively build a series of finite profiles
trees Ti = (Ti,Ni,Ei) such that, for all ≥ 0:
1. Ti ⊊ Ti+1;
2. Ni+1(s) = Ni(s), for all nodes s ∈ Ti;
3. Ei+1(s) = Ei(s), for all internal nodes s ∈ Ti ∖ fr(Ti), where fr(Ti) denotes

the set of leaves of Ti;
4. fr(Ti)∩fr(Tj) = ∅ for some j > i (this guarantees that any leaf of Ti eventually

becomes an internal node in some Tj).
To do this, we will exploit the following invariant:

∀s′ ∈ fr(Ti) ∃s ∈ Ti proper ancestor of s′

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ni(s) ⊑ Ni(s′)

Ni(s)(∅,G) = Ni(s′)(∅,G)
for all atoms G.

(⋆)
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As for the base step, we let T0 = (T0,N0,E0) = T . The invariant (⋆) holds for
T by definition of pseudo-regular tree.

As for the inductive step, suppose that some Ti = (Ti,Ni,Ei) satisfying (⋆)
is defined and fairly choose a leaf s′ ∈ fr(Ti) (here fairly means that any element
of fr(Ti) is eventually chosen). Thanks to the invariant (⋆), we can find a proper
ancestor s of s′ such that Ni(s) ⊑ Ni(s′) and Ni(s)(∅,G) = Ni(s′)(∅,G), for
all atoms G. We construct Ti+1 by adding new nodes under the leaf s′ of Ti and
by properly replicating the labelling structure of s and its children on s′ and its
children. More precisely, let s1, . . . , sn be the children of s. We accordingly add
new nodes s′1, . . . , s

′
n as children of s′ in Ti+1, that is, Ti+1 = Ti⊎{s′1, . . . , s′n}. For

all nodes s′′ ∈ Ti, we simply let Ni+1(s′′) = Ni(s′′); similarly, for all nodes s′′ ∈ Ti∖
{s′}, we let Ei+1(s′′) = Ei(s′′). To define the multiset Ei+1(s′) and the profiles of
the children of s′ in Ti+1, we begin by setting D = Ni(s′)∖Ni(s), namely, we let D
be the multiset of pairs of atoms such that D(F,G) = Ni(s′)(F,G)−Ni(s)(F,G),
for all F,G. Then, for each pair (F,G) in the support of D, we fix a corresponding
(n + 1)-tuple of atoms H̄F,G of the form (F1,H2, . . . ,Hn,G), for some atoms
H2, . . . ,Hn, in the support of Ei(s). We observe that (i) such a tuple H̄F,G

exists since Ei(s)∣1,n+1 = Ni(s) (cf. condition (profile-match) of Definition 2)
and (ii) the tuple H̄F,G is not a π-tuple (otherwise, by definition of ⊑, we would
have that Ni(s′)(F,G) = Ni(s)(F,G) and hence the pair (F,G) /∈ set(D)). In
particular, distinct pairs (F,G) are mapped to distinct tuples H̄F,G. We then
define

Ei+1(s′)(H̄) =
⎧⎪⎪⎨⎪⎪⎩

Ei(s)(H̄F,G) +D(F,G) if H̄ = H̄F,G for some (F,G) ∈D;

Ei(s)(H̄) otherwise.

Accordingly, we let Ni+1(s′j) = Ei+1(s′)∣j,j+1 for each j = 1, . . . , n. By con-
struction, we have that Ei+1(s′)∣1,n+1 = Ni(s) ∪ D = Ni(s′) = Ni+1(s′) and
Ei+1(s′)∣j,j+1 = Ni+1(s′j), and thus Ti+1 = (Ti+1,Ni+1,Ei+1) satisfies the matching
conditions of Definition 2. Hence, Ti+1 is a profile tree. To complete the proof, it
remains to check that the invariant (⋆) holds on the new leaves of Ti+1. This is,
however, easy to do since, for each leaf s′j of s′, it holds that:
1. Ni+1(s′j) = Ei+1(s′)∣j,j+1 ⊆ Ei(s′)∣j,j+1 = Ni(sj);
2. set(Ni+1(s′j)) = set(Ei+1(s′)∣j,j+1) = set(Ei(s′)∣j,j+1) = set(Ni(sj)), because

any pair (F,G) that belongs to the support of D (= Ni(s′) ∖Ni(s)) must
also belong to the support of Ni(s) (otherwise Ni(s) ⋢ Ni(s′)), and hence
set(Ei+1(s′)) = set(Ei(s));

3. Ni+1(s′j)(∅,G) = Ni(sj)(∅,G) for all atoms G, because Ei+1(H̄) = Ei(H̄)
for all π-tuples H̄.
The limit of the above construction, defined as T ′ = (T ′,N ′,E′), where T ′ =

⋃i∈N Ti, N ′(s) = Ni(s), and E′(s) = Ei(s) for large enough i such that s ∈ Ti, is
an infinite profile tree that extends T . In particular, T ′ has the same profile as
T at the root.

Lemma 1. If N is a feasible profile and N ′ is a profile such that N ⊑ N ′ and
N(∅,G) = N ′(∅,G) for all atoms G, then N ′ is feasible too. Moreover, a profile
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tree with root profile N ′ can be obtained from a profile tree with root profile N
without modifying the underlying decomposition tree.

Proof. The proof is by induction on the number of pairs (F,G), with F ≠ ∅,
such that N(F,G) < N ′(F,G) (the base case being trivial). Each inductive step
is based a suitable transformation performed on the profile tree T that witnesses
the feasibility of N . Intuitively, the transformation increases the multiplicity of
a specific pair (F,G) in the root profile N and then propagates the inflation to
the children, using the matching conditions of Definition 2. We remark that this
transformation is possible (and easy) because it does not affect the multiplicities
of the pairs of the form (∅,G), which usually encode more complex constraints.

Let us consider a pair (F,G), with F ≠ ∅, such that N(F,G) < N ′(F,G).
Since N is feasible, there is a profile tree T = (T, Ñ ,E), with root r, such
that Ñ(r) = N . In the following, we apply to T a suitable transformation that
results in a new profile tree T ′ = (T, Ñ ′,E′) that has the same decomposition
tree as T and satisfies (i) Ñ(s) ⊑ Ñ ′(s), for all s ∈ T , (ii) Ñ ′(r) ⊑ N ′, and
(iii) Ñ ′(r)(F,G) = N ′(F,G). The transformation is obtained by increasing the
multiplicities in Ñ(r) and in E(r) and by recursively transforming the subtrees
rooted at the children of r so as to respect the conditions of Definition 2 as
follows.
– The profile Ñ ′(r) is defined by Ñ ′(r)(F,G) = N ′(F,G) and Ñ ′(r)(F ′,G′) =

N(F ′,G′) for all pairs (F ′,G′) ≠ (F,G).
– Let s1, . . . , sn be the children of r. We know from condition (profile-match)

of Definition 2 that the multiset E(r) contains at least one tuple of the form
F̄ = (F1, . . . , Fn+1), with F1 = F and Fn+1 = G. We fix any such tuple F̄ and
we define

E′(r)(F̄ ) = E(r)(F̄ ) + N ′(F,G) − N(F,G).
For all other tuples F̄ ′ ∈ E(r), with F̄ ′ ≠ F̄ , we define E′(r)(F̄ ′) = E(r)(F̄ ′).

– The labellings for the subtrees of T ′ under r are defined as follows. First, for
each index 1 ≤ i ≤ n, we define Ñ ′(si) = E′(r)∣i,i+1. It can be easily checked

that Ñ(si) ⊑ Ñ ′(si) and Ñ(si)(∅,G′) = E′(r)∣i,i+1(∅,G′) for all atoms G′.
Thus, we can apply inductively the transformation to each subtree rooted
at si using the profile Ñ ′(si) as an inflation of Ñ(si).

The result of the above inductively-defined transformation is a profile tree T ′ =
(T, Ñ ′,E′) such that Ñ(s) ⊑ Ñ ′(s), for all s ∈ T , (ii) Ñ ′(r) ⊑ N ′, and (iii)
Ñ ′(r)(F,G) = N ′(F,G).

Finally, by iterating the above transformation on all pairs (F,G) such that
F ≠ ∅ and N(F,G) < N ′(F,G), we obtain the desired profile tree witnessing the
feasibility of N ′.

Lemma 2. For every feasible profile N , there is an infinite pointwise fair profile
tree that has root profile N ′ ⊒ N . Moreover, one can assume that, for all pairs
of atoms (F,G), if N ∣1(F ) <∞, then N(F,G) = N ′(F,G).

The basic principle of the proof of the above lemma is similar to that of
Lemma 1, since we use an inductively-defined transformation on infinite profile
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trees. However, differently from the previous proof, here we correct several vio-
lations of fairness at once, and level-wise. In particular, in this proof we make
an extensive use of Lemma 5. Before entering the details of the proof, how-
ever, we make some preliminary remarks and introduce further terminology and
definitions.

