
University of Udine

Department of Mathematics and Computer Science

PREPRINT

Model Checking the Logic of Allen’s Relations Meets
and Started-by is PNP-Complete

Laura Bozzelli, Alberto Molinari, Angelo Montanari, Adriano Peron, Pietro Sala

Preprint nr.: 2/2016

Reports available from: https://www.dimi.uniud.it/preprints/

Submitted to:
GandALF 2016

c� L. Bozzelli, A. Molinari, A. Montanari, A. Peron and P. Sala
This work is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works License.

Model Checking the Logic of Allen’s Relations
Meets and Started-by is PNP-Complete

Laura Bozzelli
Technical University of Madrid (UPM), Madrid, Spain

laura.bozzelli@fi.upm.es

Alberto Molinari Angelo Montanari
University of Udine, Udine, Italy

molinari.alberto@gmail.com angelo.montanari@uniud.it

Adriano Peron
University of Napoli “Federico II”, Napoli, Italy

adrperon@unina.it

Pietro Sala
University of Verona, Verona, Italy

pietro.sala@univr.it

In the plethora of fragments of Halpern and Shoham’s modal logic of time intervals (HS), the logic
AB of Allen’s relations Meets and Started-by is at a central position. Statements that may be true
at certain intervals, but at no sub-interval of them, such as accomplishments, as well as metric con-
straints about the length of intervals, that force, for instance, an interval to be at least (resp., at
most, exactly) k points long, can be expressed in AB. Moreover, over the linear order of the natu-
ral numbers N, it subsumes the (point-based) logic LTL, as it can easily encode the next and until
modalities. Finally, it is expressive enough to capture the w-regular languages, that is, for each w-
regular expression R there exists an AB formula j such that the language defined by R coincides
with the set of models of j over N. It has been shown that the satisfiability problem for AB over N is
EXPSPACE-complete. Here we prove that, under the homogeneity assumption, its model checking
problem is Dp

2 = PNP-complete (for the sake of comparison, the model checking problem for full
HS is EXPSPACE-hard, and the only known decision procedure is nonelementary). Moreover, we
show that the modality for the Allen relation Met-by can be added to AB at no extra cost (AAB is
PNP-complete as well).

1 Introduction

In this paper, we investigate the model checking problem for the interval logic of Allen’s Relations
Meets and Started-by. Given a model of a system (generally, a Kripke structure) and a temporal logic
formula, which specifies the expected properties of the system, model checking algorithms verify, in
fully automatic way, whether the model satisfies the formula; if this is not the case, they provide a
counterexample, that is, a computation of the system failing to satisfy some property. Model checking
has been successfully employed in formal verification as well as in various areas of AI, ranging from
planning to configuration and multi-agent systems [7, 14].

Standard point-based temporal logics, such as LTL, CTL, and CTL⇤ [6, 20], are commonly used as
specification languages. Even though they turn out to be well-suited for a variety of application domains,
there are relevant system properties, involving, for instance, actions with duration, accomplishments, and
temporal aggregations, which are inherently “interval-based” and thus cannot be properly dealt with by
temporal logics that allow one to predicate over computation states only. To overcome these limitations,
one can resort to interval temporal logics (ITLs), that take intervals—instead of points—as their primitive
entities [9], which have been successfully applied in various areas of computer science and AI, including
hardware and software verification, computational linguistics, and planning [11, 19, 21, 24].

ITL model checking is the context of this paper. In order to check interval properties of computations,
one needs to collect information about states into computation stretches: each finite path of a Kripke

http://creativecommons.org
http://creativecommons.org/licenses/by-nc-nd/3.0/

2 Model Checking the Logic of Allen’s Relations Meets and Started-by is PNP-Complete

structure is interpreted as an interval, whose labelling is defined on the basis of the labelling of the
component states. Among ITLs, Halpern and Shoham’s modal logic of time intervals HS [9] is the main
reference. It features one modality for each possible ordering relation between a pair of intervals apart
from equality (the so-called Allen’s relations [1]). The satisfiability problem for HS has been thoroughly
studied, and it turns out to be highly undecidable for all relevant (classes of) linear orders [9]. The same
holds for most HS fragments [3]; however, some meaningful exceptions exist, including the logic of
temporal neighbourhood AA and the logic of sub-intervals D [4, 5]. The model checking problem for HS
has entered the research agenda only recently [2, 11, 12, 13, 15, 16, 17, 18]. In [15], Molinari et al. deal
with model checking for full HS over Kripke structures under the homogeneity assumption [22], showing
its non-elementary decidability by means of a suitable small model theorem (EXPSPACE-hardness has
been proved in [2]). Since then, the attention was brought to HS fragments, which, similarly to what
happens with satisfiability, are often computationally better.

In this paper we first prove that model checking for the logic AAB (resp., AAE) of Allen’s relations
Meets, Met-by, and Started-by (resp., Finished-by) is in PNP; then we prove that its fragment AB (resp.,
AE) is PNP-hard; finally we show that its fragment AB (resp., AE) belongs to PNP[O(log2 n)] and it is
PNP[O(logn)]-hard. PNP (also denoted as Dp

2) is the class of problems decided by a deterministic polynomial
time Turing machine that queries an NP oracle. The classes PNP[O(logn)] and PNP[O(log2 n)] are analogous,
but the number of queries is bounded by O(logn) and O(log2 n), respectively, being n the input size [8,
23]. These three classes are higher than both NP and co-NP in the polynomial time hierarchy, and
closed under complement. It is worth noticing that, whereas we know many natural problems which
are complete for Sp

2 or Pp
2 (in general, for Sp

k and Pp
k , with k � 2), the classes PNP, PNP[O(logn)], and

PNP[O(log2 n)] are not so “populated” (and neither are the classes Dp
k , for k > 2). Among the few natural

problems complete for PNP, we would like to mention model checking for several fragments of CTL⇤,
including CTL+, ECTL+, and FCTL [10]. As for the other two classes, very recently Molinari et al.
have shown that model checking A, A, or AA formulas is in PNP[O(log2 n)] and hard for PNP[O(logn)] [18].

Related work. In [11, 12], Lomuscio and Michaliszyn address the model checking problem for some
fragments of HS extended with epistemic modalities. Their semantic assumptions considerably differ
from those made in [15], making it difficult to compare the outcomes of the two research lines. Moreover,
they consider a restricted form of model checking, which verifies a specification against a single (finite)
initial computation interval (this is in general a limitation, unless some operators of HS are available,
such as hAi): their goal is indeed to reason about a given computation of a multi-agent system, rather
than on all its admissible computations. Recently they have shown how to exploit regular expressions in
order to specify the way in which the intervals of a Kripke structure get labelled [13]. Such an extension
leads to a significant increase in the expressiveness of HS formulas.

