
University of Udine

Department of Mathematics and Computer Science

PREPRINT

Decidability and Complexity of Timeline-based
Planning over Dense Temporal Domains

Laura Bozzelli, Alberto Molinari, Angelo Montanari, Adriano Peron

Preprint nr.: 1/2018

Reports available from: https://www.dimi.uniud.it/preprints/

Decidability and Complexity of Timeline-based Planning
over Dense Temporal Domains

Laura Bozzelli
University of Napoli “Federico II”

Napoli, Italy

Alberto Molinari
University of Udine

Udine, Italy

Angelo Montanari
University of Udine

Udine, Italy

Adriano Peron
University of Napoli “Federico II”

Napoli, Italy

Abstract
Planning is one of the most studied problems in computer
science. In the timeline-based approach, the planning domain
is modeled as a set of independent, but interacting, compo-
nents, each one represented by a number of state variables,
whose behavior over time (timelines) is governed by a set of
temporal constraints, called synchronization rules. The tem-
poral domain is assumed to be discrete, the dense case being
dealt with by forcing a suitable discretization. In this paper,
we address decidability and complexity issues for timeline-
based planning over dense temporal domains without resorting
to any form of discretization. We first prove that the general
problem is undecidable even when a single state variable is
involved. Then, we show that decidability can be recovered by
constraining the logical structure of synchronization rules.

1 Introduction
In this paper, we prove some basic results about decidabil-
ity and complexity of timeline-based planning over dense
temporal domains. Since the 1960s, planning is one of the
most studied problems in computer science. In its classical
formulation (action-based planning), it can be viewed as the
problem of determining a sequence of actions that, given
the initial state of the world (domain of interest) and a goal,
transforms, step by step, the state of the world until a state
that satisfies the goal is reached.

Timeline-based planning is an alternative, more declarative
approach to the problem. Unlike action-based planning, it
focuses on what has to happen in order to satisfy the goal
instead of what an agent has to do. It models the planning
domain as a set of independent, but interacting, components,
each one consisting of a number of state variables. The evo-
lution of the values of state variables over time is described
by means of a set of timelines (sequences of tokens), and it is
governed by a set of transition functions, one for each state
variable, and a set of synchronization rules, that constrain the
temporal relations among state variables.

Timeline-based planning has been successfully exploited
in a number of application domains (see, for instance, (Bar-
reiro et al. 2012; Cesta et al. 2007; Chien et al. 2010;
Frank and Jónsson 2003; Jónsson et al. 2000; Muscettola
1994)). A systematic study of its expressiveness and com-
plexity has been undertaken only very recently. The temporal

Copyright c� 2018, by the authors

domain is assumed to be discrete (the natural numbers), the
dense case being commonly dealt with by forcing an artificial
discretization of the domain.

In (Gigante et al. 2016), Gigante et al. showed that timeline-
based planning with bounded temporal relations and token
durations, and no temporal horizon, is EXPSPACE-complete
and expressive enough to capture action-based temporal plan-
ning. Later, in (Gigante et al. 2017), they proved that EX-
PSPACE-completeness still holds for timeline-based plan-
ning with unbounded interval relations, and that the problem
becomes NEXPTIME-complete if an upper bound to the
temporal horizon is added.

In this paper, we address the timeline-based planning prob-
lem over dense temporal domains without resorting to any

form of discretization. We first show that the general prob-
lem is undecidable even when a single state variable is used.
Then, we prove that decidability can be recovered by suitably
constraining the logical structure of synchronization rules,
namely, by only admitting trigger-less ones. The achieved re-
sults are interesting per se; moreover, they identify a large un-
explored area of intermediate cases where a good equilibrium
between complexity and expressiveness may be expected.

The paper is organized as follows. In Section 2, we provide
some background knowledge on timeline-based planning. In
Section 3, we prove that planning is undecidable in the gen-
eral case, by a reduction from the halting problem for Minsky
2-counter machines. Then, in Section 4, we show that decid-
ability can be recovered by restricting to trigger-less synchro-
nization rules: we provide an encoding of the problem into
timed automata, obtaining a PSPACE planning algorithm,
that we expect to be easily implementable by using standard
tools based on timed automata, e.g., UPPAAL (Larsen, Pet-
tersson, and Yi 1997), as back-ends. Finally, in Section 5,
we outline an NP algorithm for planning with trigger-less
rules, stemming from the results of the previous section and
improving on them.

2 The Timeline-Based Planning Problem
In this section, we give a short account of notation and basic
notions of timeline-based planning. For a more detailed illus-
tration, we refer the reader to (Cialdea Mayer, Orlandini, and
Umbrico 2016; Gigante et al. 2016).

Hereafter, let N, R+, and Q+ be the sets of the naturals,
non-negative reals, and non-negative rationals, respectively.

In timeline-based planning, domain knowledge is encoded
by a set of state variables, whose behaviour over time is
described by transition functions and synchronization rules.
Definition 2.1. A state variable x is a triple (Vx, Tx, Dx),
where:
• Vx is the finite domain of the variable x;
• Tx : Vx ! 2Vx is the value transition function, which

maps each value v 2 Vx to the set of values that x can take
immediately after v;

• Dx : Vx ! I(Q+ [{+1}) is a function that maps each
v 2 Vx to an (open or closed, and bounded or unbounded
above) interval I with rational non-negative bounds.
The value taken by a state variable over a time interval is

specified by means of tokens.
Definition 2.2. Let x = (Vx, Tx, Dx) be a state variable. A
token for x is a triple (x, v, d), where v 2 Vx is the value of
x in the token, and d 2 Dx(v) is its duration.

The sequence of values taken by a state variable is repre-
sented by a finite sequence of tokens, called a timeline.
Definition 2.3. Let x = (Vx, Tx, Dx) be a state variable. A
timeline for x is a finite sequence of k tokens (x, vi, di), with
k > 0, such that vi+1 2 Tx(vi), for i = 1, . . . , k � 1.

We define the start time and the end time of the i-th to-
ken of a timeline for x as s

�
(x, vi, di)

�
=

Pi�1
j=1 dj and

e
�
(x, vi, di)

�
=

Pi
j=1 dj , respectively.

The behavior of state variables is constrained by a set
of synchronization rules, which relate tokens, possibly be-
longing to different timelines, through temporal relations
among intervals or among intervals and time points. Let
⌃={o, o0, . . .} be a set of token names used to refer to tokens.
Definition 2.4. An atom is either a clause of the form
o e1,e2

[`,u] o
0 (interval), or of the forms o e1

[`,u] t or o �e1
[`,u] t

(time-point), where o, o0 2 ⌃, ` 2 Q+, u 2 Q+[{+1}, t 2
Q+, and e1 (resp., e2) is either s or e.
Definition 2.5. Let SV be a set of state variables. An exis-

tential statement is a statement of the form:

9o1[x1 = v1] · · · 9on[xn = vn].C

where C = ⇢0 ^ . . . ^ ⇢m is a conjunction of atoms, oi 2 ⌃,
xi 2 SV , and vi 2 Vxi for each i = 1, . . . , n. The elements
oi[xi = vi] are called quantifiers. A token name used in C,
but not occurring in any quantifier, is said to be free.

A synchronization rule R is a clause of one of the forms

o0[x0 = v0] ! E1_E2_ . . ._Ek, > ! E1_E2_ . . ._Ek,

where o0 2 ⌃, x0 2 SV , v0 2 Vx0 , and E1, . . . , Ek are
existential statements where only o0 may appear free. In
rules of the first form, the quantifier o0[x0 = v0] is called
trigger. Rules of the second form are said to be trigger-less.

Intuitively, the trigger is a universal quantifier, which states
that for all the tokens o0, where the variable x0 takes the
value v0, at least one of the existential statements Ei must be
true. The existential statements in turn assert the existence
of tokens o1, . . . , on, where the respective state variables

take the specified values, that satisfy the temporal constraints
given by C. Trigger-less rules simply assert the satisfaction
of the existential statements.
Definition 2.6. Let � be a set of tokens and let � : ⌃ ! �
be a function that assigns a token to each token name.
An interval atom o e1,e2

[`,u] o
0 is satisfied by � if ` 

e2(�(o0))� e1(�(o))  u, and a time-point atom o e
[`,u] t

(resp., o �e
[`,u] t) is satisfied by � if `  t � e(�(o))  u

(resp., `  e(�(o))� t  u).
Definition 2.7. Given a set of tokens � and a function
� : ⌃ ! �, a quantifier o[x = v] is satisfied by � if
�(o) = (x, v, do), for some do. An existential statement E ,
with conjunct clause C, is satisfied by � if all the quantifiers
of E and all the atoms in C are satisfied by �.

A synchronization rule of the form o0[x0 = v0] ! E1 _
E2_ . . ._Ek is satisfied by � if, for every token (x0, v0, d) 2
�, there are an existential statement Ei and a mapping � :
⌃ ! � such that �(o0) = (x0, v0, d) and � satisfies Ei.

A timeline-based planning domain is specified by a set of
state variables and a set of synchronization rules modeling
their admissible behaviors. Trigger-less rules can be used to
express initial conditions and the goals of the problem.
Definition 2.8. A timeline-based planning problem is a pair
P = (SV, S), where SV is a set of state variables and S is
a set of synchronization rules involving variables in SV . A
plan for P is a set of timelines ⇧, one for each xi 2 SV ,
such that all the synchronization rules in S are satisfied by
the set � of all tokens involved in (any of) the timelines of ⇧.