We recall that, given any profile tree T = (T,N,E), Lemma 5 produces a
function L that maps any level ` ∈ N to a multiset L(`) of (n` + 1)-tuples of
atoms satisfying some desired properties (i.e., the five items of the claim of the
lemma). For shortness, we say that L is the level function induced by T . A
converse construction also holds that takes a level function L satisfying all the
properties of Lemma 5 but the first two (which are irrelevant now since the profile
tree is unspecified), and produces an infinite profile tree TL. The construction of
TL is straightforward:

– the decomposition tree TL of TL is any decomposition of a temporal domain
that is compatible with the function L, namely, has exactly n` nodes at level
`, where n` + 1 is the length of the tuples in L(`));

– the profile function NL of TL is defined by NL(s`,j) = L(`)∣j,j+1, for all ` ∈ N
and all 1 ≤ j ≤ n`, where s`,j is the j-th node at level ` in TL;

– similarly, the function EL is defined by EL(s`,j) = L(` + 1)∣k,...,k+n, for
all ` ∈ N and all 1 ≤ j ≤ n`, where s`,j is the j-th node at level ` and
s`+1,k, . . . , s`+1,k+n are the children of s`,j in TL.

We call TL the profile tree generated by a level function L. Moreover, one easily
verifies that, if L is the level function induced by a profile tree T with the
same decomposition tree as Tl, then TL “dominates” T on all nodes, namely,
TL(s) ⊒ T (s) for all s ∈ TL. On the basis of this last remark, hereafter we can
restrict ourselves to profile trees like TL and identify them with the induced level
functions L.

To ease an inductive proof of Lemma 2, we generalize the notion of fairness
(cf. Definition 4) to the multisets specified by an induced level function L.

Definition 6. Let L be a function mapping any level ` ∈ N to a multiset of
(n`+1)-tuples. We say that L is fair up to level ` if for all `′ ≤ ` and all (n`′ +1)-
tuples (∅, . . . ,∅, Fj , . . . , Fn`′+1) ∈ L(`′), with Fi ≠ ∅, we have that

L(`′)∣1,...,j(∅, . . . ,∅, Fi) =∞ implies L(`′)(∅, . . . ,∅, Fj , . . . , Fn`′+1) =∞.

Proof of Lemma 2. Let T = (T,N,E) be an infinite profile tree that has profile
N at the root. The basic principle of the proof of Lemma 2 is similar to that
of Lemma 1, as we use an inductively-defined transformation on infinite profile
trees. However, differently from the previous proof, here we correct several vio-
lations of fairness at once, and level-wise. In particular, in this proof we make
an extensive use of Lemma 5.

The rough idea is to enforce the generalized fairness property over each level
of the initial profile tree by increasing the multiplicities associated with some
tuples in the induced level function and by correcting at the same time the
possible violations of the matching conditions that could arise. The relabelling
process produces a series of level functions L0, L1, . . . over the same decompo-
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sition tree T such that, for every ` ∈ N, the function L` is fair up to level ` + 1
and L0(`′) ⊒ L1(`′) ⊒ . . . ⊒ L`(`′) for all levels `′ ≤ ` + 1. We will then be able to
define a “limit” of the level functions L0, L1, . . ., which turns out to be fair up
to any level, and from this we will finally obtain a pointwise fair profile tree T ′
with root profile N ′ ⊒ N .

To simplify the notation, we will omit the subscripts 0,1, . . . form the level
functions L0, L1, . . . and consider a generic step of the transformation that takes
a level function L (over the fixed decomposition tree T ) that is fair up to level
` and returns a new level function L′ that is fair up to level ` + 1 and further-
more satisfies L(`′) ⊑ L′(`′) for all levels `′ ≤ ` + 1. We give the details of this
transformation step below.

First of all, we define the set Γ of tuples (∅, . . . ,∅, Fj , . . . , Fn`+1+1) ∈ L(`+1)
that violate the condition of Definition 6, namely, such that Fj ≠ ∅, L(` +
1)∣1,...,j(∅, . . . ,∅, Fj) = ∞, and L(` + 1)(∅, . . . ,∅, Fj , . . . , Fn`+1+1) < ∞. We ob-
serve the important fact that Γ contains no π-tuples (otherwise, there would
exist a profile in the tree generated from L that violates Definition 1). We then
define the function L′ on the (` + 1)-th level in the obvious way:

L′(` + 1)(F̄ ) =
⎧⎪⎪⎨⎪⎪⎩

∞ if F̄ ∈ Γ ,

L(` + 1)(F̄ ) otherwise.

Clearly, we have L′(` + 1) ⊒ L(` + 1).
To define L′ on the remaining levels, we must consider the equalities between

the y-coordinates of nodes at different levels in the underlying decomposition
tree T . For every `′ ∈ N and every 1 ≤ j′ ≤ n`′ + 1, we let (y`′,j′ , y`′,j′+1) be
the coordinates of the j′-th node at level `′ in T . Then, for the upper levels
`′ = 0, . . . , `, we identify the set of positions at level ` + 1 that have the same
y-coordinates as some positions at level `′, that is,

J
`′
↑

`+1 = {1 ≤ j ≤ n`+1 + 1 ∶ y`+1,j = y`′,j′ for some 1 ≤ j′ ≤ n`′+1 + 1}

and we accordingly define L′(`′) = L′(` + 1)∣J , where J abbreviates J
`′
↑

`+1 (note

that again we have L′(`′) ⊒ L(` + 1)∣J = L(`′)).
As concerns the lower levels `′ = `+2, `+3, . . ., we proceed as follows. We first

observe that the function L′ that we defined so far satisfies all the properties
of Lemma 5, but the first two, when relativised to the first ` + 2 levels. By
applying standard constructions – that is, by projecting the multisets L(`′) over
the appropriate components – we can generate from the partially defined function
L′ a corresponding finite profile tree T ′. Formally, we let T ′ = (T ′,N ′,E′), where

– T ′ is the finite prefix of the decomposition tree T that contains the first
levels 0, . . . , ` + 1,

– N ′(s`′,j) = L(`′)∣j,j+1 for all 0 ≤ `′ ≤ ` + 1 and all 1 ≤ j ≤ n`′+1,
– E′(s`′,j) = L(`′ + 1)∣k,...,k+n for all `′ ≤ ` and all 1 ≤ j ≤ n`′+1, where s`′+1,k,

. . ., s`′+1,k+n are the children of s`′,j (note that the function E′ is undefined
on the frontier of T ′).

We then observe the following facts about the nodes s`+1,j at the frontier of T ′:
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1. N(s`+1,j) is a feasible profile,
2. N(s`+1,j) ⊑ N ′(s`+1,j),
3. for all pairs of atoms (∅,G), there exists a tuple F̄ = (∅, . . . ,∅, Fj+1, . . . ,

Fn`+1+1) such that Fj+1 = G and N(s`,j)(∅,G) = (L(` + 1)∣j,j+1)(∅, Fj+1) =
(L′(` + 1)∣j,j+1)(∅, Fj+1) = N ′(s`+1,j)(∅,G) (note that if F̄ ∈ Γ and L(` +
1)(F̄ ) < L′(`+1)(F̄ ) =∞, the projection of F̄ onto the first j+1 components
has infinite multiplicity in L(` + 1)∣1,...,j+1 too).

We can thus apply Lemma 1 and claim that every profile N ′(s`+1,j) at the
frontier of T ′ is feasible. In addition, we can relabel the subtrees of T at nodes
s`+1,1, . . . , s`+1,n`+1 and obtain in this way some profile trees T ′1 , . . . ,T ′n`+1 that
can be attached over the leaves of T ′ so as to complete it into a infinite profile
tree. We can finally prolong the function L′ to the remaining levels `+2, `+3, . . .
using the completion of T ′ and Lemma 5 – here we can assume, without loss
of generality, that the level function induced by T ′ coincides with L′ on the
levels 0, . . . , `+1 (if this were not the case, we could just update L′ with the new
induced function by observing that doing so can only increase the multiplicities).

We have just finished our description of a single transformation step, which
takes a level function L, fair up to level `, and returns a new level function L′

that is fair up to level ` + 1. By construction the transformation preserves the
underlying decomposition tree T and furthermore guarantees that L(`′) ⊑ L′(`′)
for all `′ ≤ ` + 1. These properties enable the definition of the “limit” L⋆ of the
resulting series of functions L0, L1, . . ., as follows:

L⋆(`) = supi≥`Li(`)
(note that this is well-defined because the length of the tuples of the multisets
Li(`) is constant). To conclude, we observe that L⋆ is fair up to any level and
hence generates an infinite pointwise fair profile tree TL⋆ with root profileN ′ ⊒ N .

To prove the claim of the last sentence of the lemma, we recall the definition
of the level function L′ on the basis of level function L, where the latter was
assumed to be fair up to level `. We observe that the two profiles L(0) and
L′(0) may differ only by the multiplicities associated with the pairs of the form
F̄ ∣1,n`+1+1, for some tuples F̄ ∈ Γ . Moreover, by construction, every tuple F̄ =
(∅, . . . ,∅, Fj , . . . , Fn`+1+1) from Γ satisfies (L(`+1)∣1,...,j)(∅, . . . ,∅, Fj) =∞, and

hence L(0)∣1(F̄ ∣1) =∞. By contraposition and by a simple induction we conclude
that N(F,G) = N ′(F,G) whenever N ∣1(F ) <∞.

Lemma 3. Every sequence of feasible profiles N0 ⊑ N1 ⊑ ... has a supremum
supiNi, defined by (supiNi)(F,G) = supi∈N (Ni(F,G)) for all atoms F,G, that
is a feasible profile.