Organization of the paper. In the next section we introduce the fundamental elements of the model
checking problem for HS and its fragments. Then, in Section 3, we provide a PNP model checking
algorithm for AAB (and AAE) formulas. In Section 4 we prove the PNP-hardness of model checking for
AB (and AE). PNP-completeness of AB, AE, AAB and AAE follows. In Appendix A we show that the
problem for formulas of AB and AE is in PNP[O(log2 n)] and hard for PNP[O(logn)].

2 Preliminaries

The interval temporal logic HS. An interval algebra to reason about intervals and their relative order
was proposed by Allen in [1], while a systematic logical study of interval representation and reasoning

L. Bozzelli, A. Molinari, A. Montanari, A. Peron and P. Sala 3

Table 1: Allen’s relations and corresponding HS modalities.
Allen relation HS Definition w.r.t. interval structures Example

x y
v z

v z
v z

v z
v z

v z

MEETS hAi [x,y]RA[v,z] () y = v
BEFORE hLi [x,y]RL[v,z] () y < v

STARTED-BY hBi [x,y]RB[v,z] () x = v^ z < y
FINISHED-BY hEi [x,y]RE [v,z] () y = z^ x < v

CONTAINS hDi [x,y]RD[v,z] () x < v^ z < y
OVERLAPS hOi [x,y]RO[v,z] () x < v < y < z

was done a few years later by Halpern and Shoham, who introduced the interval temporal logic HS
featuring one modality for each Allen relation, but equality [9]. Table 1 depicts 6 of the 13 Allen’s
relations, together with the corresponding HS (existential) modalities. The other 7 relations are the 6
inverses (given a binary relation R , the inverse R is such that bR a if and only if aR b) and equality.

The HS language consists of a set of proposition letters AP , the Boolean connectives ¬ and ^, and a
temporal modality for each of the (non trivial) Allen’s relations, i.e., hAi, hLi, hBi, hEi, hDi, hOi, hAi,
hLi, hBi, hEi, hDi, and hOi. HS formulas are defined by the grammar y ::= p | ¬y |y^y | hXiy | hXiy,
where p 2 AP and X 2 {A,L,B,E,D,O}. In the following, we shall also exploit as abbreviations the
standard logical connectives for disjunction _, implication!, and double implication$. Furthermore,
for any modality X , the dual universal modalities [X]y and [X]y are defined as ¬hXi¬y and ¬hXi¬y ,
respectively. Finally, given any subset of Allen’s relations {X1, · · · ,Xn}, we denote by X1 · · ·Xn the HS
fragment featuring existential (and universal) modalities for X1, . . . ,Xn only.

W.l.o.g., we assume the non-strict semantics of HS, which admits intervals consisting of a sin-
gle point1. Under such an assumption, all HS modalities can be expressed in terms of modalities
hBi,hEi,hBi, and hEi [9]. HS can thus be seen as a multi-modal logic with these 4 primitive modalities
and its semantics can be defined over a multi-modal Kripke structure, called abstract interval model,
where intervals are treated as atomic objects and Allen’s relations as binary relations between pairs of
intervals. Since later we will focus on some HS fragments excluding hBi and hEi, we add both hAi and
hAi to the considered set of HS modalities.

Definition 1. [15] An abstract interval model is a tuple A = (AP ,I,AI,BI,EI,s), where AP is a set of
proposition letters, I is a possibly infinite set of atomic objects (worlds), AI, BI, and EI are three binary
relations over I, and s : I 7! 2AP is a (total) labeling function, which assigns a set of proposition letters
to each world.

In the interval setting, I is interpreted as a set of intervals and AI, BI, and EI as Allen’s relations
A (meets), B (started-by), and E (finished-by), respectively; s assigns to each interval in I the set of
proposition letters that hold over it.

Given an abstract interval model A = (AP ,I,AI,BI,EI,s) and an interval I 2 I, the truth of an HS
formula over I is inductively defined as follows:

• A, I |= p iff p 2 s(I), for any p 2 AP ;
• A, I |= ¬y iff it is not true that A, I |= y (also denoted as A, I 6|= y);
• A, I |= y ^f iff A, I |= y and A, I |= f ;
• A, I |= hXiy , for X 2 {A,B,E}, iff there exists J 2 I such that I XI J and A,J |= y;
• A, I |= hXiy , for X 2 {A,B,E}, iff there exists J 2 I such that J XI I and A,J |= y .

1All the results we prove in the paper hold for the strict semantics as well.

4 Model Checking the Logic of Allen’s Relations Meets and Started-by is PNP-Complete

Kripke structures and abstract interval models. In model checking, finite state systems are usually
modelled as Kripke structures. In [15], the authors define a mapping from Kripke structures to abstract
interval models, that allows one to specify interval properties of computations by means of HS formulas.

Definition 2. A finite Kripke structure is a tuple K = (AP ,W,d ,µ,w0), where AP is a set of proposition
letters, W is a finite set of states, d ✓W ⇥W is a left-total relation between pairs of states, µ : W 7! 2AP

is a total labelling function, and w0 2W is the initial state.

For all w 2W , µ(w) is the set of proposition letters that hold at w, while d is the transition relation
that describes the evolution of the system over time.

v0p
v1q

Figure 1: The Kripke structure K2.

Figure 1 depicts the finite Kripke structure K2 = ({p,q},
{v0,v1},d ,µ,v0), where d = {(v0,v0),(v0,v1),(v1,v0),(v1,v1)},
µ(v0)={p}, and µ(v1)={q}. The initial state v0 is identified by
a double circle.

Definition 3. A track r over a finite Kripke structure K = (AP ,W,d ,µ,w0) is a finite sequence of states
v1 · · ·vn, with n� 1, such that (vi,vi+1) 2 d for i = 1, . . . ,n�1.

Let TrkK be the (infinite) set of all tracks over a finite Kripke structure K . For any track r = v1 · · ·vn 2
TrkK , we define:

• |r|= n, fst(r) = v1, lst(r) = vn, and for 1 i |r|, r(i) = vi;
• states(r) = {v1, · · · ,vn}✓W ;
• r(i, j) = vi · · ·v j, with 1 i j  |r|, is the subtrack of r bounded by i and j;
• Pref(r) = {r(1, i) | 1 i |r|�1} and Suff(r) = {r(i, |r|) | 2 i |r|} are the sets of all proper

prefixes and suffixes of r , respectively.
Finally, if fst(r) = w0 (the initial state of K), r is called an initial track.

An abstract interval model (over TrkK) can be naturally associated with a finite Kripke structure K
by considering the set of intervals as the set of tracks of K . Since K has loops (d is left-total), the number
of tracks in TrkK , and thus the number of intervals, is infinite.