Note that the 13 Allen’s ordering relations between pairs
of intervals (Allen 1983) can be defined with interval atoms.

3 Timeline-Based Planning over Dense Time
is Undecidable

In this section, we show that timeline-based planning, in its
full generality, is undecidable over dense temporal domains,
even when a single state variable is involved. Undecidability
is proved via a reduction from the halting problem for Min-
sky 2-counter machines (Minsky 1967). The proof somehow
resembles the one for the satisfiability problem of Metric
Temporal Logic with both past and future temporal modali-
ties, interpreted on dense time (Alur and Henzinger 1993).

As a preliminary step, we give a short account of Minsky
2-counter machines. A Minsky 2-counter machine (counter
machine for short) is a tuple M = (Inst, `init, `halt) consisting
of a finite set Inst of labeled instructions ` : ı, where ` is a
label and ı is an instruction for either
• increment: ch := ch + 1; goto `r, or
• decrement: if ch > 0 then ch := ch�1; goto `s else
goto `t,

where h 2 {1, 2}, `s 6= `t, and `r (resp., `s, `t) is either a
label of an instruction in Inst or the halting label `halt. More-
over, `init is the label of a designated instruction in Inst.

A M -configuration is a triple of the form C = (`, n1, n2),
where ` is the label of an instruction to be executed and
n1, n2 2 N are the current values of the two counters c1 and

c2, respectively. M induces a transition relation, denoted by
�!, over pairs of M -configurations: (i) for an instruction
with label ` incrementing c1, (`, n1, n2) �! (`r, n1+1, n2),
and (ii) for an instruction decrementing c1, (`, n1, n2) �!
(`s, n1 � 1, n2), if n1 > 0, and (`, n1, n2) �! (`t, n1, n2),
otherwise. The analogous for instructions altering c2. A com-
putation of M is a finite sequence C1, . . . , Ck of configura-
tions such that Ci �! Ci+1 for all i 2 [1, k � 1]. M halts

if there is a computation starting at (`init, 0, 0) and leading
to (`halt, n1, n2), for some n1, n2 2 N. The halting problem
is to decide whether a given machine M halts, and it was
proved to be undecidable (Minsky 1967).

Theorem 3.1. Timeline-based planning over dense time is

undecidable (even when a single state variable is involved).

Proof. We prove the thesis by a reduction from the halting
problem for Minsky 2-counter machines. Let us introduce
the following notational conventions:

• for increment instructions ` : ch := ch + 1; goto `r, we
define c(`) := ch and succ(`) := `r;

• for decrement instructions ` : if ch > 0 then ch :=
ch � 1; goto `r else goto `s, we define c(`) := ch,
dec(`) := `r, and zero(`) := `s.

Moreover, let Lab be the set of instruction labels, including
`halt, and let Inc (resp., Dec) be the set of labels for incre-
ment (resp., decrement) instructions. We consider a counter
machine M = (Inst, `init, `halt) assuming without loss of gen-
erality that no instruction of M leads to `init, and that `init is
the label of an increment instruction. To prove the thesis, we
build in polynomial time a state variable xM = (V, T,D) and
a finite set RM of synchronization rules over xM such that M
halts if and only if there is a timeline for xM which satisfies
all the rules in RM (i.e., a plan for P = ({xM}, RM)).

Encoding of M -computations. First, we define a suitable
encoding of a computation of M as a timeline for xM . For
such an encoding we exploit the finite set of symbols V :=
Vmain [Vcheck corresponding to the finite domain of the state
variable xM . The definition of the sets of main values Vmain

and check values Vcheck are reported in Figure 1. For each
h = 1, 2, we denote by Vch the set of V -values v having
the form v = (`, c), v = (`, `0, c), or v = (`, op, c), where
c 2 {ch, (ch,#)}: if c = ch, we say that v is an unmarked

Vch -value; otherwise (c = (ch,#)), v is a marked Vch -value.
An M -configuration is encoded by a finite word over

V consisting of the concatenation of a check-code and a
main-code. The main-code wmain for an M -configuration
(`, n1, n2), where the instruction label ` 2 Inc [{`halt},
n1 � 0, and n2 � 0, has the form:

wmain = ` · (`, c1) . . . (`, c1)| {z }
n1 times

· (`, c2) . . . (`, c2)| {z }
n2 times

In the case of a decrement instruction label ` 2 Dec such
that c(`) = c1, the main-code w

0
main

for has one of the fol-
lowing two forms, depending on whether the value of c1 in

the encoded configuration is equal to or greater than zero.

(`, zero(`)) · (`, zero(`), c2) . . . (`, zero(`), c2)| {z }
n2 times

,

(`, dec(`)) · (`, dec(`), (c1,#))·
(`,dec(`),c1). . .(`,dec(`),c1)| {z }

n1 times

·(`,dec(`),c2). . .(`,dec(`),c2)| {z }
n2 times

In the first case, w0
main

encodes the configuration (`, 0, n2), in
the second case, the configuration (`, n1+1, n2). Note that, in
the second case, there is exactly one occurrence of a marked

Vc1-value which intuitively “marks” the unit of the counter
which will be removed by the decrement. Similarly, the main-
code for a decrement instruction label ` with c(`) = c2 has
two forms symmetric with respect to the previous cases.

The check-code is used to trace both an M -configuration
C and the type of instruction associated with the configura-
tion Cp preceding C in the considered computation. The type
of instruction is given by symbols inci, deci, and zeroi, with
i = 1, 2: inci (resp., deci, zeroi) means that Cp is associated
with an instruction incrementing the counter ci (resp., decre-
menting ci with ci greater than 0 in Cp, decrementing ci with
ci being 0 in Cp).

The check-code for an instruction label ` 2 Lab and an
inc1-operation has the form:

(`, inc1) · (`, inc1, (c1,#)) · (`, inc1, c1) . . . (`, inc1, c1)| {z }
n1 times

·

(`, inc1, c2) . . . (`, inc1, c2)| {z }
n2 times

and encodes the configuration (`, n1+1, n2). Note that there
is exactly one occurrence of a marked Vc1 -value which intu-
itively represents the unit added to the counter by the incre-
ment operation.

The check-code for an instruction label ` 2 Lab and an
operation op1 2 {dec1, zero1} for counter c1 has the form:

(`, op1)·(`, op1, c1). . .(`, op1, c1)| {z }
n1 times

·(`, op1, c2). . .(`, op1, c2)| {z }
n2 times

where we require that n1 = 0 if op1 = zero1. The check-
code for a label ` 2 Lab and an operation associated with the
counter c2 is defined in a similar way.

A configuration-code is a word w = wcheck · wmain such
that wcheck is a check-code, wmain is a main-code, and wcheck

and wmain are associated with the same instruction label. The
configuration code is well-formed if wcheck and wmain encode
the same configuration.

Figure 2 depicts the encoding of a configuration-code for
the instruction `i+1. The check-code for the instruction `i+1

is associated with an increment of counter c1 (the type of
instruction `i).

A computation-code is a sequence of configuration-codes
⇡ = w

1
check

·w1
main

· · ·wn
check

·wn
main

such that, for all j 2 [1, n�
1], the following holds (we assume `i to be the instruction
label associated with the configuration code w

i
check

· wi
main

):

Vmain :=
[

`2Inc[{`halt}

[

h=1,2

⇣
{`} [{(`, ch)}

⌘
[

[

`2Dec

[

`02{zero(`),dec(`)}

[

h=1,2

⇣
{(`, `0)} [{(`, `0, ch)} [{(`, `0, (ch,#))}

⌘

Vcheck :=
[

`2Lab

[

i,h2{1,2}

[

opi2{inci,deci,zeroi}

⇣
{(`, opi)} [{(`, opi, ch)} [{(`, opi, (ch,#))}

⌘

Figure 1: Definition of Vmain and Vcheck.

`i c01 c01 c02 c02
`i+1,
inc1

gc1# c̃1 c̃1 c̃2 c̃2 `i+1 c001 c001 c001 c002 c002 · · ·· · ·

· · ·
=1

=1
=1

=1

=1
=1

=1
=1

=1

t=k + 1

type(`i) = inc1xM

t=k t=k + 2
· · ·

wcheck

wmain

Figure 2: A fragment of a computation code with configuration code for an instruction `i+1. Main-codes are highlighted in
yellow and check-codes in cyan. Each square can also be seen as a token of a timeline for xM (tokens are decorated with their
start time and their temporal constraints). In the figure, for h = 1, 2, the symbols c0h, c̃h, gch#, and c

00
h, stand respectively for

(`i, ch), (`i+1, inc1, ch), (`i+1, inc1, (ch,#)), and (`i+1, ch).

• `j 6= `halt;
• if `j 2 Inc with c(`j) = ch, then `j+1 = succ(`j) and

w
j+1
check

is associated with the operation inch;
• if `j 2 Dec with c(`j) = ch, and the first symbol of

w
j
main

is (`j , zero(`j)) (resp., (`j , dec(`j))), then `j+1 =

zero(`j) (resp., `j+1 = dec(`j)) and w
j+1
check

is associated
with the operation zeroh (resp., dech).