Concerning the above lemma, we remark that defining the supremum supiNi
of a sequence of profiles is trivial. The technicality of the above result lies in show-
ing that supiNi is feasible whenever N0,N1, . . . are. Intuitively, a profile tree T
that witnesses the feasibility of supiNi can be recursively constructed from some
profile trees T0,T1, . . . witnessing the feasibility of N0,N1, . . .. Special attention,
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however, must be paid in the presence of finite but unbounded multiplicities of
the form N0(F,G), N1(F,G), . . . : in this case, the condition (profile-finite-req)
in the definition of profile tree implies that the numbers of children of the roots
of T0,T1, . . . increase steadily. To enable an inductive construction of T , one must
be able to “aggregate” several consecutive children under a new single node, and
accordingly lift this operation at the level of the profiles.

To prove Lemma 3, we establish a preliminary result that allows us to aggre-
gate the profiles associated with a sequence of consecutive children of the root
of some profile tree. Intuitively, this operation corresponds to the possibility of
merging adjacent slices into a single larger slice.

Lemma 6. Let T = (T,N,E) be a profile tree, let r be its root, and let s1, . . . , sn
be the children of r, ordered from left to right. For every pair of indices 1 ≤ i ≤ j ≤
n, one can find a profile tree T ′ whose root is labelled by the profile E(r)∣i,j+1.

Proof. The proof is a straightforward implication of Lemma 5. Let (y`,j , y`,j+1)
denote the coordinates of the j-th node at level ` in the profile tree T = (T,N,E)
and let L be the function obtained by applying Lemma 5 to T . We construct
T ′ = (T ′,N ′,E′) as follows:
– T ′ = {r} ⊎ {s ∈ T ∶ s descendant of sk in T , for some i ≤ k ≤ j}, where the

node-to-child relationships are naturally inferred from those of T ;
– N ′(r) = L(1)∣i,j+1 = E(r)∣i,j+1;
– N ′(s) = L(`′)∣i′,j′+1, for all s ∈ T ′ ∖ {r} and for some triple of indices `′, i′, j′

such that (y`′,i′ , y`′,j′+1) = s (note that, thanks to the properties satisfied
by the function L, the multiset L(`′)∣i′,j′+1 is independent of the particular
choice of such `′, i′, j′);

– E′(r) = L(2)∣i′,...,j′+1, where i′, j′ are the unique indices such that y2,i′ = y1,i

and y2,j′+1 = y`,j+1 (note that this implies E′(r)∣1,n′ = N ′(r), where n′ =
j − i + 1 is the number of children of r in T ′);

– E′(s) = L(`′)∣i′,...,j′+1 for all s ∈ T ′ ∖ {r}, where (y`′,i′ , y`′,i′+1), . . ., (y`′,j′ ,
y`′,j′+1) are the coordinates of the children of s in T ′.

It is routine to the verify that T ′ is a profile tree.

Proof of Lemma 3. Let N0 ⊑ N1 ⊑ . . . be a chain of profiles. The definition of
the supremum N⋆ = supiNi is trivial, as shown in the statement of the lemma.
Below we assume that the profiles N0,N1, . . . occur at the roots of some profile
trees T0, T1, . . ., and we construct a new profile tree having the supremum profile
N⋆ at its root.

We begin by identifying three noticeable sets of pairs of atoms on the basis
of the series of multiplicities in the profiles N0,N1, . . .:

Pmax = {(F,G) ∶ ∃i ∈ N ∀j ≥ i Ni(F,G) = Nj(F,G) <∞}
Psup = {(F,G) ∶ ∀i ∈ N ∃j ≥ i Ni(F,G) < Nj(F,G) <∞}
P∞ = {(F,G) ∶ ∃i ∈ N ∀j ≥ i Nj(F,G) =∞}.

Clearly, given any pair of atoms (F,G), depending on whether (F,G) ∈ Pmax,
(F,G) ∈ Psup, or (F,G) ∈ P∞, we have N⋆(F,G) = maxiNi(F,G), N⋆(F,G) =
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∞, orN⋆(F,G) =∞, respectively. Without loss of generality (namely, by restrict-
ing to sub-sequences of profiles), we can further assume that the multiplicity of
each pair (F,G) ∈ P∞ ∪ Pmax in the profiles N0,N1, . . . is constant (either finite
or infinite).

Now, for every i ∈ N, let si,1 = (yi,1, yi,2), si,2 = (yi,2, yi,3), . . ., si,ni =
(yi,ni , yi,ni+1) be the children of the root of Ti, listed from left to right, and
let Ei be the multiset of (ni + 1)-tuples that is associated with the root of the
profile tree Ti. For each i ∈ N, we choose a minimal subset Ji = {ji,1 < . . . < ji,ki+1}
of {1, . . . , ni + 1} satisfying the following properties:
– ji,1 = 1 and ji,ki+1 = ni + 1;
– for every pair (F,G) ∈ Pmax, with F ≠ ∅, Ei∣Ji contains exactly N⋆(F,G)

(= Ni(F,G) for any i ∈ N) tuples of the form (F1, . . . , Fki+1) such that F1 = F ,
Fki+1 = G, reqB̄(F1) = ⋃2≤j≤ki+1 obs(Fj) ∪ reqB̄(Fki+1), and reqB(Fki+1) =
⋃1≤j≤ki obs(Fj) ∪ reqB(F1);

– for every pair (F,G) ∈ Psup ∪ P∞, with F ≠ ∅, Ei∣Ji contains at least one
tuple of the form (F1, . . . , Fki+1) such that F1 = F , Fki+1 = G, reqB̄(F1) =
⋃2≤j≤ki+1 obs(Fj)∪reqB̄(Fki+1), and reqB(Fki+1) = ⋃1≤j≤ki obs(Fj)∪reqB(F1);

– for every pair (∅,G) ∈ Pmax ∪ Psup ∪ P∞, with G ≠ ∅, Ei∣Ji contains at least
one π-tuple of the form (F1, . . . , Fki+1) such that Fki+1 = G..

It is worth noticing the resemblance between the last three conditions and the
conditions (profile-finite-req), (profile-infinite-req), and (profile-dummy) in the
definition of profile tree. This is not by chance, as the rationale underlying the
above conditions is indeed to ease the construction of a profile tree witnessing
the feasibility of N⋆. For the same reason, the pairs in Psup, which have finite
unbounded multiplicities in N0,N1, . . ., are treated just like the pairs in P∞, as
both appear with multiplicity ∞ in N⋆.

Since we required the set Ji = {ji,1 < . . . < ji,ki+1} to be minimal, it is easy
to see that its size is bounded over all i ∈ N: indeed, each pair (F,G) of atoms
requires the existence of a constant number of tuples in Ei∣Ji , each one adding
at most ∣ϕ∣ indices to Ji. In particular, we can assume without loss of generality
that the size of the sets Ji is constant, say ∣Ji∣ = k+1, and hence k0 = k1 = . . . = k.
The parameter k is precisely the number of children that will added under the
root of a profile tree in order to witness the feasibility of N⋆.

More precisely, the construction of a profile tree for N⋆ is done as follows.
We first create a new node r and associate the profile N⋆ with it. Then we
apply Lemma 6 to each profile tree Ti and to each pair of nodes si,ji,h , si,ji,h+1 ,
for h = 1, . . . , k, thus obtaining new profile trees Ti,1, . . . ,Ti,k witnessing the
feasibility of the profiles Ni,1 = Ei∣ji,1,...,ji,2 , . . ., Ni,k = Ei∣ji,k,...,ji,k+1 . Now, for
each h = 1, . . . , k, we consider the series of profiles (Ni,h)i∈N and we denote by N⋆

h

its supremum, i.e., N⋆
h = supiNi,h. Similarly, we define E⋆ = supiEi∣ji,1,...,ji,k+1 ,

and we observe that N⋆
h = E⋆∣h,h+1 for all h = 1, . . . , k. Finally, we associate the

multiset E⋆ with r and we attach k subtrees under r that are constructed by
induction as if we had to prove feasibility of the limit profiles N⋆

1 , . . . ,N
⋆
k .

Corollary 1. For all feasible profiles N , there is a ⊴-maximal profile N ′ ⊵ N .
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Proof. We observe that from any infinite ⊴-chain of feasible profiles, one can
extract an infinite sub-sequence that is also a ⊑-chain. An immediate consequence
of Lemma 3 is that every ⊴-chain has an upper bound (which, however, is not
guaranteed to be a supremum in the partial order ⊴). In its turn, the existence
of upper bounds on ⊴-chains implies the existence of feasible profiles that are
maximal with respect to ⊴: this can be either seen as a consequence of Zorn’s
Lemma, or proved directly by way of contradiction using an straightforward
induction on the countably many profiles.

Proposition 4. For every infinite pointwise fair profile tree with root profile N ,
there is an infinite pointwise fair and pointwise ⊴-maximal profile tree with root
profile N ′ ⊵ N .

Proof. Let T = (T,N,E) be an infinite pointwise fair profile tree that has profile
N at the root. The proof of this result is based again on an inductively-defined
transformation of T that results in a new profile tree that is both pointwise fair
and pointwise ⊴-maximal. The transformation is performed by a series of sub-
stitutions of profiles in T . The rough idea consists of visiting T in breadth-first
order while replacing every non ⊴-maximal profile with a dominating maximal
one, which exists thanks to Corollary 1. However, as a result of a profile substitu-
tion one might obtain a tree that violates the matching conditions of Definition
2 (in particular, these violations may occur between the node with the replaced
profile, the right siblings, and the parent of it). Luckily, these violations can be
fixed by interleaving applications of Lemma 1 and Lemma 2.