Definition 4. The abstract interval model induced by a finite Kripke structure K = (AP ,W,d ,µ,w0) is
AK =(AP ,I,AI,BI,EI,s), where I=TrkK , AI = {(r,r 0)2 I⇥I | lst(r)= fst(r 0)}, BI = {(r,r 0)2 I⇥I |
r

0 2 Pref(r)}, EI= {(r,r 0)2 I⇥I | r

0 2 Suff(r)}, and s : I 7! 2AP is such that s(r)=
T

w2states(r) µ(w),
for all r 2 I.
Relations AI,BI, and EI are interpreted as the Allen’s relations A,B, and E, respectively. Moreover,
according to the definition of s , p 2 AP holds over r = v1 · · ·vn iff it holds over all the states v1, · · · ,vn
of r . This conforms to the homogeneity principle, according to which a proposition letter holds over an
interval if and only if it holds over all its subintervals [22].

Definition 5. Let K be a finite Kripke structure and y be an HS formula; we say that a track r 2 TrkK
satisfies y , denoted as K ,r |=y , iff it holds that AK ,r |=y . Moreover, we say that K models y , denoted
as K |= y , iff for all initial tracks r

0 2 TrkK it holds that K ,r 0 |= y . The model checking problem for
HS over finite Kripke structures is the problem of deciding whether K |= y .

We conclude with a simple example (a simplified version of the one given in [15]), showing that the
fragments investigated in this paper can express meaningful properties of state transition systems.

In Figure 2, we provide an example of a finite Kripke structure KSched that models the behaviour of
a scheduler serving three processes which are continuously requesting the use of a common resource.
The initial state is v0: no process is served in that state. In the states vi and vi, with i 2 {1,2,3}, the i-th
process is served (this is denoted by the fact that pi holds in those states). For the sake of readability,

L. Bozzelli, A. Molinari, A. Montanari, A. Peron and P. Sala 5

edges are marked either by ri, for request(i), or by ui, for unlock(i). Edge labels do not have a semantic
value, that is, they are neither part of the structure definition, nor proposition letters; they are simply used
to ease reference to edges. Process i is served in state vi, then, after “some time”, a transition ui from vi
to vi is taken; subsequently, process i cannot be served again immediately, as vi is not directly reachable
from vi (the scheduler cannot serve the same process twice in two successive rounds). A transition r j,
with j 6= i, from vi to v j is then taken and process j is served. This structure can easily be generalised to
a higher number of processes.

v0
/0

v2p2
v1p1

v3p3

v1p1
v2p2

v3p3

r1
r2

r3

u1 u2 u3

r2

r3

r1 r3

r1

r2

Figure 2: The Kripke structure KSched .

We now show how some meaningful properties to be
checked over KSched can be expressed in the HS fragment
AE. In all the following formulas, we force the valid-
ity of the considered properties over all legal computa-
tion sub-intervals by using the modality [E] (all computa-
tion sub-intervals are suffixes of at least one initial track
of the Kripke structure). The first formula requires that
at least 2 proposition letters are witnessed in any suffix of
length at least 4 of an initial track. Since a process can-
not be executed twice in a row, it is satisfied by KSched :
KSched |= [E]

�
hEi3>! (c(p1, p2)_c(p1, p3)_c(p2, p3))

�

where c(p,q)= hEihAi p^ hEihAiq. The second formula
requires that, in any suffix of length at least 11 of an initial track, process 3 is executed at least once in
some internal states (non starvation). KSched does not satisfy it, because the scheduler can postpone the
execution of a process ad libitum: KSched 6|= [E](hEi10>! hEihAi p3). The third formula requires that,
in any suffix of length at least 6 of an initial track, p1, p2, and p3 are all witnessed. The only way to
satisfy this property would be to force the scheduler to execute the three processes in a strictly periodic
manner (strict alternation), that is, pi p j pk pi p j pk pi p j pk · · · , for i, j,k 2 {1,2,3} and i 6= j 6= k 6= i, but
KSched does not meet such a requirement: KSched 6|= [E](hEi5! (hEihAi p1^hEihAi p2^hEihAi p3)).

The general picture. We now describe known and new complexity results about the model checking
problem for HS fragments (see Figure 3 for a graphical account).

In [15], Molinari et al. have shown that, given a Kripke structure K and a bound k on the structural
complexity of HS formulas, i.e., on the nesting depth of hEi and hBi modalities, it is possible to obtain
a finite representation for AK , which is equivalent to AK with respect to satisfiability of HS formulas
with structural complexity less than or equal to k. Then, by exploiting such a representation, they proved
that the model checking problem for (full) HS is decidable, providing an algorithm with non-elementary
complexity. In [2], EXPSPACE-hardness of the fragment BE, and thus of full HS, has been shown.

The fragments AABBE and AAEBE have been systematically studied in [17]. For each of them,
an EXPSPACE model checking algorithm has been devised that, for any track of the Kripke structure,
finds a satisfiability-preserving track of bounded length (track representative). In this way, the model
checking algorithm needs to check only tracks with a bounded maximum length. PSPACE-hardness of
the model checking problem for AABBE and AAEBE has been proved in [16] (if a succinct encoding
of formulas is exploited, the algorithm remains in EXPSPACE, but a NEXPTIME lower bound can be
given [17]). Finally, it has been shown that formulas satisfying a constant bound on the nesting depth of
hBi (respectively, hEi) can be checked in polynomial working space [17].

Some well-behaved HS fragments, namely, AABE, B, E, AA, A, and A, which are still expressive
enough to capture meaningful interval properties of state transition systems and whose model checking
problem has a computational complexity markedly lower than that of full HS, have been identified in

6 Model Checking the Logic of Allen’s Relations Meets and Started-by is PNP-Complete

AABE PSPACE-complete 2,3
B PSPACE-complete 4

E PSPACE-complete 4

AAEE PSPACE-complete 5
AABB PSPACE-complete 5

AA

PNP[O(log2 n)] 4

PNP[O(logn)]-hard 4
A, A

PNP[O(log2 n)] 4

PNP[O(logn)]-hard 4
AB, AE

PNP[O(log2 n)]

PNP[O(logn)]-hard

AAB PNP-complete AAE PNP-complete

AB PNP-complete AE PNP-complete

B coNP-complete 5

E coNP-complete 5

Prop coNP-complete 3

AABBE

EXPSPACE 2

PSPACE-hard 3

succinct AABBE
EXPSPACE 2

NEXP-hard 2
BE

nonELEMENTARY 1

EXPSPACE-hard 5

full HS nonELEMENTARY 1

EXPSPACE-hard 5

hardness

hardness

hardness

hardness

upper-bound

hardness

hardness

hardness

hardness
hardness

hardness

upper-bound

hardness

upper-bound

1 [15], 2 [17], 3 [16], 4 [18], 5 [2]

Figure 3: Complexity of the model checking problem for HS fragments: known results are depicted in
white boxes, new ones in gray boxes.