The computation-code ⇡ is well-formed if, additionally, each
configuration-code in ⇡ is well-formed and, for all j 2 [1, n�
1], the following holds (we assume (`i, ni

1, n
i
2) to be the

configuration encoded by w
i
check

· wi
main

):

• if `j 2 Inc, with c(`j) = ch, then n
j+1
h = n

j
h + 1 and

n
j+1
3�h = n

j
3�h;

• if `j 2 Dec, with c(`j) = ch, then n
j+1
3�h = n

j
3�h. More-

over, if wj+1
check

is associated with dech, then n
j+1
h = n

j
h�1.

Clearly, a well-formed computation code ⇡ encodes a com-
putation of the counter machine. A computation-code ⇡ is
initial if it starts with the prefix (`init, zero1) · `init, and it is
halting if it leads to a configuration-code associated with the
halting label `halt. The counter machine M halts if and only if
there is an initial and halting well-formed computation-code.

Let us show how to reduce the problem of checking the
existence of an initial and halting well-formed computation-
code to a planning problem for the state variable xM .

The idea is to define a timeline where the sequence of
values of its tokens is a well-formed computation-code. The
durations of tokens are suitably exploited to guarantee well-
formedness of computation-codes. We refer the reader again
to Figure 2 for an intuition. Each symbol of the computation-
code is associated with a token having a positive duration.
The overall duration of the sequence of tokens corresponding

to a check-code or a main-code amounts exactly to one time
unit. To allow for the encoding of arbitrarily large values of
counters in one time unit, the duration of such tokens is not
fixed (taking advantage of the dense temporal domain). In two
adjacent (check/main)-codes, the time elapsed between the
start times of corresponding elements in the representation
of the value of a counter (see elements in Figure 2 connected
by horizontal lines) amounts exactly to one time unit. Such
a constraint allows us to compare the values of counters in
adjacent codes, either checking for equality, or simulating (by
using marked symbols) increment and decrement operations.
Note that there is a single marked token c1 in the check-
code—that represents the unit added to c1 by the instruction
`i—which does not correspond to any of the c1’s of the
preceding main-code.

Definition of xM and RM . We now define a state variable
xM and a set RM of synchronization rules for xM such that
the untimed part of every timeline, i.e., neglecting tokens’
durations, for xM satisfying the rules in RM is an initial and
halting well-formed computation-code. Thus, M halts if and
only if there is a timeline of xM satisfying the rules in RM .

As for xM , let xM = (V, T,D), where, for each v 2 V ,
D(v) = (0, 1]. This sets the strict time monotonicity con-
straint, i.e., the duration of a token along a timeline is always
greater than zero and less than or equal to 1. The value tran-
sition function T of xM ensures the following requirement.

Claim 3.2. The untimed part of each timeline for xM whose

first token has value (`init, zero1) is a prefix of some initial

computation-code. Moreover, (`init,zero1) /2T (v) for all v2V.

By construction, it is a straightforward task to define T

in such a way that the previous requirement is fulfilled (for
details, see the appendix).

Finally, the synchronization rules in RM ensure the fol-
lowing requirements.

• Initialization: every timeline starts with two tokens, the
first one having value (`init, zero1), and the second one
having value `init. By Claim 3.2 and the fact that no in-
struction of M leads to `init, it suffices to require that
a timeline has a token with value (`init, zero1) and a to-
ken with value `init. This is ensured by the following two
trigger-less rules: > ! 9 o[xM = (`init, zero1)].> and
> ! 9 o[xM = `init].>.

• Halting: every timeline leads to a configuration-code asso-
ciated with the halting label. By the rules for the initializa-
tion and Claim 3.2, it suffices to require that a timeline has
a token with value `halt. This is ensured by the following
trigger-less rule: > ! 9 o[xM = `halt].>.

• 1-Time distance between consecutive control values: a
control V -value corresponds to the first symbol of a main-
code or a check-code, i.e., it is an element in V \ (Vc1 [
Vc2). We require that the difference of the start times of
two consecutive tokens along a timeline having a control
V -value is exactly 1. Formally, for each pair tk and tk

0

of tokens along a timeline such that tk and tk
0 have a

control V -value, tk precedes tk
0, and there is no token

between tk and tk
0 having a control V -value, it holds that

s(tk0)� s(tk) = 1. By Claim 3.2, strict time monotonicity,
and the halting requirement, it suffices to ensure that each
token tk having a control V -value distinct from `halt is
eventually followed by a token tk

0 such that tk0 has a
control V -value and s(tk0) � s(tk) = 1. To this aim, for
each v 2 Vcon \ {`halt}, being Vcon the set of control V -
values, we write the following rule:

o[xM = v] !
_

u2Vcon

9 o0[xM = u]. o s,s
[1,1] o

0
.

• Well-formedness of configuration-codes: we need to guar-
antee that for each configuration-code wcheck · wmain oc-
curring along a timeline and each counter ch, the value of
ch along the main-code wmain and the check-code wcheck

coincide. By Claim 3.2, strict time monotonicity, initial-
ization, and 1-Time distance between consecutive control
values, it suffices to ensure that (i) each token tk with a
Vch-value in Vcheck is eventually followed by a token tk

0

with a Vch-value such that s(tk0) � s(tk) = 1, and vice
versa (ii) each token tk with a Vch -value in Vmain is even-
tually preceded by a token tk

0 with a Vch-value such that
s(tk) � s(tk0) = 1. As for the former requirement, for
each v 2 Vch \ Vcheck, we have the rule:

o[xM = v] !
_

u2Vch

9 o0[xM = u]. o s,s
[1,1] o

0
.

For the latter, for each v 2 Vch \ Vmain, we have the rule:

o[xM = v] !
_

u2Vch

9 o0[xM = u]. o0 s,s
[1,1] o.

• Increment and decrement: we need to guarantee that the in-
crement and decrement instructions are correctly simulated.
By Claim 3.2 and the previously-defined synchronization

rules, we can assume that the untimed part ⇡ of a timeline
is an initial and halting computation-code such that all
configuration-codes occurring in ⇡ are well-formed. Let
wmain · wcheck be a subword occurring in ⇡ such that wmain

(resp., wcheck) is a main-code (resp., check-code). Let `main

(resp., `check) be the instruction label associated with wmain

(resp., wcheck) and for i = 1, 2, let nmain

i (resp., ncheck

i) be
the value of counter ci encoded by wmain (resp., wcheck).
Let ch = c(`main). By construction `main 6= `halt, end either
`main 2 Inc and `check = succ(`main), or `main 2 Dec and
`check 2 {zero(`main), dec(`main)}. Moreover, if `main 2
Dec and `check = zero(`main), then n

check

h = n
main

h = 0.
Thus, it remains to ensure the following two requirements:

(*) if `main 2 Inc, then n
check

h =n
main

h +1 and n
check

3�h =n
main

3�h;
(**) if `main 2 Dec, then n

check

3�h = n
main

3�h, and whenever
`check = dec(`main), then n

check

h = n
main

h � 1.
First, we observe that if `main 2 Inc, our encoding ensures
that all Vc3�h-values in wmain and in wcheck are unmarked,
all Vch -values in wmain are unmarked, and there is exactly
one marked Vch-value in wcheck. If instead `main 2 Dec,
our encoding ensures that all Vc3�h -values in wmain and in
wcheck are unmarked, all Vch -values in wcheck are unmarked,
and in case `check = dec(`main), then there is exactly one
marked Vch-value in wmain. Then, by strict time mono-
tonicity and 1-Time distance between consecutive control
values, it follows that requirements (*) and (**) are cap-
tured by the following rules, where Uci denotes the set of
unmarked Vci -values, for i = 1, 2, and Vinit (resp., Vhalt) is
the set of V -values associated with label `init (resp., `halt).
For each v 2 (Uci \ Vmain) \ Vhalt, we have:

o[xM = v] !
_

u2Uci

9 o0[xM = u]. o s,s
[1,1] o

0
.

For each v 2 (Uci \ Vcheck) \ Vinit, we have:

o[xM = v] !
_

u2Uci

9 o0[xM = u]. o0 s,s
[1,1] o.

This concludes the proof of the theorem.

4 The Trigger-less Case is Decidable
In this section, we show that decidability of the timeline-
based planning problem can be recovered if we restrict our-
selves to trigger-less synchronization rules. To this aim, we
suitably encode the planning problem into a parallel com-
position of timed automata (TA) whose only communica-
tion mean is clock sharing. Each timeline can be seen as a
timed word “described” by the TA associated with the cor-
responding variable. A plan for k variables is then a timed
k-multiword, namely, a timed word over a structured alpha-
bet featuring a component for each variable (i.e., a timed
word having k timed synchronized traces, one for each time-
line). We call k-MWTA the composition of TAs accepting
the k-multiwords encoding plans. In particular, we show that
each trigger-less rule can be implemented by using shared
clocks and diagonal constraints over clock values associated
with TA components. The planning problem with trigger-less
synchronization rules can thus be naturally reduced to the

emptiness problem for the k-MWTA encoding it. By tailoring
the standard region-based construction for TAs, we prove that
emptiness of a k-MWTA can be solved in PSPACE.