Below we describe a single step of the transformation. For this we assume
that s is the first node of T in the breadth-first visit whose profile N(s) is not
⊴-maximal. Using Corollary 1, we can find a new feasible profile N ′ such that
N(s) ⊴ N ′ and N ′ is ⊴-maximal. Since N ′ is feasible, we can apply Lemma 2
and obtain an infinite pointwise fair profile tree T ′ with root profile N ′′ ⊒ N ′.

We now prove that N ′ ⊴ N ′′ holds, which in fact implies N ′ = N ′′ thanks
to the ⊴-maximality of N ′. Indeed, from N ′ ⊑ N ′′ we immediately derive N ′ ⊆
N ′′ and set(N ∣2) = set(N ′∣2). Moreover, given any pair of atoms (F,G), with
F ≠ ∅, we can distinguish two cases: either N ∣1(F ) = ∞ or N ∣1(F ) < ∞. In
the former case, we exploit the fairness of T to derive N(F,G) = ∞, whence
N ′′(F,G) ≥ N ′(F,G) ≥ ∞ = N(F,G). In the latter case, we first derive from
F ≠ ∅ and N ⊴ N ′ the fact that N(F,H) = N ′(F,H) holds for all atoms H, then
we deduce ∞ > N ∣1(F ) = ∑H N(F,H) = ∑H N ′(F,H) = N ′∣1(F ), and finally,
by the second claim of Lemma 2, we conclude that N ′(F,G) = N ′′(F,G).

We have just shown that T ′ is an infinite pointwise fair profile tree that has
the ⊴-maximal profile N ′ at its root and, furthermore, N(s) ⊴ N ′. Intuitively,
we would like to replace the subtree of T at node s with the tree T ′. This is
straightforward to do when s is the root of the profile tree T . However, when
s is not the root of T , the substitution might result in a tree that violates the
matching conditions of Definition 2. We temporarily denote by T̃ = (T̃ , Ñ , Ẽ)
the tree that is obtained from the substitution of the subtree of T at node s
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with T ′, and we show how to correct the possible violations of the matching
conditions for T̃ .

Let p denote the parent of s and let s1, . . . , sn be the children of p, listed from
left to right. Without loss of generality, we can still denote by s the node of T̃
where the substitution occurred, so that s = si for some index i (namely, s is the
i-th children of p in T̃ ) and si+1, . . . , sn are the right siblings of s. We also denote
by Γ the set of all atoms G such that N(s)(∅,G) < Ñ(s)(∅,G) – intuitively,
these are the only atoms that are responsible for the differences between the
multiplicities in N(s) and the multiplicities in Ñ(s). We then observe a few
facts that follow immediately from the definition of the partial order ⊴:

– N(s) ⊆ Ñ(s), but N(s) ≠ Ñ(s) (recall that Ñ(s) = N ′ is ⊴-maximal, but
N(s) is not),

– set(N(s)∣2) = set(Ñ(s)∣2) (since N(s) ⊴ N ′ = Ñ(s)),
– N(s)(F,G) = Ñ(s)(F,G) for all atoms F,G ≠ ∅,
– (Ñ(s)∣2)(G) > 0, and hence (N(s)∣2)(G) > 0 for all atoms G ∈ Γ .

Now, for each atom G ∈ Γ , we fix arbitrarily a tuple F̄G = (F1, . . . , Fn+1) that
occurs in Ẽ(p) and satisfies Fi+1 = G (note that this tuple exists since, by
the matching conditions, the multiset Ẽ(p)∣i+1 = E(p)∣i+1 = N(s)∣2 contains at
least one occurrence of the atom G). From this we construct the new tuple
F̄∅
G = (∅, . . . ,∅, Fi+1, . . . , Fn+1) by replacing the first i components of F̄G with

dummy atoms. Then, we define the multiset D that consists of exactly Ñ(s)(G)−
N(s)(G) occurrences of each tuple F̄∅

G , for all G ∈ Γ .

To correct the violations in the tree T̃ , we begin by replacing the multiset
Ẽ(p) with the following union of multisets:

Ẽ′(p) = Ẽ(p) ∪ D.

We observe that Ẽ′(p)∣1,...,i−1 may differ from Ẽ(p)∣1,...,i−1 only by the multiplic-
ities of the dummy tuple (∅, . . . ,∅), which can be easily overlooked in the defini-
tion of profile tree (in fact, the dummy tuple occurs already in Ẽ(p)∣1,...,i−1 with

multiplicity ∞). Similarly, we have Ẽ′(p)∣i,i+1 = Ñ(si) ⊋ N(si) = E(p)∣i,i+1.

Finally, for all j = i+ 1, . . . , n+ 1, we have that Ẽ′(p)∣j,j+1 differs from E(p)∣j,j+1

only by the For every infinite pointwise fair profile tree with root profile N , there
exists an infinite pointwise fair and pointwise ⊴-maximal profile tree with root
profile N ′ ⊵ N . multiplicities of pairs of the form (F,F ′), with F,F ′ ≠ ∅. In
particular, if we define Ñ ′(sj) = Ẽ′(p)∣j,j+1 for every j = i + 1, . . . , n + 1, then we

easily see that Ñ ′(sj) ⊑ Ñ(sj) and Ñ ′(sj)(∅, F ′) = Ñ(sj)(∅, F ′) for all atoms
F ′. We can thus apply Lemma 1 and in succession Lemma 2, this way obtaining
new profile trees T̃ ′i+1, . . ., T̃ ′n+1 that are pointwise fair and that can safely replace
the nodes si+1, . . . , sn+1 in T̃ .

Now, consider the tree T ′′ that is obtained by selecting the subtree of T̃ at
note p (the parent of s) and by redefining:

– the root profile to be Ñ ′(p) = Ẽ′(p)∣1,n+1,

– the profile of node s (i.e., the i-th child of p) to be Ñ ′(s) = Ñ(s),
– the subtrees at the j-th child of p, for every j = i + 1, . . . , n + 1, to be T̃ ′j ,.
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It is clear that T ′′ satisfies the matching conditions of the definition of profile
tree, and hence the profile Ñ ′(p) is feasible. It is also routine verifying that
N(p) ⊴ Ñ ′(p). Indeed, we have:
1. Ñ ′(p) = Ẽ′(p)∣1,n+1 ⊇ Ẽ(p)∣1,n+1 = Ñ(p);
2. set(Ñ ′(p)∣2) = set(Ẽ′(p)∣n+1) = set(E(p)∣n+1) ∪ {F̄∅

G ∣n+1 ∶ G ∈ Γ} =
set(E(p)∣n+1) ∪ {F̄G∣n+1 ∶ G ∈ Γ} = set(E(p)∣n+1) = set(Ñ ′(p))
(note that F̄∅

G ∣n+1 = F̄G∣n+1 and F̄G ∈ E(p) for all G ∈ Γ );

3. for all atoms F,G ≠ ∅, Ñ ′(p)(F,G) = (Ẽ′(p)∣1,n+1)(F,G) = (Ẽ(p)∣1,n+1 ∪
D∣1,n+1)(F,G) = (Ẽ(p)∣1,n+1)(F,G) = Ñ(p)(F,G) (note that (D∣1,n+1)(F,
G) = 0 whenever F ≠ ∅).

Moreover, since s was chosen to be the first node in the breadth-first visit of T
having a non ⊴-maximal profile, and since p precedes s in this visit, we know
that N(p) is ⊴-maximal, and hence N(p) = Ñ ′(p). This means that we can
safely replace the subtree of T at p with the profile tree T ′′, thus obtaining a
new profile tree T ′′′. We finally observe that T ′′′ coincides with T on all nodes
that precede s in the breadth-first visit, as well as on the descendants of the
nodes that precede s along the same level. In addition, the resulting profile tree
T ′′′ is pointwise fair and has a ⊴-maximal profile at node s.

One concludes the proof by repeatedly applying the above transformation
until all profiles become ⊴-maximal (if the transformation does not terminate,
then the desired tree could be defined as the limit of the resulting series of trees,
which is well-defined).

The last piece of the puzzle is the proof of Proposition 5.

Proposition 5. Every infinite pointwise fair and pointwise ⊴-maximal profile
tree is pseudo-regular.

Proof. Let T = (T,N,E) be an infinite, pointwise fair and pointwise ⊴-maximal
profile tree. By way of contradiction, suppose that T is not pseudo-regular. There
exists an infinite path π in T such that, for all pairs of nodes s, s′ ∈ π, with s
proper ancestor of s′, one of the following conditions holds:
1. N(s) ⋢ N(s′),
2. or N(s)(∅, F ) ≠ N(s)(∅, F ) for some atom F .
Because the relation ⊑ on feasible profiles is a well partial order, condition 1
can hold only over finitely many pairs of nodes s, s′ in π. This means that we
can extract from π an infinite subsequence π′ = s0, s1, s2, . . . of nodes that are
pairwise violating condition 1, namely, such that

N(s0) ⊑ N(s1) ⊑ N(s2) ⊑ . . . .