[16, 18]. In particular the authors proved that the problem is PSPACE-complete for the fragments AABE,
B, and E, and in between PNP[O(logn)] and PNP[O(log2 n)] [8, 23] for AA, A, and A. Two other well-behaved
fragments, namely, AABB and AAEE, have been investigated in [2], showing that their model checking
problem is PSPACE-complete. In addition, the authors showed that B and E are co-NP-complete (the
same complexity as the model checking problem for the purely propositional HS fragment Prop [16]).

In this paper, we complete the analysis of the sub-fragments of AABB (resp., AAEE). In Section 3,
we devise a PNP model checking algorithm for AAB (resp., AAE). Then, in Section 4, we prove that
AB (resp., AE) is hard for PNP. It immediately follows that model checking for AB and AAB (resp., AE
and AAE) formulas over finite Kripke structures is PNP-complete. Finally, we show that AB (resp., AE)
are in PNP[O(log2 n)] (the proof is reported in the appendix) and hard for PNP[O(logn)] (the hardness follows
from that of A, resp., A [18]).

It is worth pointing out that the fragment AB belongs to a lower complexity class than the fragment
AB (the same for the symmetric fragments AE and AE). Such a difference can be explained as follows.

Let us consider a formula hBihAiq , which belongs to AB. A track r satisfies hBihAiq if there exists
a prefix r̃ of r from which a branch satisfying q departs, i.e., a track starting from lst(r̃). This amounts
to say that AB allows one to impose specific constraints on the branches departing from a state occurring
in a given path. Such an ability will be exploited in Section 4 to prove the PNP-hardness of AB.

Conversely, the fragment AB cannot express constraints of this form. For any given track r , modality
hAi only allows one to constrain tracks leading to the first state of r . As for modality hBi, if we consider
a prefix r̃ of r , the set of tracks leading to its first state is exactly the same as the set of those leading
to the first state of r , as fst(r̃) = fst(r) (see Algorithm 3 in Appendix A). Therefore, pairing hAi and
hBi does not give any advantage in terms of expressiveness. Such a weakness of AB gives an intuitive
account of the reason why AB formulas can be checked in time PNP[O(log2 n)], instead of time PNP.

L. Bozzelli, A. Molinari, A. Montanari, A. Peron and P. Sala 7

Algorithm 1 MC(K ,y,DIRECTION)

1: for all hAif 2ModSubfAA(y) do
2: MC(K ,f , FORWARD)

3: for all hAif 2ModSubfAA(y) do
4: MC(K ,f ,BACKWARD)

5: for all v 2W do
6: if DIRECTION is FORWARD then
7: VA(y,v) Success(Oracle(K ,y,v, FORWARD,VA[VA))
8: else if DIRECTION is BACKWARD then
9: VA(y,v) Success(Oracle(K ,y,v,BACKWARD,VA[VA))

3 A PNP model checking algorithm for AAB formulas

In this section, we present a model checking algorithm for AAB formulas (Algorithm 1) belonging to
the complexity class PNP. We recall that PNP is the class of problems solvable in (deterministic) polyno-
mial time exploiting an oracle for an NP-complete problem. W.l.o.g., we restrict our attention to AAB

formulas devoid of occurrences of conjunctions and universal modalities (definable, as usual, in terms of
disjunctions, negations, and existential modalities).

Algorithm 1 presents the model checking procedure for a formula y against a Kripke structure K . It
exploits two global vectors, VA and VA, which can be seen as the tabular representations of two Boolean
functions taking as arguments a subformula f of y and a state v of K . The intuition is that the function
VA(f ,v) (resp., VA(f ,v)) returns > if and only if there exists a track r 2 TrkK starting from the state v
(resp., leading to the state v) such that K ,r |= f . The procedure MC is initially invoked with parameters
(K ,¬y, FORWARD). During the execution, it instantiates the entries of VA and VA, which are exploited in
order to answer the model checking problem K |= y; this is, in the end, equivalent to checking whether
VA(¬y,w0) =?, where w0 is the initial state of K .

Let us consider the model checking procedure MC in more detail. Besides the Kripke structure K and
the formula y , MC features a third parameter, DIRECTION, which can be assigned the value FORWARD
(resp., BACKWARD), that is used in combination with the modality hAi (resp., hAi) for a forward (resp.,
backward) unravelling of K . MC is applied recursively on the nesting of modalities hAi and hAi in the
formula y (in the base case, y features no occurrences of hAi or hAi). In order to instantiate the Boolean
vectors VA and VA, an oracle is invoked (lines 5–9) for each state v of the Kripke structure. Such an
invocation is syntactically represented by Success(Oracle(K ,y,v,DIRECTION,VA[VA)), and it returns
> whenever there exists a computation of the non-deterministic algorithm Oracle(K ,y,v,DIRECTION,
VA[VA) returning>, namely, whenever there is a suitable track starting from, or leading to v (depending
on the value of the parameter DIRECTION), and satisfying y .

We now introduce the notion of AA-modal subformulas of y; these subformulas “direct” the recur-
sive calls of MC.

Definition 6. The set of AA-modal subformulas of an AAB formula y , denoted by ModSubfAA(y), is
the set of subformulas of y having either the form hAiy 0 or the form hAiy 0, for some y

0, which are not
in the scope of any hAi or hAi modality.

For instance, ModSubfAA(hAihAiq) = {hAihAiq} and ModSubfAA
��
hAi p ^ hAihAiq

�
!hAi p

�

= {hAi p,hAihAiq}.
MC is recursively called on each formula f such that hAif or hAif belongs to ModSubfAA(y) (lines

1–4). In this way, we can recursively gather in the Boolean vectors VA and VA, by increasing nesting

8 Model Checking the Logic of Allen’s Relations Meets and Started-by is PNP-Complete

Algorithm 2 Oracle(K ,y,v,DIRECTION,VA[VA)

1: r̃ A track(K ,v, |W | · (2|y|+1)2,DIRECTION) / a
track of K from/to v of length  |W | · (2|y|+1)2

2: for all hAif 2ModSubfAA(y) do
3: for i = 1, · · · , |r̃| do
4: T [hAif , i] VA(f , r̃(i))
5: for all hAif 2ModSubfAA(y) do
6: for i = 1, · · · , |r̃| do
7: T [hAif , i] VA(f , fst(r̃))
8: for all subformulas j of y , not contained in (or equal to)

AA-modal subformulas of y , by increasing length do
9: if j = p, for p 2 AP then

10: T [p,1] p 2 µ(fst(r̃))
11: for i = 2, · · · , |r̃| do
12: T [p, i] T [p, i�1] and p 2 µ(r̃(i))

13: else if j = ¬j1 then
14: for i = 1, · · · , |r̃| do
15: T [j, i] not T [j1, i]
16: else if j = j1_j2 then
17: for i = 1, · · · , |r̃| do
18: T [j, i] T [j1, i] or T [j2, i]
19: else if j = hBij1 then
20: T [j,1] ?
21: for i = 2, · · · , |r̃| do
22: T [j, i] T [j, i�1] or T [j1, i�1]
23: return T [y, |r̃|]

depth of the modalities hAi and hAi, the oracle answers for all the formulas y

0 such that hAiy 0 or
hAiy 0 is a subformula (be it maximal or not) of y .