We start with a short summary of the standard notions
of timed word and TA, and of their semantics. Let w be a
finite or infinite word over some alphabet. An infinite timed

word w over a finite alphabet ⌃ is an infinite word w =
(a1, ⌧1)(a2, ⌧2) · · · over ⌃ ⇥ R+ (intuitively, ⌧i is the time
at which the event ai occurs) such that the sequence ⌧ =
⌧1, ⌧2, . . . of timestamps satisfies: (1) ⌧i  ⌧i+1 for all i � 1
(monotonicity), and (2) for all t 2 R+, ⌧i � t for some i � 1
(divergence/progress). The timed word w is also denoted
by the pair (�, ⌧), where � is the (untimed) infinite word
a1a2 · · · and ⌧ is the sequence of timestamps. An !-timed

language over ⌃ is a set of infinite timed words over ⌃.
Let us now give a short account of the formalism of timed

automata (TA, see (Alur and Dill 1994)). Let us fix an alpha-
bet ⌃. A clock constraint over a set C of clocks is a Boolean
combination of atomic formulas of the form c • c0 + cst or
c • cst, where • 2 {�,}, c, c0 2 C, and cst 2 Q+ is a con-
stant. We will often use the interval-based notation instead of
a conjunction of two atomic formulas, e.g., c 2 [2, 7.4]. We
denote the set of clock constraints over C by �(C).

A clock valuation val : C ! R+ for C is a function
assigning a real value to each clock of C. Given a clock
valuation val for C and a clock constraint ✓ over C, we say
that val satisfies ✓, written val |= ✓, if ✓ evaluates to true
replacing each occurrence of a clock c in ✓ by val(c), and
interpreting Boolean connectives in the standard way. Given
t 2 R+, (val + t) denotes the valuation such that, for all c 2
C, (val + t)(c) = val(c) + t. For Res ✓ C, val [Res](c) = 0
if c 2 Res, and val [Res](c) = val(c) otherwise.

Definition 4.1. A (Büchi) TA over ⌃ is a tuple A =
(⌃, Q,Q0, C,�, F), where Q is a finite set of (control)
states, Q0 ✓ Q is the set of initial states, C is a finite
set of clocks, F ✓ Q is the set of accepting states, and
� ✓ Q⇥ ⌃⇥ �(C)⇥ 2C ⇥Q is the transition relation.

The intuitive behavior of a Büchi TA A is the following.
Assume that A is on state q 2 Q after reading i � 0 symbols,
the i-th symbol is read at time ⌧i and, at that time, the clock
valuation is sval . On reading the (i+ 1)-th symbol (a, ⌧i+1),
A chooses a transition of the form � = (q, a, ✓,Res, q

0) 2 �
such that the constraint ✓ is fulfilled by (sval + t), with
t = ⌧i+1 � ⌧i. The control then changes from q to q

0 and
sval is updated in such a way as to record the amount of time
elapsed t in the clock valuation, and to reset the clocks in
Res, namely, sval is updated to (sval + t)[Res].

Formally, a configuration of A is a pair (q, sval), where
q 2 Q and sval is a clock valuation for C. A run ⇡ of A
over w = (�, ⌧) is an infinite sequence of configurations ⇡ =
(q0, sval0)(q1, sval1) · · · such that q0 2 Q0, sval0(c) = 0
for all c 2 C (initiation requirement), and the following
constraint holds (consecution): for all i � 1 (we let ⌧0 = 0),

• for some (qi�1,�i, ✓,Res, qi) 2 �, sval i = (sval i�1 +
⌧i � ⌧i�1)[Res] and (sval i�1 + ⌧i � ⌧i�1) |= ✓.

The run ⇡ is accepting if there are infinitely many positions
i � 0 such that qi 2 F . The timed language LT (A) of A is

q0,x x = a

x = bx = c

. . .

cx2 [1, 1], cx :=0

a

cx2 [2.9, 10),
cx :=0b

c

cx2 [2, 8], cx :=0

Figure 3: (Part of) a Büchi TA Ax for a state variable
x = (Vx, Tx, Dx), with Vx = {a, b, c, . . .}, b 2 Tx(a),
c 2 Tx(b) . . ., Dx(a) = [2.9, 10), Dx(b) = [2, 8],

x
t=1 t=7 t=10 t=13.9

x = a x = b x = c

(a, 1) (b, 7) (c, 10)

x = b

w = (b, 13.9)

Figure 4: An example of timeline for the state variable x of
Figure 3, with the timed word encoding it, accepted by Ax.

the set of infinite timed words w over ⌃ such that there is an
accepting run of A over w.

We now introduce the notion of timeline encoded by a

timed word, and of TA for a state variable. We assume that,
for every x and every v 2 Vx, we have Tx(v) 6= ; (at the end
of the section it is shown how to relax this constraint).
Definition 4.2. Let x = (Vx, Tx, Dx) be a state variable. The
timeline for x encoded by a timed word (a1, ⌧1)(a2, ⌧2) · · ·
is the sequence of tokens (x, a1, t1)(x, a2, t2) · · · , where, for
i � 1, ai 2 Vx, ai+1 2 Tx(ai), and ti = ⌧i+1�⌧i 2 Dx(ai).
Definition 4.3. Let x = (Vx, Tx, Dx) be a state variable. A

TA for x is a tuple Ax = (Vx, Q, {q0,x}, {cx},�, Q), where
Q = Vx[{q0,x} (q0,x 62 Vx), and � = {(v0, v, cx 2 Dx(v0),
{cx}, v) | v0, v 2 Vx, v 2 Tx(v0)} [{(q0,x, v, cx 2 [1, 1],
{cx}, v) | v 2 Vx}.

Intuitively, this automaton accepts all timed words encod-
ing a timeline for the state variable x. Let us note that all
states are accepting. Moreover, the constraints of a transition
� 2 � on the unique clock cx are determined by the (value
of the) source state of �. For technical reasons, which will be
clear in the following, we set cx 2 [1, 1] on all the transitions
from the initial state q0,x. See Figure 3 and 4 for an example.

In the following, we introduce the formalism of k-multi-
word TA (k-MWTA). A k-MWTA is the parallel composition
of k TAs which share the same clocks for synchronization.

A k-MWTA accepts a language of timed k-multiwords,
formally defined as follows. For k � 1 pairwise disjoint
alphabets ⌃1, . . . ,⌃k, and the symbol ✏ /2

S
1ik ⌃i,

k-⌃ denotes the multialphabet {(a1, . . . , ak) | ai 2 ⌃i [
{✏}, for 1  i  k} \ {(✏, . . . , ✏)}. A k-multiword is a word
over k-⌃. Intuitively, a k-multiword

!
a 1,

!
a 2, . . . is a syn-

chronization of k words over the alphabets ⌃1, . . . ,⌃k; in
!
a j= (a1j , . . . a

k
j), for j � 1, all the symbols a

i
j such that

a
i
j 6= ✏, with 1  i  k, occur at the same instant of time,

and if a
i
j = ✏, no symbol (event) of the i-th alphabet ⌃i

x

y

z

t=1 t=4 t=7 t=10.2 t=13 t=17.1 t=20.9

x = a11 x = a21 x = a31

y = a12 y = a22 y = a32 y = a42

z = a13z = a13 z = a23

((a11, a
1
2, a

1
3), 1)

((✏, a22, ✏), 4)

((a21, a
3
2, ✏), 7)

((✏, ✏, a13), 10.2) ((✏, a42, ✏), 17.1)

((a41, ✏, ✏), 20.9)((a31, ✏, a
2
3), 13)

x = a41

Figure 5: An example of timelines for the state variables
x, y, z together with the timed 3-multiword encoding them.

occurs at that time. A timed k-multiword is just a timed word
(�, ⌧) where the untimed word � is a k-multiword. The no-
tion of timeline encoded by a timed word can be extended to
the (list of) timelines encoded by a timed k-multiword.
Definition 4.4. The timeline for xj encoded by a timed
k-multiword (

!
a 1, ⌧1)(

!
a 2, ⌧2) · · · is the timeline encoded

by the timed word d✏
�
(
!
a 1 [j], ⌧1)(

!
a 2 [j], ⌧2) · · ·

�
, where

d✏((�, ⌧)) is the timed word obtained from (�, ⌧) by remov-
ing all the occurrences of pairs (✏, ⌧ 0), with ⌧

02R+.
See Figure 5 for an example.
A k-MWTA is a suitable parallel composition of TA com-

municating via shared clocks.
Definition 4.5. Let Ai = (⌃i, Qi, Q0,i, Ci,�i, Fi), with
1  i  k, be k TA. A k-multiword TA (k-MWTA) for
A1, . . . ,Ak is a TA k-A = (k-⌃, Q,Q0, C,�, F), where

• Q = (Q1 ⇥ . . .⇥Qk) [{qf}, with qf an auxiliary state,
• Q0 = Q0,1 ⇥ . . .⇥Q0,k,
• C = C1 [. . . [Ck,
• F = (F1 ⇥ . . .⇥ Fk) [{qf},

• if
⇣
(q1, . . . , qk), (a1, . . . , ak),⇥, C, (q01, . . . , q0k)

⌘
2 �

for (q1, . . . , qk), (q01, . . . , q
0
k) 2 Q \ {qf}, then ⇥ =Vk

i=1 ✓i, C =
Sk

i=1 Resi, and for all i = 1, . . . , k,
– if ai 6= ✏, there exists (qi, ai, ✓i,Resi, q

0
i) 2 �i,

– if ai = ✏, it holds qi = q
0
i, ✓i = > and Resi = ;.