In particular, every pair of nodes si, sj from π′ must satisfy condition 2. In
addition, we can assume without loss of generality (that is, by further restricting
the subsequence π′) that for each pair of atoms (G,H) (possibly G = ∅), we have
1. either N(s0)(G,H) = N(s1)(G,H) = N(s2)(G,H) = . . .
2. or N(s0)(G,H) < N(s1)(G,H) < N(s2)(G,H) < . . ..
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We call constant pairs the former type of pairs, for which the multiplicities
remain constant, and increasing pairs the latter type of pairs, which have strictly
increasing multiplicities.

We begin now to disclose a series of basic properties for the profiles along
the infinite sequence of nodes π′ = s0, s1, s2, . . .. Recall that all pairs of nodes
in π′ satisfy condition 2; hence, there exists an increasing pair (∅, F >):

N(s0)(∅, F >) < N(s1)(∅, F >) < N(s2)(∅, F >) < . . .

There also exists an increasing pair (G>,H>), with G> ≠ ∅:

N(s0)(G>,H>) < N(s1)(G>,H>) < N(s2)(G>,H>) < . . .

Indeed, if this were not the case, then, by Dickson’s Lemma, there would be
two nodes si, sj ∈ π′ whose profiles satisfy the strict partial order ⊲, that is,
N(si) ⊴ N(sj) and N(si) ≠ N(sj), and this would contradict the assumption
that T was pointwise ⊴-maximal.

We claim that for all increasing pairs (G,H), with G ≠ ∅, and all nodes
si ∈ π′, we have N(si)∣1(G) < ∞. Indeed, if this were not the case for some
increasing pair (G,H) and some node si, then, since T is pointwise fair, we
would have N(si)(G,H) = ∞ and hence (G,H) could not be an increasing
pair. Now, consider two consecutive nodes si and si+1 in π′ and recall that
the slice associated with node si has as a sub-slice the slice associated with
node si+1. Let si = (y⃗i, ⃗yi) and si+1 = (y⃗i+1, ⃗yi+1) be the coordinates of these
slices in the underlying decomposition tree. From the existence of the increasing
pair (G>,H>) and the fact that N(si)∣1(G>) < ∞, it follows that the lower
rows of the two slices si and si+1 cannot coincide, namely, we have y⃗i < y⃗i+1.
Symmetrically, from the existence of the increasing pair (∅, F >), we deduce that
the upper rows of the two slices si and si+1 cannot coincide, namely, ⃗yi+1 < ⃗yi.
Indeed, by contraposition, if ⃗yi+1 = ⃗yi, then y⃗i < y⃗i+1 and hence N(si+1)(∅, F >) ≤
N(si)(∅, F >) (a contradition). All together, for all nodes si = (y⃗i, ⃗yi) and si+1 =
(y⃗i+1, ⃗yi+1) in π′, we have

y⃗i < y⃗i+1 < ⃗yi+1 < ⃗yi.

The next step consists of generating an infinite sequence of pointwise fair
profile trees T0,T1, . . . as follows. The first tree T0 in the sequence is simply the
subtree of T rooted at s0. Each subsequent tree Ti, for i = 1,2, . . ., is obtained
by repeatedly applying to T0 a suitable deletion operation, until the node si
(identified by its coordinates) becomes a child of the root s0 (in particular, if
s1 is already a child of s0 in T0, then we simply let T1 = T0). Intuitively, the
deletion operation receives as input an infinite profile tree T ′, with root r, and
a child s of r that has to be removed, and it returns a new profile tree T ′′ with
the same root as T ′ and the siblings and the children of s as children. Formally,
if T ′ = (T ′,N ′,E′), then T ′′ = (T ′′,N ′′,E′′), where:

– T ′′ = T ′ ∖ {s}, where the node-to-child relationships are naturally inferred
from those of T ′;

– N ′′(s′) = N ′(s′) for all s′ ∈ T ′′ (note that the deletion operation does not
modify the profile of the root r);

44



– E′′(s′) = E′(s′) for all s′ ∈ T ′′ ∖ {r};
– E′′(r) is defined as follows. Suppose that n is the number of children of r in
T ′, s is the j-th children of r, and m is the number of children of s in T ′.
The multiset E′′(r) is defined as a “bijective insertion” of E′(s) into E′(r).
More precisely, we recall from Definition 5 that an insertion of E′(s) into
E′(r) at position j is specified by a multiset function f ∶ E′(r)→ E′(s) that
is surjective and satisfies suitable matching conditions between source and
target components. Here we can choose such a function f to be also injective,
hence a bijection; in this case the outcome of the insertion, as described in
Lemma 4, is a multiset E′′(r) of (m + n)-tuples such that

E′(r) = E′′(r)∣{1,...,j}∪{j+m,...,n+m}

E′(s) = E′′(r)∣{j,...,j+m}

(note that the second equality holds in virtue of the fact that f is a bijection).

Moreover, by properly choosing the insertion function f above, one can guarantee
that the fairness properties are preserved and, in particular, that the resulting
tree T ′′ is pointwise fair whenever the input tree T ′ was. Finally, to define the
profile tree Ti, for every i ≥ 1, we start from T and we repeatedly delete the
successor of the root that lies along the access path of si, until the node si
(identified by means of its coordinates) is promoted as a child of the root.

Now, observe that in the construction of the pointwise fair profile tree Ti,
all nodes sj , with 0 ≤ j < i, have been deleted and their children promoted as
children of s0. However, since each of the deleted nodes had other nodes adjacent
to it in the original tree, its y-coordinates y⃗j and ⃗yj are still present, possibly
unpaired, in Ti. This allows us to identify, for every 0 ≤ j ≤ i, the unique node
s⃗i,j that is a child of s0 in Ti and whose lower coordinate coincides with y⃗j , i.e.,
s⃗i,j = (y⃗j , y) for some other coordinate y. Symmetrically, we can identify the
unique node ⃗si,j that is a child of s0 in Ti and whose upper coordinate is ⃗yj , i.e.,
⃗si,j = (y, ⃗yj) for some coordinate y. In addition, we denote by li,j (resp., ri,j) the

unique index such that s⃗i,j (resp., ⃗si,j) is the li,j-th (resp., ri,j-th) child of s0.
Let Ti = (Ti,Ni,Ei). It is not difficult to see that, for all i ≥ 0 and all h ≤ k ≤ i,

Ei∣li,h,ri,k = Ei+1∣li+1,h,ri+1,k and Ei∣ri,k,ri,h = Ei+1∣ri+1,k,ri+1,h .
Hence, for every i ≥ k, it holds that:

Ny⃗h, ⃗yk
= Ei∣li,h,ri,k and N ⃗yk, ⃗yh

= Ei∣ri,k,ri,h .
By Lemma 6, for all indices h ≤ k, both profiles Ny⃗h,y⃗k

and Ny⃗k, ⃗yh
are feasible.

Moreover for our purpose we point out that a very similar property also holds
for triples. For all i ≥ 0 and h ≤ h′ ≤ k ≤ i we have

Ei∣li,h,ri,h′ ,ri,k = Ei+1∣li+1,h,ri+1,h′ ,ri+1,k ,

thus for every i ≥ k, it holds that:

Ey⃗h, ⃗yh′ , ⃗yk
= Ei∣li,h,ri,h′ ,ri,k .

We now prove that there is a sequence of indices H = h0 < h1 < . . . such that:
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(S1) Ny⃗h0
, ⃗yh1

⊑ Ny⃗h0
, ⃗yh2

⊑ . . . and each pair (F,G) is either constant, that

is, Ny⃗h0
, ⃗yhi

(F,G) = Ny⃗h0
, ⃗yhi+1

(F,G) for all i ≥ 1, or increasing, that is,

Ny⃗h0
, ⃗yhi

(F,G) < Ny⃗h0
, ⃗yhi+1

(F,G) for all i ≥ 1;

(S2) N ⃗yh1
, ⃗yh0

⊑ N ⃗yh3
, ⃗yh2

⊑ . . . and each pair (F,G) is either constant, that

is, N ⃗yhi+1 , ⃗yhi

(F,G) = N ⃗yhi+3 , ⃗yhi+2
(F,G) for all i ≥ 0, or increasing, that is,

N ⃗yhi+1 , ⃗yhi

(F,G) < N ⃗yhi+3 , ⃗yhi+2
(F,G) for all i ≥ 0.