Let us now consider the non-deterministic polynomial time procedure Oracle(K ,y,v,DIRECTION,
VA[VA) reported in Algorithm 2, which is used as the basic engine by the oracle in the aforementioned
model checking Algorithm 1. The idea underlying Algorithm 2 is first to non-deterministically generate a
track r̃ by unravelling the Kripke structure K according to the parameter DIRECTION, and then to verify
y over r̃ . Such a procedure actually exploits a result proved in [2] (see, in particular, Theorem 10) stating
a so-called “polynomial-size model-track property” for formulas of the fragment AAEE: if r is a track
of K , f is an AAEE formula, and K ,r |= f , then there exists r

0 2 TrkK such that |r 0| |W | · (2|f |+1)2,
fst(r) = fst(r 0), lst(r) = lst(r 0), and K ,r 0 |= f . This property guarantees that, in order to check the
satisfiability of a formula f , it is enough to consider tracks having a length bounded by |W | · (2|f |+1)2.
Such a result holds by symmetry for formulas of the fragment AABB as well.

An execution of Oracle(K ,y,v,DIRECTION,VA [VA) starts (line 1) by non-deterministically gen-
erating a track r̃ (having a length of at most |W | · (2|y|+1)2), with v as its first (resp., last) state if the
DIRECTION parameter is FORWARD (resp., BACKWARD). The track is generated by visiting the unravel-
ling of K (resp., of K with transposed edges). The remaining part of the algorithm checks deterministi-
cally whether K , r̃ |= y . Such a verification is performed in a bottom-up way: for all the subformulas
f of y (starting from the minimal ones) and for all the prefixes r̃(1, i) of r̃ , with 1  i  |r̃| (starting
from the shorter ones), the procedure establishes whether K , r̃(1, i) |= f or not, and this result is stored
in the entry T [f , i] of a Boolean table T . Note that if the considered subformula of y is an element
of ModSubfAA(y), the algorithm does not need to perform any verification, since the result is already
available in the Boolean vectors VA and VA (as a consequence of the previously completed calls to the
procedure Oracle), and the table T is updated accordingly (lines 2–7). For the remaining subformulas,
the entries of T are computed, as we already said, in a bottom-up fashion (lines 8–22). The result of the
overall verification is stored in T [y, |r̃|] and returned (line 23).

The algorithm presented here for checking formulas of AAB can trivially be adapted to check formu-
las of the symmetric fragment AAE.

The following lemma establishes the soundness and completeness of the procedure Oracle.

Lemma 1. Let K = (AP ,W,d ,µ,w0) be a finite Kripke structure, y be an AAB formula, and VA(•,•)
and VA(•,•) be two Boolean arrays. Let us assume that

1. for each hAif 2 ModSubfAA(y) and v0 2W, VA(f ,v0) = > iff there exists r 2 TrkK such that

L. Bozzelli, A. Molinari, A. Montanari, A. Peron and P. Sala 9

fst(r) = v0 and K ,r |= f , and
2. for each hAif 2 ModSubfAA(y) and v0 2W, VA(f ,v

0) = > iff there exists r 2 TrkK such that
lst(r) = v0 and K ,r |= f .

Then, Oracle(K ,y,v,DIRECTION,VA[VA) features a successful computation (returning >) iff:
• there exists r 2 TrkK such that fst(r) = v and K ,r |= y , in the case DIRECTION is FORWARD;
• there exists r 2 TrkK such that lst(r) = v and K ,r |= y , in the case DIRECTION is BACKWARD.

Proof. It is easy to check that if r̃ is the track non-deterministically generated by A track at line 1, then,
for i = 1, · · · , |r̃|, it holds that K , r̃(1, i) |= f () T [f , i] = >, either by hypothesis, when f occurs in
ModSubfAA(y) (lines 2–7), or by construction, when f does not occur in ModSubfAA(y) (lines 8–22).

Let us now assume that the value of the parameter DIRECTION is FORWARD (the proof for the other
direction is analogous).
()) If Oracle(K ,y,v, FORWARD,VA[VA) features a successful computation, it means that there exists

a track r̃ 2 TrkK (generated at line 1) such that fst(r̃) = v and T [y, |r̃|] =>. Hence K , r̃ |= y .
(() If there exists r 2 TrkK such that fst(r) = v and K ,r |= y , as a result of Theorem 10 of [2], there

exists r̃ 2 TrkK such that K , r̃ |= y , fst(r̃) = fst(r), and |r̃|  |W | · (2|y|+ 1)2. It follows that
in some non-deterministic instance of Oracle(K ,y,v, FORWARD,VA [VA), A track(K ,v, |W | ·
(2|y|+1)2, FORWARD) returns such r̃ (at line 1). Finally, we have that T [y, |r̃|] => as K , r̃ |=y ,
hence the considered instance of Oracle(K ,y,v, FORWARD,VA[VA) is successful.

The following theorem states soundness and completeness of the model checking procedure MC.

Theorem 1. Let K = (AP ,W,d ,µ,w0) be a finite Kripke structure, y be an AAB formula, and VA(•,•)
and VA(•,•) be two Boolean arrays. If MC(K ,y,DIRECTION) is executed, then for all v 2W:

• if DIRECTION is FORWARD, VA(y,v) => iff there is r 2 TrkK such that fst(r) = v and K ,r |=y;
• if DIRECTION is BACKWARD, VA(y,v)=> iff there is r 2TrkK such that lst(r)= v and K ,r |=y .