We define now a k-MWTA for a set of state variables
x1, . . . , xk.
Definition 4.6. Let x1, . . . , xk be k state variables. A
k-MWTA for x1, . . . , xk is the k-MWTA k-Ax1,...,xk for
Axi = (⌃i = Vxi , Qi, {q0,i}, {ci},�i, Qi), 1  i  k, de-
fined as k-Ax1,...,xk =(k-⌃, Q, {q0}, C,�1[�2, F), where

• Q = Q1 ⇥ . . .⇥Qk and q0 = (q0,1, . . . , q0,k),
• C = {c1, . . . , ck} and F = Q1 ⇥ . . .⇥Qk,

•
⇣
(q1, . . . , qk), (a1, . . . , ak),⇥, C, (q01, . . . , q0k)

⌘
2 �1 iff

(q1, . . . , qk) 6= q0, ⇥ =
Vk

i=1 ✓i, C =
Sk

i=1 Resi, and for
all i = 1, . . . , k, we have
– if ai 6= ✏, there exists (qi, ai, ✓i,Resi, q

0
i) 2 �i,

– if ai = ✏, it holds qi = q
0
i, ✓i = > and Resi = ;.

• �2 = {(q0, (a1, . . . , ak),
Vk

i=1(ci 2 [1, 1]),
Sk

i=1{ci},
(a1, . . . , ak)) | (a1, . . . , ak) 2 ⌃1 ⇥ . . .⇥ ⌃k}.
The following result clearly holds by construction.

Proposition 4.7. Given k � 1 state variables x1, . . . , xk,

LT (k-Ax1,...,xk) is a set of k-multiwords, each one encoding

a timeline for each of x1, . . . , xk.

Let us now introduce the k-MWTA for the synchroniza-

tion rules. Since each rule has the form E1 _ . . . _ En, we
focus on the construction for a disjunct Ei, taking then
the union of the corresponding automata for the sake of
the whole rule. Let us consider a disjunct Ei of the form
9o1[x1 = v1,j1] · · · 9on[xn = vn,jn].C, where C is a conjunc-
tion of atoms. We associate two clock variables with each
quantifier oi[xi = vi,ji]—named coi,S and coi,E—which,
intuitively, are reset when the token chosen for oi starts and
ends, respectively. In order to select a suitable token along
the timeline, coi,S and coi,E are non-deterministically reset
when xi takes the value vi,ji 2 Vxi . Moreover, to deal with
atoms involving a time constant (time-point atoms), we also
introduce a clock variable cglob, which measures the current
time and is never reset. For technical reasons, we assume that
the start of activities is at time 1 and, consequently, the reset
of any coi,S and coi,E cannot happen before 1 time unit has
passed from the beginning of the timed word/plan. In fact,
in Definition 4.3, we have cx 2 [1, 1] on all the transitions
from q0,x (for this reason, we must also add 1 to all time
constants in all time-point atoms). This assumption implies
that the value of coi,S is equal to that of cglob if coi,S has
never been reset, and less otherwise. Since only one token
for each quantifier is chosen in a timeline, coi,S must be reset
only once: a transition resetting coi,S is enabled only if the
constraint coi,S = cglob is satisfied (likewise for coi,E).

In the following we define a TA for a state variable x,
suitably resetting the clocks associated with all the quantifiers
over x. For a set of token names O, we denote by ⇤(O, x, v)
the subset of names o 2 O such that o[x = v] for a variable
x and a value v 2 Vx, and by ⇤(O, x) =

S
v2Dx

⇤(O, x, v).
Moreover CS(O) (resp., CE(O)) represents the set {co,S |
o 2 O} (resp., {co,E | o 2 O}).
Definition 4.8. Given a state variable x = (Vx, Tx, Dx), and
quantifiers o1[x = v1], . . . , o`[x = v`], a TA for x, o1, . . . , o`
is Ax,o1,...,o` = (Vx, Q, {q0}, C,�1 [�2, ;), where
• Q = Vx [{q0},
• C = {cglob} [{coi,S , coi,E | i = 1, . . . , `},
• �1 is the set of tuples

⇣
v, a,

^

o2P

co,S=cglob^
^

o2R

(co,S<cglob^co,E=cglob)^

^

o2⇤({o1,...,ok},x,v)\R

(co,S = cglob _ co,E < cglob),

CS(P) [CE(R), a
⌘

with v 2 Vx, P ✓ ⇤({o1, . . . , o`}, x, a) and R ✓
⇤({o1, . . . , o`}, x, v);

• �2 = {(q0, a, cglob 2 [1, 1], CS(P), a) | a 2 Vx, P ✓
⇤({o1, . . . , o`}, x, a)}.

In the above definition, R (resp., ⇤({o1, . . . , ok}, x, v) \
R) is the set of token names whose end clock must (resp.,

must not) be reset. A number k of TAs, each one defined
for the quantifiers over a state variable xi (with 1  i  k)
occurring in an existential statement E , are then synchronized
by defining a k-MWTA.
Definition 4.9. Given k state variables x1, . . . , xk and E =
9o1[xj1 = v1] · · · 9on[xjn = vn].C, with {j1, . . . , jn} ✓
{1, . . . , k}, a k-MWTA for x1, . . . , xk, o1, . . . , on and E
is a k-MWTA for the TAs Axi,⇤({o1,...,on},xi) = (⌃i =
Vxi , Qi, {q0,i}, Ci,�i, ;) for i = 1, . . . , k, k-Ax1,...,xk,E =
(k-⌃, Q, {q0}, C,�1 [�2 [�3 [�4, {qf}), where
• Q = (Q1 ⇥ . . .⇥Qk) [{qf}, and q0 = (q0,1, . . . , q0,k),
• C = {cglob} [{coi,S , coi,E | i = 1, . . . , n},
• �1 is the set of tuples

⇣
(v1, . . . , vk), (a1, . . . , ak),

k̂

i=1

⇣ ^

o2Pi

co,S = cglob^

^

o2Ri

(co,S < cglob ^ co,E = cglob)^

^

o2Ri

(co,S = cglob _ co,E < cglob)
⌘
,

k[

i=1

(CS(Pi) [CE(Ri)), (v
0
1, . . . , v

0
k)
⌘

satisfying the following conditions, for all i = 1, . . . , k:
– if ai = ✏, then vi = v

0
i, Pi = ;, and Ri = Ri = ;,

– if ai 6= ✏, then ai = v
0
i 2 Dxi , Pi ✓ ⇤({o1, . . . , on},

xi, v
0
i), and Ri[̇Ri = ⇤({o1, . . . , on}, xi, vi),

• �2 = {(q0, (a1, . . . , ak), cglob 2 [1, 1],
Sk

i=1 CS(Pi),
(a1, . . . , ak)) | (a1, . . . , ak) 2 Vx1 ⇥ . . . ⇥ Vxk , Pi ✓
⇤({o1, . . . , on}, xi, ai) for 1  i  k},

• �3 = {(q, (a1, . . . , ak),�C^
Vk

i=1(coi,S<cglob^coi,E<

cglob), ;, qf) | q 2 Vx1 ⇥ . . .⇥ Vxk , (a1, . . . , ak) 2 k-⌃},
where �C is the translation of C into a TA clock con-
straint suitably obtained by exploiting the correspondences
among atoms and TA clock constraints outlined in Table 1,

• �4={(qf , (a1, . . . , ak),>, ;, qf) |(a1, . . . , ak)2k-⌃}.
Intuitively, qf is an accepting sink state, that the automaton

can enter only after all token clocks have been reset (i.e.,Vk
i=1(coi,S < cglob ^ coi,E < cglob)) and all C’s conditions

are verified. See Figure 6 for an example.
We construct the TA Ã for a timeline-based planning prob-

lem P = ({x1, . . . , xk}, S) by exploiting the standard union
and intersection operations of TAs. Ã is obtained by intersect-
ing (i) the k-MWTA k-Ax1,...,xk for the state variables (see
Definition 4.6) with (ii) a TA k-Ax1,...,xk,R for each trigger-
less synchronization rule R = > !

W
1im Ei in S, which,

in turn, is the disjunction of m k-MWTAs k-Ax1,...,xk,Ei as
in Definition 4.9 (one for each Ei in R). The next proposition
states the correctness of Ã.
Proposition 4.10. LT (Ã) is the set of plans for P =
({x1, . . . , xk}, S).

⇢i �⇢i

o1 s,s
[`,u] o2 co2,S + `  co1,S  co2,S + u

o1 s,e
[`,u] o2 co2,E + `  co1,S  co2,E + u

o1 e,s
[`,u] o2 co2,S + `  co1,E  co2,S + u

o1 e,e
[`,u] o2 co2,E + `  co1,E  co2,E + u

o s
[`,u] t (`� t

0) + cglob  co,S  (u� t
0) + cglob

o e
[`,u] t (`� t

0) + cglob  co,E  (u� t
0) + cglob

o �s
[`,u] t (`+ t

0) + co,S  cglob  (u+ t
0) + co,S

o �e
[`,u] t (`+ t

0) + co,E  cglob  (u+ t
0) + co,E

Table 1: For a conjunction of atoms C = ⇢1 ^ . . . ^ ⇢m, we
have �C = �⇢1 ^ . . . ^ �⇢m , where �⇢i is reported in the
table and t

0 stands for t+ 1.

xi=vi,ji
...

xi=vi,ti

...

. . .

(. . . , vi,ti , . . .)

co0,E=cglob ^ co0,S<cglob, co0,E :=0

(. . . , vi,ti , . . .)