A graphical account of H is given in Figure 7 (sequence (S1) to the left and
sequence (S2) to the right). We will later show that such a sequence H will allow
us to build a feasible profile N such that there exists k for which N(sk) ⊲ N ,
thus violating pointwise ⊴-maximality of T .

y⃗h0

⃗yh0

y⃗h1

⃗yh1

y⃗h2

⃗yh2

y⃗h3

⃗yh3

y⃗h2i

⃗yh2i

y⃗h2i+1

⃗yh2i+1

⋮

⋮

⋮

⋮

Fig. 7. A graphical account of the sequence H

Let f ∶ N → N and f ′ ∶ N → N be a pair of monotonic, strictly increasing
functions over N. We say that f ′ is a refinement of f if Img(f ′) ⊆ Img(f)
and, for every n ∈ N, f ′(n) ≥ f(n). We now show how to obtain the sequence
H by an iterative refinement procedure. We start with the identity function
f0(n) = n. Now, let fi be the monotonic strictly increasing function obtained by
the i-th refinement. If there exist fi(0) < fi(i1) < fi(i2) < . . . that satisfy both
(S1) and (S2), then we let h0 = fi(0), h1 = fi(i1), h2 = fi(i2), . . .. Otherwise,
we take a subsequence fi(0) < fi(i′1) < fi(i′2) < . . . that satisfies (S1) (one such
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sequence always exists for Dickson’s Lemma4) and we put fi+1(n) = fi(i′n+1).
Termination can be proved as follows. By way of contradiction, suppose that
the procedure does not terminates. This means that, for every i ≥ 0, there is not
an infinite subsequence fi(0) < fi(i1) < fi(i2) < . . . in Img(fi) that satisfy both
(S1) and (S2), and thus the procedure selects a subsequence fi(0) < fi(i′1) <
fi(i′2) < . . . that satisfies (S1) only, and it uses such a sequence to refine fi into
fi+1. Let us consider now the sequence of profiles N ⃗yf1(0), ⃗yf0(0)

,N ⃗yf3(0), ⃗yf2(0)
,

N ⃗yf5(0), ⃗yf4(0)
, . . .. By construction, f0(0) < f1(0) < f2(0) < f3(0) < f4(0) <

f5(0) < . . .. Then, by Dickson’s Lemma, there is a subsequence j0 < j1 <
j2 < . . . of natural numbers, with fjk(1) < fjk+1(0) for all k ∈ N, such that
N ⃗yfj1

(0), ⃗yfj0
(0)

⊑ N ⃗yfj3
(0), ⃗yfj2

(0)
⊑ N ⃗yfj5

(0), ⃗yfj4
(0)

⊑ . . . and for each pair (F,G) ei-

ther N ⃗yfj1
(0), ⃗yfj0

(0)
(F,G) = N ⃗yfj2

(0), ⃗yfj3
(0)

(F,G) = N ⃗yfj5
(0), ⃗yfj4

(0)
(F,G) = . . . or

N ⃗yfj1
(0), ⃗yfj0

(0)
(F,G) < N ⃗yfj3

(0), ⃗yfj2
(0)

(F,G) < N ⃗yfj5
(0), ⃗yfj4

(0)
(F,G) < . . . Condi-

tion (S2) can be satisfied by taking the subsequence fj0(0) < fj2(0) < fj4(0) < . . .
of the sequence fj0(0) < fj1(0) < fj2(0) < fj3(0) < fj4(0) < fj5(0) < . . .. More-
over, by construction, it holds that Img(fj0) ⊇ Img(fj1) ⊇ Img(fj2) ⊇ . . ., and
then the sequence Ny⃗fj0

(0), ⃗yfj1
(0)
,Ny⃗fj0

(0), ⃗yfj2
(0)
,Ny⃗fj0

(0), ⃗yfj3
(0)
, Ny⃗fj0

(0), ⃗yfj4
(0)
,

Ny⃗fj0
(0), ⃗yfj5

(0)
, . . . satisfies condition (S1). It immediately follows that at the j0-

th step there was a subsequence that satisfied both (S1) and (S2), thus forcing
the termination of the procedure (contradiction).

Let us now prove that (S1) and (S2) satisfy the following property (Increase-
Anyway): for the pair (∅, F >), either N ⃗yh1

, ⃗yh0

(∅, F >) < N ⃗yh3
, ⃗yh2

(∅, F >) < . . .
or there exists an atom F >> such that Ny⃗h0

, ⃗yh1

(∅, F >>) < Ny⃗h0
, ⃗yh2

(∅, F >>) < . . .
and (F >>, F >) ∈ N ⃗yh1

, ⃗yh0

.

Since N(s0)(∅, F >) < N(s1)(∅, F >) < N(s2)(∅, F >) < . . . and [(y⃗hi
, ⃗yhi

)]i∈N
is a subsequence of [si]i∈N, it holds thatN(y⃗h0

, ⃗yh0
)(∅, F >) < N(y⃗h1

, ⃗yh1
)(∅, F >)

< N(y⃗h2
, ⃗yh2

)(∅, F >) < . . . and thus Ny⃗h0
, ⃗yhi

(∅, F >) ≥ N ⃗yhi
, ⃗yhi

(∅, F >) for every

i ∈ N. Then, we have the following chain Ny⃗h0
, ⃗yh0

(∅, F >) < Ny⃗h0
, ⃗yh1

(∅, F >) <
Ny⃗h0

, ⃗yh2

(∅, F >).
Let us consider now the sub-sequence [( ⃗yhi+1 , ⃗yhi

)]i∈N∧i mod 2=0, since by con-
struction indexes are drawn from the sequence h0 < h1 < . . . we have Ny⃗h0

, ⃗yh1

(∅,
F >) < Ny⃗h0

, ⃗yh2

(∅, F >) < Ny⃗h0
, ⃗yh3

(∅, F >) and by condition (S2) Ny⃗hi+3 , ⃗yhi+2
(∅,

F >) ≥ Ny⃗hi+1 , ⃗yhi

(∅, F >) for each i then we have the following cases:

1. if for every i it holds that Ny⃗hi+1 , ⃗yhi

(∅, F >) < Ny⃗ki+3 , ⃗yhi+2
(∅, F >), recall

that the property (S2) forces the counters to be either constant or strictly
increasing along the sequence. Then property (Increase Anyway) holds;

4 As a matter of fact, a symmetric argument can be given starting from (S2) instead
of (S1).
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2. for every i it holds that Ny⃗hi+1 , ⃗yhi

(∅, F >) = Ny⃗hi+3 , ⃗yhi+2
(∅, F >), on the other

side we have that Ny⃗h0
, ⃗yhi

(∅, F >) > Ny⃗h0
, ⃗yhi+1

(∅, F >) for every i then there

exists F >> for which Ey⃗h0
, ⃗yhi+3 , ⃗yhi+2

(∅, F >>, F >) > Ey⃗h0
, ⃗yhi+1 , ⃗yhi

(∅, F >>,

F >). Notice that it is only the case because if the triple would have been
(∅,∅, F >) we were in the first case. Then property (Increase Anyway) holds;

On the basis of the existence of the sequence h0 < h1 < . . . satisfying (S1) and
(S2), we construct some profiles by taking the limits of the profiles associated
with these sequence. More precisely, we define:

N⃗ = sup
i∈N∧i>0

Ny⃗h0
, ⃗yhi

⃗N = sup
i∈N∧i is even

N ⃗yhi+1 , ⃗yhi

.

Lemma 3 implies that the above profiles are feasible. We can thus let T⃗ =
(T⃗ , N⃗ , E⃗) and ⃗T = ( ⃗T , ⃗N, ⃗E) be some infinite profile trees that witness the
feasibility of N⃗ and ⃗N . We prove the following properties:

(P1) N⃗ ∣2 = ⃗N ∣1;

(P2) for each pair (F,G), with F ≠ ∅, we have N⃗(F,G) = Ny⃗h0
, ⃗yh1

(F,G);

(P3) either ⃗N(∅, F >) = ∞ or there exists F >> for which N⃗(∅, F >>) = ∞ and
(F >>, F >) ∈ ⃗N .

The property (P1) trivially holds since both the supremum operations are ap-
plied to the two infinite sequence of coordinates [y⃗hi

]i∈N∧i>0 and [y⃗hi+1]i∈N∧i is even,
where the latter is a sub-sequence of the former. By way of contradiction, sup-
pose that (P2) does not hold, that is, for some pair (F,G) with F ≠ ∅ we
have N⃗(F,G) ≠ Ny⃗h0

, ⃗yh1

(F,G). We observe that N⃗(F,G) > Ny⃗h0
, ⃗yh1

(F,G)
since by construction Ny⃗h0

, ⃗yh1

(F,G) ⊑ N⃗(F,G). Moreover, since the coordinate

y⃗h0
for the profiles Ny⃗h0

, ⃗yhi

is fixed when defining the supremum N⃗ , we have

Ny⃗h, ⃗yh+1
(F,G)∣1 = N⃗(F,G)∣1 and the following two cases may arise:

1. Ny⃗h0
, ⃗yh+1

∣1(F ) =∞ holds. By the fairness property, we have Ny⃗h0
, ⃗yh+1

(F,G)
=∞ and, since Ny⃗h,y⃗h+1

(F,G) ⊑ N⃗ , we have Ny⃗h0
, ⃗yh+1

(F,G) = N⃗(F,G) =∞
(contradiction).

2. Ny⃗h0
, ⃗yh+1

∣1(F ) < ∞. Since the coordinate y⃗h0
for the profiles Ny⃗h0

, ⃗yhi

is

fixed in the definition of supremum N⃗ , we have Ny⃗h0
, ⃗yhi

∣1(F ) = N⃗ ∣1(F ) and

hence N⃗(F,G) < ∞. However, since Ny⃗h0
, ⃗yh1

(F,G) < N⃗(F,G) holds, (S2)

implies Ny⃗h0
, ⃗yh1

(F,G) < Ny⃗h0
, ⃗yh2

(F,G) < Ny⃗h0
, ⃗yh3

(F,G) < . . . < N⃗(F,G),
which in its turn implies N⃗(F,G) =∞ (contradiction).