Proof. The proof is by induction on the number n of occurrences of hAi and hAi modalities in y .
(Base case: n = 0) Since ModSubfAA(y) = /0, conditions 1 and 2 of Lemma 1 are satisfied and the thesis
trivially holds.
(Inductive case: n> 0) The formula y contains at least an hAi or an hAimodality. Hence ModSubfAA(y)
6= /0. Since each recursive call to MC (either at line 2 or 4) is performed on a formula f featuring a number
of occurrences of hAi and hAi which is strictly less than the number of their occurrences in y , we can
apply the inductive hypothesis. As a consequence, when the control flow reaches line 5, it holds that:

1. for each hAif 2 ModSubfAA(y) and v0 2W , VA(f ,v0) = > iff there exists r 2 TrkK such that
fst(r) = v0 and K ,r |= f ;

2. for each hAif 2 ModSubfAA(y) and v0 2W , VA(f ,v
0) = > iff there exists r 2 TrkK such that

lst(r) = v0 and K ,r |= f .
This implies that conditions 1 and 2 of Lemma 1 are fulfilled. Hence (assuming that DIRECTION is
FORWARD), it holds that, for v 2W , VA(y,v) = > iff there exists r 2 TrkK such that fst(r) = v and
K ,r |= y . The case for DIRECTION = BACKWARD is symmetric, and thus omitted.

As an immediate consequence we have that the procedure MC solves the model checking problem for
AAB with an algorithm belonging to the complexity class PNP.

Corollary 1. Let K = (AP ,W,d ,µ,w0) be a finite Kripke structure and y be an AAB formula. If
MC(K ,¬y, FORWARD) is executed, then VA(¬y,w0) =? () K |= y .

Corollary 2. The model checking problem for AAB formulas over finite Kripke structures is in PNP.

10 Model Checking the Logic of Allen’s Relations Meets and Started-by is PNP-Complete

Proof. Given a finite Kripke structure K = (AP ,W,d ,µ,w0) and an AAB formula y , the number of
recursive calls performed by MC(K ,¬y, FORWARD) is at most |y|. Each one costs O(|y|+ |W | · (|K |+
|y|+ |y| · |W |)), where the first addend comes from searching y for its modal subformulas (lines 1–4),
and the second one from the preparation of the input for the oracle call, for each v 2W (lines 5–9).
Therefore its (deterministic) complexity is O(|y|2 · |K |2). As for Oracle(K ,y,v,DIRECTION,VA[VA),
its (non-deterministic) complexity is O(|y|3 · |K |), where |y| is a bound to the number of subformulas
and O(|y|2 · |K |) is the number of steps necessary to generate and check r̃ .

Symmetrically, by easily adapting the procedure Oracle, it is straightforward to prove that the model
checking problem for AAE formulas is in PNP as well.

4 PNP-hardness of model checking for AB formulas

In this section, we prove that model checking for AB (and AE) formulas is hard for PNP by reducing
the PNP-complete problem SNSAT (Sequentially Nested SATisfiability), a logical problem with nested
satisfiability questions [10], to it. SNSAT is defined as follows.

Definition 7. An instance I of SNSAT consists of a set of Boolean variables X = {x1, · · · ,xn} and a set of
Boolean formulas {F1(Z1),F2(x1,Z2), · · · ,Fn(x1, · · · ,xn�1,Zn)}, where, for i=1, · · · ,n, Fi(x1,· · ·,xi�1,Zi)
features variables in {x1, · · · ,xi�1} and in Zi = {z1

i , · · · ,z
ji
i }, the latter being a set of variables local to

Fi, that is, Zi \Z j = /0, for j 6= i, and X \Zi = /0. We denote |X |(= n) by |I |. Let vI be the valuation
of the variables in X defined as follows: vI (xi) => () Fi(vI (x1), · · · ,vI (xi�1),Zi) is satisfiable (by
assigning suitable values to the local variables z1

i , · · · ,z
ji
i 2 Zi). SNSAT is the problem of deciding, given

an instance I , with |I |= n, whether vI (xn) =>. In such a case, we say that I is a positive instance
of SNSAT.

Given an SNSAT instance I , with |I |= n, the valuation vI is unique and it can be easily computed
by a PNP algorithm as follows. A first query to a SAT oracle determines whether vI (x1) is> or?, since
vI (x1) = > iff F1(Z1) is satisfiable. Then, we replace x1 by the value vI (x1) in F2(x1,Z2) and another
query to the SAT oracle is performed to determine whether F2(vI (x1),Z2) is satisfiable, gaining the value
of vI (x2). This step is iterated other n�2 times, until the value for vI (xn) is obtained.

Let I be an instance of SNSAT, with |I |= n. We now show how to build a finite Kripke structure
KI and an AB formula FI , by using logarithmic working space, such that I is a positive instance of
SNSAT if and only if KI |= FI . Such a reduction is inspired by similar constructions from [10].

Let Z =
Sn

i=1 Zi and let R = {ri | i = 1, · · · ,n} and Ri = R\{ri} be n+1 sets of auxiliary variables.
The Kripke structure KI consists of a suitable composition of n instances of a gadget (an instance for
each variable x1, · · · ,xn 2 X). The structure of the gadget for xi, with 1  i  n, is shown in Figure 4,
assuming that the labeling of states (nodes) is defined as follows:

• µ(wxi) = X [Z[{s, t}[Ri, and µ(wxi) = (X \{xi})[Z[{s, t}[Ri[{pxi};
• for ui = 1, · · · , ji, µ(wzui

i
) = X [Z[{s, t}[Ri, and µ(wzui

i
) = X [(Z \{zui

i })[{s, t}[Ri;
• µ(si) = X [Z[{t}[Ri.
The Kripke structure KI is obtained by sequentializing (adding suitable arcs) the n instances of the

gadget (in reverse order, from xn to x1), adding a collector terminal state s0, with labeling µ(s0) = X [
Z[{s}[R, and setting wxn as the initial state. The overall construction is reported in Figure 5. Formally,
KI = (X [Z[{s, t}[R[{pxi | i = 1, · · · ,n},W,d ,µ,wxn). KI enjoys the following properties: (i) any
track satisfying s does not pass through any si, for 1  i  n; (ii) any track not satisfying t has s0 as its

L. Bozzelli, A. Molinari, A. Montanari, A. Peron and P. Sala 11

wxi si wxi

wz1
i

wz1
i

wz2
i

wz2
i

wz ji
i

wz ji
i

choice
Z

i

Figure 4: The gadget for xi.

wx1

s1

wx1

choice Z
1

wxn

sn

wxn

choice Z
n

wx2

s2

wx2

choice Z
2

s0

Figure 5: Kripke structure KI associated with an SNSAT instance
I , with |I |= n. Notice that the states sn and wxn are unreachable.

last state; (iii) any track not satisfying ri passes through some state of the i-th gadget, for 1 i n; (iv)
the only track satisfying pxi is wxi (notice that |wxi |= 1), for 1 i n.