(co0,E<cglob _ co0,S=cglob) ^ co,S=cglob, co,S :=0

Figure 6: Example of transitions of k-Ax1,...,xk,E in Defini-
tion 4.9, taking two quantifiers o[xi = vi,ti] and o

0[xi =
vi,ji]. The transition above, having the constraint co0,E =
cglob ^ co0,S < cglob, resets co0,E . The transition below, hav-
ing constraint co0,E < cglob _ co0,S = cglob, does not reset
co0,E . Moreover, the transition above does not reset co,S ,
while the one below resets it, checking that co,S = cglob.

Theorem 4.11. Let P = ({x1, . . . , xk}, S) be a timeline-

based planning problem with trigger-less rules only. Check-

ing the existence of a plan for P is a problem in PSPACE.

Proof. Let us refer to the previously defined TA Ã for
P = ({x1, . . . , xk}, S). (i) The number of clocks |C| of
Ã is O(k + |S| · d · s), where d is the number of disjuncts in
the longest trigger-less rule in S, and s the maximum number
of quantifiers in an existential statement. (ii) The number
of states of Ã is V = O(

Qk
i=1 |Vxi |) ·O(|S| · (

Qk
i=1 |Vxi | ·

d)|S|) = O(|S| · (V k · d)|S|+1), where V = maxki=1 |Vxi |.
(iii) The number of transitions is U = O(V2 · (2↵)2|S|),
being ↵ the total number of quantifier occurrences in S rules.

Let us observe that Ã can be built on the fly, that is, by
looking at the �’s of Definition 4.6 and 4.9, one can de-
termine, given a state q, a successor q

0 and the connect-
ing transition, along with the associated constraints and
clocks to be reset. Encoding a state or a transition requires
O(|S| · k · log(|S| · V · d) + |S| · ↵) bits. We also note that
the length of constraints on Ã’s transitions is polynomial.

We now have to inspect the standard emptiness checking
algorithm for TAs, in order to verify that the space complexity
remains polynomial, even if the TA Ã has exponential size in
the input timeline-based planning problem.

Such a check involves building the so-called region au-

tomaton R(Ã) for Ã, whose states are pairs (q, r), where
q is a state of Ã and r a region: every region specifies,
for each clock c of Ã, whether its value is integer or not
(and, if it is, its value up to Kc, the maximum constant to

which c is compared), and the ordering of the fractional
parts of the clocks. The number of clock regions is r =
O(|C|! · 2|C| · 22↵2 ·

Q
c2C(2Kc+2)) (Alur and Dill 1994).1

Thus, to encode a region we need O(log(|C|!) + log(2|C|) +

log(22↵
2

) + log
Q

c2C(2Kc + 2)) = O(|C| log |C|+ |C|+
2↵2+log(2K+2)|C|) = O(|C| log |C|+2↵2+|C| log(2K+
2)) bits, where K = maxc2C Kc. Such K is, in our case, the
maximum constant occurring in the planning problem, be it
either an upper/lower bound of an interval of a token duration,
a time constant in an atom, or the upper/lower bound (u or `)
at the subscript of an atom (we assume them to be encoded in
binary). Thus a region can be encoded in polynomial space.
Finally, given a region, it is easy to determine a successor
region on the fly. The number of states of R(Ã) is thus r · V .
Every region has at most

P
c2C(2Kc + 2) successors (Alur

and Dill 1994), hence the number of transitions of R(Ã) is
U ·

P
c2C(2Kc+2). The construction concludes by basically

considering R(Ã) as a generalized Büchi automaton, and by
performing an emptiness checking over a Büchi automaton
of O(|C| · r · V) states derived from the previous one.

To relax the assumption made in the construction above
that, for every x and v2Vx, we have Tx(v) 6=;, we proceed
as follows. For every x with Tx(v) = ; for v 2 Vx, we set
Tx(v) = {rejx}, Tx(rejx) = {rejx} and Dx(rejx) = [1, 1],
being rejx2Vx a fresh domain element (“rejection element”)
of x. In Ax, we add one clock, cx,rej , which is reset on every
transition from a state (x=v), with v 6= rejx, into the state
(x=rejx). Then, in any �3-transition of each k-Ax1,...,xk,E ,
we add the constraint

V
x((cglob = cx,rej) _

V
o in E(co,E �

cx,rej)): this forces every token associated with a quantifier
to have its end before any variable x gets into its value rejx.

5 The Trigger-less Case is NP-complete
The given timed automaton-based planning algorithm has a
sub-optimal complexity: it is possible to show that timeline-
based planning with trigger-less rules is in fact NP-complete.
However, the proposed encoding of a problem into a TA is a
preliminary step towards the proof of this stricter complexity
result, as it allows us to determine a bounded horizon (namely,
the end time of the last token) for the plans of a problem P :
if P admits a plan, then it always admits a plan having such
a bounded horizon. Analogously, the automaton encoding
allows us to fix a bound to the number of tokens in a plan for
P . Here we sketch the proof, referring to the appendix for
details.

We observe that, if we consider a path among the g =
O(|C| · r · V) states of the region (Büchi) automaton built
from the timed automaton for P at the end of the proof of
Theorem 4.11, each edge/transition in such path corresponds
to the start point of at least a token in some timeline of a (can-
didate) plan for P , and, if more tokens start simultaneously,
of at most a token for each timeline. This yields a bound,
O(g · |SV |), on the number of tokens. Analogously, we de-
rive a bound on the horizon of the plan, O(g · |SV | · (K+1)),
being K the maximum constant occurring in P .

12↵2 is due to the presence of diagonal clock constraints.

Having determined these bounds, we can now describe the
algorithm. As a preprocessing step, we reduce to integers all
the rational values occurring in P by multiplying them by the
lcm � of all denominators. It is routine to check that, having
a plan for the new problem P

0, we can transform it into a
plan for the original P , by dividing the start/end times of all
tokens in each timeline by �.

Then, for every quantifier oi[xi = vi] in the rules of P 0,
the algorithm guesses the integer part of both the start and the
end time of the token for xi to which oi is mapped. Moreover,
it guesses an order of all fractional parts of such start/end
times. Being all constants in P

0 integers, we have the follow-
ing property: if we change the start/end time of (some of the)
tokens associated with quantifiers, but we leave unchanged
(i) all the integer parts, (ii) zeroness/non-zeroness of frac-
tional parts, and (iii) the fractional parts’ order, then the
satisfaction of atoms occurring in the rules does not change.

Now we have to check that there exists a legal timeline
evolution “connecting” each pair of adjacent guessed tokens
over the same variable (two tokens are adjacent if there is
no other token associated with a quantifier in between). The
idea is to interpret each state variable xi = (Vi, Ti, Di) as
a directed graph G = (Vi, Ti) where Di associates each
v 2 Vi with a duration interval. Therefore, for a pair of
adjacent guessed tokens (xi, v, d) and (xi, v

0
, d

0), we have to
decide whether there is (i) a path in G, with possibly repeated
vertices/edges, v0 · · · vn, with v0 2 Ti(v) and v

0 2 Ti(vn),
and (ii) a list of R+ values d0, . . . , dn, such that, for all s,
ds 2 Di(vs) and

Pn
i=0 di equals the time elapsed from the

end of (xi, v, d) to the start of (xi, v
0
, d

0). To this aim we
guess a set of integers {↵u,v | (u, v) 2 Ti} where ↵u,v is the
number of times the path traverses (u, v), and check that they
specify a directed Eulerian path from v0 to vn (Jungnickel
2013). Such a check is “expressed” as a set of constraints of
a linear problem (solvable in deterministic polynomial time).

As for the NP-hardness, there is a trivial reduction from
the problem of existence of a Hamiltonian path in a graph.
Theorem 5.1. P = ({x1, . . . , xk}, S) be a timeline-based

planning problem with trigger-less rules only. Checking the

existence of a plan for P is an NP-complete problem.

6 Conclusions and Future Work
In this paper, we studied the timeline-based planning prob-
lem over dense domains. We proved that it is undecidable in
its general form, by arguments similar to those of the stan-
dard undecidability proof of satisfiability of Metric Temporal
Logic. However, if restricted to trigger-less synchronization
rules, the problem is showed NP-complete: the proposed de-
cision procedure benefits from an encoding of the problem
into timed automata (amenable for exploiting model check-
ing technologies available for that model). Future work will
be devoted to studying decidability and complexity issues
of “intermediate” variants of the problem, which enforce
forms of synchronization rules having expressive power in
between that of general rules and trigger-less ones. Moreover,
we are interested in studying timeline-based model checking,
where systems are described by timelines, and properties are
specified in interval temporal logics (e.g., MITL or HS).

Acknowledgments
We would like to acknowledge the fundamental contribution
by Gerhard Woeginger to the NP algorithm for the case of
trigger-less rules.

The work has been supported by the GNCS project Formal

methods for verification and synthesis of discrete and hybrid

systems. The work by A. Molinari and A. Montanari has also
been supported by the project (PRID) ENCASE—Efforts in

the uNderstanding of Complex interActing SystEms.