Property (P3) trivially holds as a direct consequence of the property (Increase-
Anyway).
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Let Th0 = (Th0 ,Nh0 ,Eh0) be the tree, according to our previous definition,
that corresponds to h0 (i.e., sh0 is a child of s0). We define the multi-set of
triples ET = Eh0 ∣li,h0

,ri,h1
,ri,h0

for some sufficiently large natural number i.
Clearly, ET ∣1,3 = Ny⃗h0

, ⃗yh0

= N(sh0), ET ∣1,2 = Ny⃗h0
,y⃗h1

, and ET ∣2,3 = N ⃗yh1
, ⃗yh0

.

Moreover, for each (F,G), with F ≠ ∅, we have, thanks to property (P2),
ET ∣1,2(F,G) = Ny⃗h0

, ⃗yh1

(F,G) = N⃗(F,G).
In order to construct a function E inducing a feasible profile that will even-

tually lead to a contradiction, we define the following multi-sets. Let Fin be
the set of triples (F,G′,G) ∈ ET (possibly, F = ∅) such that N⃗(F,G′) <∞ and
⃗N(G′,G) < ∞. By the construction of (S1) and (S2), N⃗(F,G′) < ∞ implies

ET1,2(F,G′) = N⃗(F,G′) and ⃗N(G′,G) <∞ implies ET2,3(G′,G) = ⃗N(G′,G).
Let Fin = {(F1,G

′
1,G1), . . . (Fn,G′

n,Gn)}. For each 1 ≤ i ≤ n, we select a
multi-set EFIN(Fi,G′

i,Gi) ⊑ ⃗E of ( ⃗n + 1)-tuples. For each (F1, . . . , F ⃗n+1) ∈
EFIN(Fi,G′

i,Gi), we have F1 = G′
i, F ⃗n+1 = G, and EFIN(Fi,G′

i,Gi)∣1, ⃗n+1 =
ET (Fi,G′

i,Gi)∣2,3.

Let s⃗, . . . , s⃗n⃗ be the children of r⃗ in T⃗ and ⃗s1, . . . ⃗s ⃗n be the children of ⃗r in
⃗T . We define the following multi-sets of (n⃗ + ⃗n + 1)-tuples:

1. For each (F,G′,G) ∈ ET , with F ≠ ∅, we distinguish the following cases.
(a) ET ∣1(F ) =∞. By fairness, we have ET ∣1,2(F,G′) =∞ and ET ∣2,3(G′,G)

=∞. Let E(F,G′,G) be a multiset of (n⃗+ ⃗n+1)-tuples such that E(F,G′,G) =
{(F1, . . . , Fn⃗+1, F2, . . . , Fn⃗+ ⃗n+1) ∶ (F1, . . . , Fn⃗+1) ∈ E⃗, (Fn⃗+1, F2, . . . ,

Fn⃗+ ⃗n+1) ∈ ⃗E,F1 = F,Fn⃗+1 = G′, Fn⃗+ ⃗n+1 = G}. It is easy to show that

there exists at least one tuple (F1, . . . , Fn⃗+ ⃗n+1) ∈ E(F,G′,G) for which
reqB̄(F1) = ⋃2≤i≤n⃗+ ⃗n+1 obs(Fi) ∪ reqB̄(Fn⃗+ ⃗n+1) and reqB(Fn⃗+ ⃗n+1) =
⋃1≤i≤n⃗+ ⃗n obs(Fi)∪ reqB(F1). This guarantees the condition (profile-infi-

nite-req) for the tuples (F1, F ⃗n+n⃗+1) in E(F,G′,G)∣1,n⃗+ ⃗n+1. This condition

is sufficient, since, by construction, E(F,G′,G)∣1,n⃗+ ⃗n+1(F,G) =∞.

(b) ET ∣1,2(F,G′) < ∞ and ⃗N(G′,G) < ∞. Then, by construction, N⃗ ∣1,2(F,
G′) < ∞ holds. Let E(F,G′,G) be a multiset of (n⃗ + ⃗n + 1)-tuples such

that E(F,G′,G)∣1,...,n⃗+1 = {(F1, . . . , Fn⃗+1) ∶ (F1, . . . , Fn⃗+1) ∈ E⃗(r⃗), F1 =
F,Fn⃗+1 = G′} and E(F,G′,G)∣n⃗+1,...,n⃗+1 = EFIN(F,G,G′). Such a multi-

set exists since the cardinalities match. By condition (profile-finite-req),
all the tuples (F1, . . . , Fn⃗+1) ∈ E⃗, with F1 = F and Fn⃗+1 = G′, satisfy
reqB̄(F1) = ⋃2≤i≤n⃗+1 obs(Fi)∪ reqB̄(Fn⃗+1) and reqB(Fn⃗+1) = ⋃1≤i≤n⃗ obs(
Fi) ∪ reqB(F1). The same holds for all tuples (F1, . . . , F ⃗n+1) ∈ E⃗, with
F1 = F and F ⃗n+1 = G′, which thus satisfy reqB̄(F1) = ⋃2≤i≤ ⃗n+1 obs(Fi) ∪
reqB̄(F ⃗n+1) and reqB(Fn⃗+1) = ⋃1≤i≤ ⃗n obs(Fi) ∪ reqB(F1). This guaran-
tees that the condition (profile-finite-req) of profile trees holds for tuples

(F1, Fn⃗+ ⃗n+1) in E(F,G′,G)∣1,n⃗+ ⃗n+1;

(c) ET ∣1,2(F,G′) < ∞ and ⃗N ∣1(G′) = ∞. By condition (profile-finite-req)

(case ⃗N(G′,G) <∞) or by condition (profile-infinite-req) (case ⃗N(G′,G)
=∞), there exists a tuple (F ∗

1 , . . . , F
∗

⃗n+1
) ∈ ⃗E such that F ∗

1 = G′, F ∗

⃗n+1
=
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G, reqB̄(F ∗
1 ) = ⋃2≤i≤ ⃗n+1 obs(F ∗

i ) ∪ reqB̄(F ⃗n+1) and reqB(F ∗

⃗n+1
) = ⋃1≤i≤ ⃗n

obs( F ∗
i ) ∪ reqB(F ∗

1 ), with F ∗
1 = G′ and F ∗

⃗n+1
= G. Let E(F,G′,G) be a

multiset of (n⃗+ ⃗n+1)-tuples such that E(F,G′,G) = {(F ′
1, . . . , F

′

n⃗+1
, F ∗

2 , . . . ,

F ∗

⃗n+1
) ∶ (F ′

1, . . . , F
′

n⃗+1
) ∈ E⃗(r⃗)}. By condition (profile-finite-req), all the

tuples (F1, . . . , Fn⃗+1) ∈ E⃗, with F1 = F and Fn⃗+1 = G′, satisfy reqB̄(F1) =
⋃2≤i≤n⃗+1 obs(Fi) ∪ reqB̄(Fn⃗+1) and reqB(Fn⃗+1) = ⋃1≤i≤n⃗ obs(Fi) ∪ reqB(
F1). The fact that the condition (profile-finite-req) holds for the tuples

(F1, Fn⃗+ ⃗n+1) in E(F,G′,G)∣1,n⃗+ ⃗n+1 immediately follows.

2. For each (∅,G′,G) ∈ ET , we distinguish the following cases.
(a) N⃗(∅,G′) < ∞ and ⃗N(G′,G) = ∞. By case 1.a, all the tuples (F1, . . . ,

Fn⃗+1), with F1 = G and Fn⃗+1 = G′, already appear infinitely often in

E(F,G′,G)∣n⃗+1,...,n⃗+ ⃗n+1. We take one such tuple (F ′
1, . . . , F

′

⃗n+1
) ∈ ⃗E( ⃗r),

and we define E(∅,G′,G) as the multiset with E(∅,G′,G) = {(∅, F2, . . . ,
Fn⃗+1, F

′
2, . . . , F

′

⃗n+1
) ∶ (∅, F2, . . . , Fn⃗+1) ∈ E⃗, F ⃗n+1 = G′}.

(b) N⃗(∅,G′) <∞, ⃗N(G′,G) <∞, and N⃗(∅,G′) = ET ∣1,2. Let E(∅,G′,G) be

a multiset of (n⃗ + ⃗n + 1)-tuples such that E(∅,G′,G)∣1,...,n⃗+1 = {(∅, . . . ,
Fn⃗+1) ∶ (∅, . . . , F ⃗n+1) ∈ E⃗(r⃗), Fn⃗+1 = G′} and E(∅,G′,G)∣n⃗+1,...,n⃗+ ⃗n+1 =
EFIN(∅,G′,G).

(c) N⃗(∅,G′) = ∞ and ⃗N(G′,G) < ∞. We define E(∅,G′,G) as a multi-

set of (n⃗ + ⃗n + 1)-tuples such that E(∅,G′,G)∣1,...,n⃗+1 = {(∅, . . . , F ⃗n+1) ∶
(∅, . . . , F ⃗n+1) ∈ E⃗(r⃗), Fn⃗+1 = G′} and E(∅,G′,G)∣n⃗+1,...,n⃗+ ⃗n+1 ⊒ {(F1, . . . ,

F ⃗n+1) ∶ (F1, . . . , F ⃗n+1) ∈ ⃗E,F1 = G′, F ⃗n+1 = G}.