A track r 2 TrkKI induces a truth assignment of all the proposition letters, denoted by w

r

, which
is defined as w

r

(y) = > () KI ,r |= y, for any letter y. In the following, we will write w

r

(Zi) for
w

r

(z1
i), · · · ,wr

(z ji
i). In particular, if r starts from some state wxi or wxi , and satisfies s^¬t (that is,

it reaches the collector state s0 without visiting any node s j, for 1  j  i), w

r

fulfills the following
conditions: for 1 m i,

• if wxm 2 states(r), then w

r

(xm) =>, and if wxm 2 states(r), then w

r

(xm) =?;
• for 1 um  jm, if wzum

m 2 states(r), then w

r

(zum
m) =>, and if wzum

m 2 states(r), then w

r

(zum
m) =?;

It immediately follows that KI ,r |= Fm(x1, · · · ,xm�1,Zm) iff Fm(wr

(x1), · · · ,wr

(xm�1),wr

(Zm)) = >.
Finally, let FI = {yk | 0 k  n+1} be the set of formulas defined as: y0 =? and, for k � 1,

yk = hAi

2

664

(s^¬t)^
Vn

i=1

⇣
(xi^¬ri)! Fi(x1, · · · ,xi�1,Zi)

⌘

^
[B]

⇣
(
Wn

i=1 hAi pxi)! hAi
�
¬s^ `=2^hAi(`=2^¬yk�1)

�⌘

3

775

| {z }
jk

,

where `=2 = hBi>^ [B][B]? is satisfied only by tracks of length 2. The first conjunct of jk (s^¬t) forces
the track to reach the collector state s0, without visiting any state s j. The second conjunct checks that if
the track assigns the truth value> to xm passing through wxm (with 1m n), then Fm(x1, · · · ,xm�1,Zm)
is satisfied by w

r

(which amounts to say that the SAT problem connected with Zm has a positive answer,
for the selected values of x1, · · · ,xm�1). Conversely, the third conjunct ensures that if the track assigns the
truth value ? to some xm by passing through wxm , then, intuitively, the SAT problem connected with Zm
has no assignment satisfying Fm(x1, · · · ,xm�1,Zm). As a matter of fact, if r satisfies jk for some k � 2,
and assigns ? to xm, then there is a prefix r̃ of r ending in wxm . Since

Wn
i=1 hAi pxi is satisfied by r̃ , then

hAi
�
¬s^`=2^hAi(`=2^¬yk�1)

�
must be satisfied as well. The only possibility is that the track sm ·wxm

does not model yk�1 (as wxm · sm has to model hAi(`=2^¬yk�1)). However, since yk�1 = hAijk�1, this
holds iff K ,wxm 6|= yk�1.

The following theorem states the correctness of the construction.
Theorem 2. Let I be an instance of SNSAT with |I | = n, and let KI and FI be defined as above.
For all 0 k  n+1 and all r = 1, · · · ,n, it holds that:

1. if k � r, then vI (xr) => () KI ,wxr |= yk;

12 Model Checking the Logic of Allen’s Relations Meets and Started-by is PNP-Complete

2. if k � r+1, then vI (xr) =? () KI ,wxr |= yk.

Proof. The proof is by induction on k � 0.
(Base case: k = 0). The thesis trivially holds.
(Inductive case: k � 1). We first prove the (() implication for both item 1 and item 2.

• (Item 1) Assume that k� r and KI ,wxr |= yk. Thus, there exists r 2 TrkKI such that r = wxr · · ·s0
does not pass through any sm, 1  m  r and KI ,r |= jk. We show by induction on 1  m  r
that w

r

(xm) = vI (xm).
– Let us consider first the case where r passes through wxm , implying that w

r

(xm) = >; thus
KI ,r |= xm ^¬rm and KI ,r |= Fm(x1, · · · ,xm�1,Zm). If m = 1 (base case), since F1 is
satisfiable, then vI (x1) =>. If m� 2 (inductive case), by the inductive hypothesis, it holds
that w

r

(x1) = vI (x1), . . . , w

r

(xm�1) = vI (xm�1). Since KI ,r |= Fm(x1, · · · ,xm�1,Zm) or,
equivalently, Fm(wr

(x1), · · · ,wr

(xm�1),wr

(Zm)) =>, it holds that Fm(vI (x1),· · ·,vI (xm�1),
w

r

(Zm)) => and, by definition of vI , vI (xm) =>.
– Conversely, let us consider the case where r passes through wxm , implying that w

r

(xm) =
? and m < r, as we are assuming fst(r) = wxr . In this case, the prefix wxr · · ·wxm of r

satisfies both
Wn

i=1 hAi pxi and hAi
�
¬s^`=2^hAi(`=2^¬yk�1)

�
. Therefore, KI ,wxm ·sm |=

hAi(`=2^¬yk�1) and KI ,sm ·wxm 6|= yk�1, with yk�1 = hAijk�1. Hence KI ,wxm 6|= yk�1.
Since 1m< r, we have 1m< r k, thus k0= k�1�m� 1. By the inductive hypothesis
(on k0 = k�1), we get that vI (xm) =?.

Therefore vI (xr) = w

r

(xr) and, since wxr 2 states(r), we have that w

r

(xr) = > and the thesis,
that is, vI (xr) =>, follows.

• (Item 2) Assume that k� r+1 and KI ,wxr |=yk. The proof follows the same steps as the previous
case and it is thus only sketched: there exists r 2 TrkKI such that r = wxr · · ·s0 does not pass
through any sm, for 1  m  r, and KI ,r |= jk. The only thing which changes is that the prefix
wxr satisfies

Wn
i=1 hAi pxi , thus as before we get KI ,wxr 6|= yk�1. Now, k0 = k�1� r � 1 and, by

the inductive hypothesis (on k0 = k�1), it holds that vI (xr) =?.
We prove now the converse implication ()) for both item 1 and item 2.
• (Item 1) Assume that k � r and vI (xr) = >. Let us consider the track r 2 TrkKI , r = wxr · · ·s0

never passing through any sm, for 1 m r, such that wxm 2 states(r) if vI (xm) =>, and wxm 2
states(r) if vI (xm) = ?, for 1  m  r. Such a choice of r ensures that vI (xm) = w

r

(xm). In
addition, the choice of r has to induce also the proper evaluation of local variables, that is, if
vI (xm) = >, then for 1  um  jm, wzum

m 2 states(r) if Fm(vI (x1), · · · ,vI (xm�1),Zm) is satisfied
for zum

m = >, wzum
m 2 states(r) otherwise. Notice that such a choice of r is always possible. We

have to show that KI ,r |= jk, hence KI ,wxr |= yk.
– For all 1m r such that vI (xm) =>, it holds that Fm(vI (x1), · · · ,vI (xm�1),Zm) is satis-

fiable. Hence, by our choice of r , Fm(wr

(x1), · · · ,wr

(xm�1),wr

(Zm)) =>, or, equivalently,
KI ,r |= Fm(x1, · · · ,xm�1,Zm). Therefore, KI ,r |=

Vn
i=1

⇣
(xi^¬ri)! Fi(x1, · · · ,xi�1,Zi)

⌘
.