References
Allen, J. F. 1983. Maintaining Knowledge about Temporal
Intervals. Communications of the ACM 26(11):832–843.
Alur, R., and Dill, D. L. 1994. A theory of timed automata.
Theoretical Computer Science 126(2):183–235.
Alur, R., and Henzinger, T. A. 1993. Real-Time Logics: Com-
plexity and Expressiveness. Information and Computation

104(1):35–77.
Barreiro, J.; Boyce, M.; Do, M.; Frank, J.; Iatauro, M.;
Kichkaylo, T.; Morris, P.; Ong, J.; Remolina, E.; Smith, T.;
and Smith, D. 2012. EUROPA: A Platform for AI Planning,
Scheduling, Constraint Programming, and Optimization. In
Proc. of ICKEPS.
Cesta, A.; Cortellessa, G.; Fratini, S.; Oddi, A.; and Policella,
N. 2007. An Innovative Product for Space Mission Planning:
An A Posteriori Evaluation. In Proc. of ICAPS, 57–64.
Chien, S.; Tran, D.; Rabideau, G.; Schaffer, S.; Mandl, D.;
and Frye, S. 2010. Timeline-based space operations schedul-
ing with external constraints. In Proc. of ICAPS, 34–41.
Cialdea Mayer, M.; Orlandini, A.; and Umbrico, A. 2016.
Planning and Execution with Flexible Timelines: a Formal
Account. Acta Informatica 53(6–8):649–680.
Frank, J., and Jónsson, A. 2003. Constraint-Based Attribute
and Interval Planning. Constraints 8(4):339–364.
Gigante, N.; Montanari, A.; Cialdea Mayer, M.; and Orlan-
dini, A. 2016. Timelines are Expressive Enough to Capture
Action-based Temporal Planning. In Proc. of TIME, 100–
109.
Gigante, N.; Montanari, A.; Cialdea Mayer, M.; and Orlan-
dini, A. 2017. Complexity of timeline-based planning. In
Proc. of ICAPS, 116–124.
Jónsson, A. K.; Morris, P. H.; Muscettola, N.; Rajan, K.; and
Smith, B. D. 2000. Planning in Interplanetary Space: Theory
and Practice. In Proc. of ICAPS, 177–186.
Jungnickel, D. 2013. Graphs, Networks and Algorithms.
Springer-Verlag Berlin Heidelberg.
Larsen, G. K.; Pettersson, P.; and Yi, W. 1997. UPPAAL
in a nutshell. International Journal on Software Tools for

Technology Transfer 1:134–152.
Minsky, M. L. 1967. Computation: Finite and Infinite Ma-

chines. Prentice-Hall, Inc.
Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. In Intelligent Scheduling. Morgan Kaufmann.
169–212.

A Definition of the value transition function
T in the proof of Theorem 3.1

The value transition function T of xM is defined as follows.
• For each instruction label ` 2 Inc [{`halt}, let P` = ;

if ` = `halt, and P` = {(succ(`), inch)} otherwise, where
ch = c(`). Then, T (`), T ((`, ci)), and T ((`, (ci,#)), for
i = 1, 2, are defined as follows:

T (`) = {(`, c1), (`, c2)} [P`

T ((`, c1)) = {(`, c1), (`, c2)} [P`

T ((`, c2)) = {(`, c2)} [P`

• For each instruction label ` 2 Dec and for each
`
0 2 {zero(`), dec(`)}, T ((`, `0)), T ((`, `0, ci)), and
T ((`, `0, (ci,#)), for i = 1, 2, are defined as:

T ((`, `0)) =

8
><

>:

{(`, `0, c2), (`0, zero1)} if c(`) = c1 and `
0 = zero(`)

{(`, `0, c1), (`0, zero2)} if c(`) = c2 and `
0 = zero(`)

{(`, `0, (c1,#))} if c(`) = c1 and `
0 = dec(`)

{(`, `0, c1), (`, `0, (c2,#))} otherwise

T ((`, `0, c1)) =

8
><

>:

; if c(`) = c1 and `
0 = zero(`)

{(`, `0, c1), (`0, zero2)} if c(`) = c2 and `
0 = zero(`)

{(`, `0, c1), (`, `0, c2), (`0, dec1)} if c(`) = c1 and `
0 = dec(`)

{(`, `0, c1), (`, `0, (c2,#))} otherwise

T ((`, `0, c2)) =

8
><

>:

{(`, `0, c2), (`0, zero1)} if c(`) = c1 and `
0 = zero(`)

; if c(`) = c2 and `
0 = zero(`)

{(`, `0, c2), (`0, dec1)} if c(`) = c1 and `
0 = dec(`)

{(`, `0, c2), (`0, dec2)} otherwise

T ((`, `0, (c1,#))) =

⇢
{(`, `0, c1), (`, `0, c2), (`0, dec1)} if c(`) = c1 and `

0 = dec(`)
; otherwise

T ((`, `0, (c2,#))) =

⇢
{(`, `0, c2), (`0, dec2)} if c(`) = c2 and `

0 = dec(`)
; otherwise

• For each label ` 2 Lab and operation op 2
{inc1, inc2, zero1, zero2, dec1, dec2}, T ((`, op)),
T ((`, op, ci)), and T ((`, op, (ci,#)), for i = 1, 2, are
defined as follows, where S` = {(`, zero(`)), (`, dec(`))}
if ` 2 Dec, and S` = {`} otherwise:

T ((`, op)) =

8
>>>>>><

>>>>>>:

{(`, op, c2)} [S` if op = zero1 and ` 6= `init

{(`, op, c1)} [S` if op = zero2 and ` 6= `init

{(`, op, c1), (`, op, c2)} [S` if op 2 {dec1, dec2} and ` 6= `init

{(`, op, (c1,#))} if op = inc1 and ` 6= `init

{(`, op, c1), (`, op, (c2,#))} if op = inc2 and ` 6= `init

{`init} if op = zero1 and ` = `init

; otherwise

T ((`, op, c1)) =

8
><

>:

; if either op = zero1 or ` = `init

{(`, op, c1)} [S` if op = zero2 and ` 6= `init

{(`, op, c1), (`, op, c2)} [S` if op 2 {dec1, dec2, inc1} and ` 6= `init

{(`, op, c1), (`, op, (c2,#))} if op = inc2 and ` 6= `init

T ((`, op, c2)) =

⇢
; if either op = zero2 or ` = `init

{(`, op, c2)} [S` otherwise

T ((`, op, (c1,#))) =

⇢
; if either op 6= inc1 or ` = `init

{(`, op, c1), (`, op, c2)} [S` otherwise

T ((`, op, (c2,#))) =

⇢
; if either op 6= inc2 or ` = `init

{(`, op, c2)} [S` otherwise

B Timeline-based planning with trigger-less
rules is NP-complete

In this section we describe a timeline-based planning algo-
rithm, for planning problems where only trigger-less rules
are allowed, which requires a polynomial number of (non-
deterministic) computation steps.

We want to start with the following example, with which
we highlight that there is no polynomial-size plan for some
problem instances. Thus, an explicit enumeration of all tokens
across all timelines does not represent a suitable polynomial-
size certificate.
Example B.1. Let us consider the following planning prob-
lem. We denote by p(i) the i-th prime number, assuming
p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5,. . . . We define, for
i = 1, . . . , n, the state variables xi = ({vi}, {(vi, vi)}, Dxi)
with Dxi(vi) = [p(i), p(i)]. The following rule

> ! 9o1[x1 = v1] · · · 9on[xn = vn].
n�1̂

i=1

oi e,e
[0,0] oi+1

is asking for the existence of a “synchronization point”, where
n tokens (one for each variable) have their ends aligned. Due
to the allowed token durations, the first such time point isQn

i=1 p(i) � 2n�1. Hence, in any plan, the timeline for x1

features at least 2n�1 tokens: no explicit polynomial-time
enumeration of such tokens is possible.

As a consequence, there exists no trivial guess-and-check
NP algorithm. Conversely, one can easily prove the following
result.
Theorem B.2. The timeline-based planning problem with

trigger-less rules is NP-hard (even when a single state vari-

able is used).

Proof. There is a trivial reduction from the problem of the
existence of a Hamiltonian path in a directed graph.

Given a directed graph G = (V,E), with |V | = n, we
define the state variable x = (V,E,Dx), where Dx(v) =
[1, 1] for each v 2 V . We add the following trigger-less rules,
one for each v 2 V :

> ! 9o[x = v].o �s
[0,n�1] 0.

The rule for v 2 V requires that there is a token (x, v, 1)
along the timeline for x, which starts no later than n� 1. It is
easy to check that G contains a Hamiltonian path if and only
if there exists a plan for the defined planning problem.

We now present the aforementioned non-deterministic
polynomial-time algorithm, proving that timeline-based plan-
ning with trigger-less rules is in NP.

We preliminarily have to derive a finite horizon (namely,
the end time of the last token) for the plans of a (any) prob-
lem. That is, if a problem P = (SV, S) admits a plan, then
P also has a plan whose horizon is no greater than a given
bound. Analogously, we have to calculate a bound to the
maximum number of tokens in a plan. Both can be obtained
by inspecting the timed automaton-based planning algorithm.
As a matter of fact, the emptiness checking algorithm for the

timed automaton generated from P concludes by an empti-
ness checking of a Büchi automaton of g = O(|C| · r · V)
states (we refer to the proof of Theorem 4.11 for the notation
used). For this purpose, it is enough to find a finite word uv,
where:

• |u|, |v|  g,

• there is a run of the Büchi automaton that, from an initial
state, upon reading u, reaches a state q, and upon reading
v from q reaches a final state and gets ultimately back to q.

Finally, we observe that each transition of the Büchi automa-
ton corresponds to the start point of at least a token in some
timeline of (a plan for) P , and at most a token for each time-
line (when all these tokens start simultaneously). This yields
a bound on the number of tokens, which is 2 · g · |SV |. We
can also derive a bound on the horizon of the plan, which
is 2 · g · |SV | · (K + 1), being K the maximum constant
occurring in the planning problem (an upper/lower bound of
an interval of a token duration, a time constant in an atom, or
an upper/lower bound, u or `, at the subscript of an atom). In
fact, every transition taken in the timed automaton may let at
most K + 1 time units pass, as K accounts in particular for
the maximum constant to which a (any) clock is compared.2

Having this pair of bounds, we are now ready to describe
the main phases of the algorithm.