(d) N⃗(∅,G′) = ∞ and ⃗N(G′,G) = ∞. We define E(∅,G′,G) as a multi-

set of (n⃗ + ⃗n + 1)-tuples such that E(∅,G′,G)∣1,...,n⃗+1 = {(∅, . . . , Fn⃗+1) ∶
(F1, . . . , Fn⃗+1) ∈ E⃗(r⃗), Fn⃗+1 = G′} and E(∅,G′,G)∣ ⃗n+1,...,n⃗+ ⃗n+1 = {(F1, . . . ,

F ⃗n+1) ∶ (F1, . . . , F ⃗n+1) ∈ ⃗E( ⃗r), F1 = G′, F ⃗n+1 = G}.

3. For each tuple (G′,G) ∈ ⃗N , with ⃗N(G′,G) = ∞, ET (F,G′,G) < ∞ for all
F ≠ ∅, and (∅,G′,G) ∉ ET , we proceed as follows. If there were F ≠ ∅ such
that ET (F,G′) =∞, by fairness we would have ET (F,G′,G) =∞ (contradic-
tion). Hence, for all i ≥ 0 and all F ≠ ∅, Ny⃗k, ⃗yhi

(F,G′) = Ny⃗k, ⃗yhi+1
(F,G′),

and thus ET (F,G′) = N⃗(F,G′) < ∞. Since, by property P1, N⃗ ∣2(G′) =
⃗N(G′)∣1 and ⃗N1(G′) =∞, there exists (∅,G′) ∈ N⃗ such that N⃗(∅,G′) =∞.

Thus we can define the multiset E
(∅,G′,G)

fix of (n⃗ + ⃗n + 1)-tuples such that

E
(∅,G′,G)

fix ∣1,...,n⃗+1 = {(∅, . . . , Fn⃗+1) ∶ (∅, . . . , Fn⃗+1) ∈ E⃗∞(r⃗), Fn⃗+1 = G′}
and E

(∅,G′,G)

fix ∣n⃗+1,...,n⃗+ ⃗n+1 = {(F1, . . . , F ⃗n+1) ∶ (F1, . . . , F ⃗n+1) ∈ ⃗E( ⃗r), F1 =
G′, F ⃗n+1 = G}, where E⃗∞(r⃗) is the restriction of the multiset E⃗(r⃗) to the
tuples that appear with infinite multiplicity (such multisets can be found
by exploiting simple counting arguments, since N⃗(∅,G′) = ∞, and hence

E
(∅,G′,G)

fix ∣1,..., ⃗n+1 ≠ ∅).
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4. For each tuple (∅,G) ∈ ⃗N , we define the multiset of (n⃗+ ⃗n+1)-tuples such that
E(∅,∅,G) = {(∅, . . . ,∅, F2, . . . , Fn⃗+ ⃗n+1) ∶ (∅, F2, . . . , F ⃗n+1) ∈ ⃗E( ⃗r), Fn⃗+1 =
G}.

Now, towards a conclusion, let E be the multiset of (n⃗+ ⃗n+1)-tuples obtained
from the union of all the multisets defined at points 1.,2.,3., and 4. By construc-
tion, we have the two profiles E∣i,i+1 and E⃗i,i+1 coincide for all 1 ≤ i ≤ ⃗n, and thus

they are feasible. Moreover, by the definitions in point 4., we have ⃗E∣i,i+1 ⊑ Ei,i+1

for all n⃗+1 ≤ i ≤ n⃗+ ⃗n+1, and E∣i,i+1(∅,G) = ⃗E∣i,i+1(∅,G) for all G. By the above
properties and Lemma 1, the profile E∣i,i+1 is feasible, and hence E∣1, ⃗n+n⃗+1 is fea-

sible. By the definitions in point 1., we have that E∣1, ⃗n+n⃗+1(F,G) = ET ∣1,3(F,G)
for all (F,G) ∈ ET ∣1,3, with F ≠ ∅. Since ET ∣3 ⊑ ⃗N2 ⊑ E∣ ⃗n+n⃗+1, we also know
that ET ⊴ E∣1,n⃗+ ⃗n+1. Moreover, by construction and the property (Increase

Anyway), we have that E∣n⃗+1,n⃗+ ⃗n+1(∅, F >) =∞ or E∣1,n⃗+1(∅, F >>) =∞. In the

former case we can immediately conclude that E∣1,n⃗+ ⃗n+1(∅, F >) =∞, in the lat-

ter we have that for one of the construction done in point 2(c), 2(d) or 3 implies
E∣1,n⃗+1,n⃗+ ⃗n+1(∅, F >>, F >) = ∞ and thus E∣1,n⃗+ ⃗n+1(∅, F >) = ∞ as well. Having

E∣1,n⃗+ ⃗n+1(∅, F >) = ∞ allows us to assume ET ∣1,3(∅, F >) < E∣1,n⃗+ ⃗n+1(∅, F >).
This implies ET ∣1,3 ⊲ E∣1, ⃗n+n⃗+1. Finally, recall that ET ∣1,3 = Ny⃗k, ⃗yk

= N(sk),
where sk was a node in the original profile tree. We thus have N(sk) ⊲ E∣1, ⃗n+n⃗+1,
which contradicts the hypothesis that T was pointwise ⊴-maximal.

Theorem 2. The satisfiability problem for AĀBB̄ interpreted over Q, as well as
over the class of all linear orders, is decidable, but not primitive recursive.

Proof. In Section 4 we described two semi-decision procedures that, together,
solve the satisfiability problems over Q and over the class of all interval struc-
tures. The satisfiability problems are thus shown to be non-primitive recursive.

It now remains to prove the complexity lower-bound, which follows a reduc-
tion from a variant of the reachability problem for lossy counter machines (see be-
ginning of proof of Theorem 1 for a definition of lossy counter machine). Specifi-
cally, we fix a lossy counter machineM = (Q,k, δ) and two control states qinit, qhalt
and we construct a formula ϕM that describes precisely the non-termination
property of M, that is, the fact that the machine M admits an infinite compu-
tation that starts in the configuration (qinit, z̄0), with z̄0 = (0, . . . ,0), and avoids
the halting state qhalt. In [13] the (non-)termination problem is shown to have
strictly non-primitive recursive complexity.

For the sake of simplicity, we begin by assuming that the underlying temporal
domain is isomorphic to N. In this case the formula ϕM is very similar to that
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of Theorem 1:

ϕM = [G] (⟨A⟩true ∧ ⟨Ā⟩true ∧ [B]false → ⋁
a ∈Q∪C

a ∧ ⋀
a≠b ∈Q∪C

¬(a∧b)) ∧

[G] ([A]false ∨ [Ā]false ∨ ⟨B⟩true → ⋀
a ∈Q∪C∪{inc,dec}

¬a) ∧

[G] ⋀
q ∈Q

(⟨B⟩q → ⟨Ā⟩⟨A⟩ϕδq) ∧ [G]¬qhalt ∧

⟨G⟩(qinit ∧ [A] ( ⟨A⟩ ⋁
c ∈C

c→ ⟨B⟩⟨B⟩true ))⟨G⟩(qinit ∧ [A] ( ⟨A⟩ ⋁
c ∈C

c→ ⟨B⟩⟨B⟩true ))⟨G⟩(qinit ∧ [A] ( ⟨A⟩ ⋁
c ∈C

c→ ⟨B⟩⟨B⟩true )) .

where the letters in Q are used to represent the control states of M, the letters
in C = {c1, . . . , ck} are used to represent the register names of M, the letter
inc (resp., dec) is used to mark a single unit-length subinterval in each block
that follows an increment operation (resp., precedes a decrement operation) on
the corresponding register, and, finally, the subformula ϕδq is used to enforce the
possible transitions ofM. The only difference with the definitions of Theorem 1
is highlighted in bold in the last line of the formula: beside enforcing that the run
starts in the control state qinit, we also require that the values of the counters are
all 0 (formally, we require that the first unit-interval to the right of qinit cannot
be labelled with the name of a counter).

Clearly, the above formula ϕM is satisfied in some interval structure with N
as temporal domain iff there exists an infinite computation of M of the form
(q0, z̄0) (q1, z̄1) . . ., with q0 = qinit, z̄0 = (0, . . . ,0), and qi ≠ qhalt for all i ≥ 1.

To conclude the proof we need to explain how to turn ϕM into an analo-
gous formula that defines non-termination of M over the temporal domain Q.
We use again a technique from the proof of Theorem 1, namely, we embed a
discrete linear ordering inside Q by means of a distinguished propositional let-
ter #. However, differently from the previous case, where we could exploit the
Dedekind-completeness of the temporal domain, here we will not be able to em-
bed an isomorphic copy of N inside Q. On the other hand, we observe that the
above reduction via ϕM is correct even for a temporal domain that is not iso-
morphic to N, but Z-like, in the sense that all elements in it have an immediate
predecessor and an immediate successor. Example of Z-like orderings are Z, Z2,
Zω, etc. Moreover, embeddings of Z-like orderings inside Q can be defined by
means of the following simple formula:

ϕ# = [G](# → π) ∧

[G](# → ⟨A⟩ (⟨A⟩# ∧ [B][A]¬#)) ∧

[G](# → ⟨Ā⟩ (⟨Ā⟩# ∧ [B][A]¬#)) .

Finally, in order to correctly express non-termination ofM over the rationals it
is sufficient to restrict the range of the quantifications of the formula ϕM over
the intervals satisfying ⟨B⟩# ∧ ⟨A⟩#.
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