Preprocessing As a preliminary preprocessing phase, we
consider all rational values occurring in the input planning
problem P = (SV, S)—be either upper/lower bounds of an
interval of a token duration, a time constant in an atom, or
upper/lower bounds (u or `) at the subscript of an atom—and
make them integers by multiplying them by the least com-
mon multiple � of all denominators. This involves a quadratic
blowup in the input size, being all constants encoded in bi-
nary.

It is routine to check that, having a plan for P 0—where all
values are integers—we can obtain one for the original P , by
dividing the start/end times of all tokens in each timeline by
�.

Non-deterministic token positioning The algorithm con-
tinues by non-deterministically guessing, for every trigger-
less rule in S, a disjunct—and deleting all the others. Then,
for every (left) quantifier oi[xi = vi], it generates the integer
part of both the start and the end time of the token for xi to
which oi is mapped. We call such time instants, respectively,
sint(oi) and eint(oi).3 We observe that all start/end time
sint(oi) and eint(oi), being less or equal to 2·g·|SV |·(K+1)
(the finite horizon bound), have an integer part that can be

2Clearly, and unbounded quantity of time units may pass, but
after K + 1 the last region of the region graph will certainly have
been reached.

3We can assume w.l.o.g. that all quantifiers refer to distinct
tokens. As a matter of fact, the algorithm can non-deterministically
choose to make two (or more) quantifiers oi[xi = vi] and oj [xi =
vi] over the same variable and value “collapse” to the same token
just by rewriting all occurrences of oj as oi in the atoms of the rules.

encoded with polynomially many bits (and thus can be gener-
ated in polynomial time). Let us now consider the fractional
parts of the start/end time of the tokens associated with quan-
tifiers (we denote them by sfrac(oi) and efrac(oi)). The al-
gorithm non-deterministically generates an order of all such
fractional parts. In particular we have to specify, for every
token start/end time, whether it is integer (sfrac(oi) = 0,
efrac(oi) = 0) or not (sfrac(oi) > 0, efrac(oi) > 0). Every
such possibility can be generated in polynomial time.

Some trivial tests should now be performed, namely that,
for all oi, sint(oi)  eint(oi), each token is assigned an end
time equal or greater than its start time, and no two tokens
for the same variable are overlapping.

It is routine to check that, if we change the start/end time
of (some of the) tokens associated with quantifiers, but we
leave unchanged (i) all the integer parts, (ii) zeroness/non-
zeroness of fractional parts, and (iii) the fractional parts’
order, then the satisfaction of the (atoms in the) trigger-less
rules does not change. This is due to all the constants being
integers, as a result of the preprocessing step.4 Therefore we
can now check whether all rules are satisfied.

Enforcing legal token durations and timeline evolutions
We now conclude by checking that: (i) all tokens associated
with a quantifier have a legal duration, and that (ii) there
exists a legal timeline evolution between pairs of adjacent
such tokens over the same variable (here adjacent means
that there is no other token associated with a quantifier in be-
tween). We will enforce all these requirements as constraints
of a linear problem, which can be solved in deterministic
polynomial time (e.g., using the ellipsoid algorithm). When
needed, we use strict inequalities, which are not allowed in
linear programs. We shall show later how to convert these
into non-strict ones.

We start by associating non-negative variables ↵oi,s,↵oi,e

with the fractional parts of the start/end times sfrac(oi),
efrac(oi) of every token for a quantifier oi[xi = vi]. First,
we add the linear constraints

0  ↵oi,s < 1, 0  ↵oi,e < 1.

Then, we also need to enforce that the values of ↵oi,s,↵oi,e

respect the decided order of the fractional parts: for example,

0 = ↵oi,s = ↵oj ,s < ↵ok,s < · · · < ↵oj ,e < ↵oi,e = ↵ok,e < · · ·

To enforce requirement (i), we set, for all oi[xi = vi],

a  (eint(oi) + ↵oi,e)� (sint(oi) + ↵oi,s)  b

where Dxi(vi) = [a, b]. Clearly, strict (<) inequalities must
be used for a left/right open interval.

To enforce requirement (ii), namely that there exists a
legal timeline evolution between each pair of adjacent tokens
for the same state variable, say oi[xi = vi] and oj [xi = vj],
we proceed as follows (for a correct evolution between t = 0
and the first token, analogous considerations can be made).

4We may observe that, by leaving unchanged all the integer parts
and the fractional parts’ order, the region of the region graph of the
timed automaton does not change.

Let us consider each state variable xi = (Vi, Ti, Di) as a
directed graph G = (Vi, Ti) where Di is a function associ-
ating with each vertex v 2 Vi a duration range. We have to
decide whether or not there exist
• a path in G, possibly with repeated vertices and edges,

v0 · v1 · · · vn�1 · vn, where v0 2 Ti(vi) and vn with vj 2
Ti(vn) are non-deterministically generated, and

• a list of non-negative real values d0, . . . , dn, such that
nX

i=0

di = (sint(oj) + ↵oj ,s)� (eint(oi) + ↵oi,e)

and for all s = 0, . . . , n, ds 2 Di(vs).
We guess a set of integers {↵0

u,v | (u, v) 2 Ti}. Intuitively,
↵
0
u,v is the number of times the solution path traverses (u, v).

Since every time an edge is traversed a new token starts,
each ↵

0
u,v is bounded by the number of tokens, i.e., by 2 · g ·

|SV |. Hence the binary encoding of ↵0
u,v can be generated

in polynomial time.
We then perform the following deterministic steps.

1. We consider the subset E0 of edges of G, E0 := {(u, v) 2
Ti | ↵0

u,v > 0}. We check whether E0 induces a strongly
(undirected) connected subgraph of G.

2. We check whether
•
P

(u,v)2E0 ↵
0
u,v =

P
(v,w)2E0 ↵

0
v,w, for all v 2 Vi \

{v0, vn};
•
P

(u,v0)2E0 ↵
0
u,v0 =

P
(v0,w)2E0 ↵

0
v0,w � 1;

•
P

(u,vn)2E0 ↵
0
u,vn =

P
(vn,w)2E0 ↵

0
vn,w + 1.

3. For all v 2 Vi \ {v0}, we define yv :=
P

(u,v)2E0 ↵
0
u,v

(yv is the number of times the solution path gets into v).
Moreover, yv0 :=

P
(v0,u)2E0 ↵

0
v0,u.

4. We define the real non-negative variables zv, for every
v 2 Vi (zv is the total waiting time of the path on the node
v), subject to the following constraints:

a · yv  zv  b · yv,

where Di(v) = [a, b] (an analogous constraint should be
written for open intervals). Finally we set:

X

v2Vi

zv = (sint(oj) + ↵oj ,s)� (eint(oi) + ↵oi,e).

Steps 1. and 2. together check that the values ↵
0
u,v for

the arcs specify a directed Eulerian path from v0 to vn in a
multigraph. Indeed, the following theorem holds:
Theorem B.3. (Jungnickel 2013) Let G

0 = (V 0
, E

0) be a

directed multigraph (E
0

is a multiset). G has a (directed)

Eulerian path from v0 to vn if and only if:

• the undirected version of G
0

is connected, and

• |{(u, v) 2 E
0}| = |{(v, w) 2 E

0}|, for all v 2 V
0 \

{v0, vn};

• |{(u, v0) 2 E
0}| = |{(v0, w) 2 E

0}|� 1;

• |{(u, vn) 2 E
0}| = |{(vn, w) 2 E

0}|+ 1.

Steps 3. and 4. evaluate the waiting times of the path in
some vertex v with duration interval [a, b]. If the solution
path visits the vertex yv times, then every single visit must
take at least a and at most b units of time. Hence the overall
visitation time is in between a · yv and b · yv. Vice versa, if
the total visitation time is in between a · yv and b · yv , then it
can be slit into yv intervals, each one falling into [a, b].

The algorithm concludes by solving the linear program
given by the variables ↵oi,s and ↵oi,e for each quantifier
oi[xi = vi], and for each pair of adjacent tokens in the same
timeline for xi, for each v 2 Vi, the variables zv subject to
their constraints.

However, in order to conform to linear programming, we
have to replace all strict inequalities with non-strict ones. It is
straightforward to observe that all constraints involving strict
inequalities we have written so far are of (or can easily be
converted into) the following forms: ⇠s < ⌘q + k or ⇠s >

⌘q+ k, where s and q are variables, and ⇠, ⌘, k are constants.
We replace them, respectively, by ⇠s � ⌘q � k + �t  0
and ⇠s � ⌘q � k � �t � 0, where �t is an additional fresh
non-negative variable, which is local to a single constraint.
We observe that the original inequality and the new one are
equivalent if and only if �t is a small enough positive number.
Moreover, we add another non-negative variable, say r, which
is subject to a constraint r  �t, for each of the introduced
variables �t (i.e., r is less than or equal to the minimum of
all �’s). Finally, we maximize the value of r when solving
the linear program. We have that max r > 0 if and only if
there is an admissible solution where the values of all �’s are
positive (and thus the original strict inequalities hold true).