– Conversely, for all 1 m < r such that vI (xm) =? (m 6= r as, by hypothesis, vI (xr) =>),
it holds that wxm 2 states(r). Since m < r, it holds that k � r > m and k�1� m� 1. By the
inductive hypothesis, we have that KI ,wxm 6|= yk�1. It follows that KI ,sm ·wxm |= ¬yk�1^
`=2, KI ,wxm ·sm |=¬s^`=2^hAi(¬yk�1^`=2) and KI ,wxm |= hAi(¬s^`=2^hAi(¬yk�1^
`=2)). Hence, KI ,r |= [B]((

Wn
i=1 hAi pxi)! hAi(¬s^ `=2^hAi(¬yk�1^ `=2))).

Combining the two cases, we can conclude that KI ,r |= jk.
• (Item 2) Assume that k � r + 1 and vI (xr) = ?. The proof is as before and it is sketched. In

L. Bozzelli, A. Molinari, A. Montanari, A. Peron and P. Sala 13

this case, we choose a track r = wxr · · ·s0. Since k0 = k� 1 � r, by the inductive hypothesis,
KI ,wxr 6|= yk�1, and we can prove that KI ,wxr |= hAi(¬s^ `=2^hAi(¬yk�1^ `=2)).

The correctness of the reduction from SNSAT to model checking for AB follows as a corollary.
Corollary 3. Let I be an instance of SNSAT, with |I | = n, and let KI and FI be defined as above.
Then, vI (xn) => () KI |= [B]?! yn.

Proof. By Theorem 2, vI (xn) = > () KI ,wxn |= yn. If vI (xn) = >, then KI ,wxn |= yn and, since
wxn is the only initial track satisfying [B]? (only satisfiable by tracks of length 1), KI |= [B]?! yn.
Conversely, if KI |= [B]?! yn, then KI ,wxn |= yn, allowing us to conclude that vI (xn) =>.

Eventually we can state the complexity of the problem.
Corollary 4. The model checking problem for AB formulas over finite Kripke structures is PNP-hard
(under LOGSPACE reductions).

Proof. The result follows from Corollary 3 considering that, for an instance of SNSAT I , with |I |= n,
KI and yn 2FI have a size polynomial in n and in the length of the formulas of I . Moreover, their
structures are repetitive, therefore they can be built by using logarithmic working space.

We can prove the same complexity result for the symmetric fragment AE, just by transposing the
edges of KI , and by replacing [B] with [E] and hAi with hAi in the definition of yn.

We summarize all the PNP-completeness results achieved in the following statement.
Corollary 5. The model checking problem for AB, AE, AAB, and AAE formulas over finite Kripke
structures is PNP-complete.

We conclude the paper by providing a complexity upper and lower bound for AB and the symmetric
fragment AE. A PNP[O(log2 n)] model checking algorithm for AB formulas can be obtained by a suitable
adaptation of the one for AA we devised in [18]. Due to the lack of space, an outline of the construction
is reported in Appendix A, while stating here only the result. As for the hardness, we can observe that
the PNP[O(logn)]-hardness of A and A, proved in [18], immediately propagates to AB and AE, respectively.
Theorem 3. The model checking problem for AB and AE formulas over finite Kripke structures is in
PNP[O(log2 n)] and it is hard for PNP[O(logn)].

5 Conclusions and future work

In this paper, we have proved that the model checking problem for the HS fragments AB, AE, AAB, and
AAE is PNP-complete. They are thus somehow “halfway” between AABB, AAEE, and AABE, which are
PSPACE-complete [2, 16, 17], and Prop, B, and E, which are co-NP-complete [2, 16], and A, A, and
AA, whose model checking is in PNP[O(log2 n)] [18]. In addition, we have shown that model checking for
the HS fragments AB and AE has a lower complexity (it is in between PNP[O(logn)] and PNP[O(log2 n)]).

As for future work, we are looking for possible improvements to known complexity results for (full)
HS model checking. We know that it is EXPSPACE-hard (we proved EXPSPACE-hardness of its frag-
ment BE), while the only available decision procedure is nonelementary. We also started a comparative
study of the expressiveness of HS fragments (with the current semantics as well as with some variants of
it, which limit past/future branching) and of standard temporal logics, such as LTL, CTL, and CTL⇤.
Acknowledgments. The work by Alberto Molinari, Angelo Montanari, and Pietro Sala has been sup-
ported by the GNCS project Logic, Automata, and Games for Auto-Adaptive Systems.

14 Model Checking the Logic of Allen’s Relations Meets and Started-by is PNP-Complete

References
[1] J. F. Allen (1983): Maintaining Knowledge about Temporal Intervals. Communications of the ACM 26(11),

pp. 832–843.
[2] L. Bozzelli, A. Molinari, A. Montanari, A. Peron & P. Sala (2016): Interval Temporal Logic Model Check-

ing: the Border Between Good and Bad HS Fragments. In: IJCAR, LNAI 9706, Springer, pp. 389–405,
doi:10.1007/978-3-319-40229-1 27.

[3] D. Bresolin, D. Della Monica, V. Goranko, A. Montanari & G. Sciavicco (2014): The dark side of interval
temporal logic: marking the undecidability border. Annals of Mathematics and Artificial Intelligence 71(1-
3), pp. 41–83.

[4] D. Bresolin, V. Goranko, A. Montanari & P. Sala (2010): Tableau-based decision procedures for the logics
of subinterval structures over dense orderings. Journal of Logic and Computation 20(1), pp. 133–166.

[5] D. Bresolin, V. Goranko, A. Montanari & G. Sciavicco (2009): Propositional interval neighborhood logics:
Expressiveness, decidability, and undecidable extensions. Annals of Pure and Applied Logic 161(3), pp.
289–304.

[6] E. A. Emerson & J. Y. Halpern (1986): “Sometimes” and “not never” revisited: on branching versus linear
time temporal logic. Journal of the ACM 33(1), pp. 151–178.

[7] F. Giunchiglia & P. Traverso (1999): Planning as Model Checking. In: ECP, LNCS 1809, Springer, pp. 1–20.
[8] G. Gottlob (1995): NP Trees and Carnap’s Modal Logic. Journal of the ACM 42(2), pp. 421–457.
[9] J. Y. Halpern & Y. Shoham (1991): A Propositional Modal Logic of Time Intervals. Journal of the ACM

38(4), pp. 935–962.
[10] F. Laroussinie, N. Markey & P. Schnoebelen (2001): Model Checking CTL+ and FCTL is Hard. In: FOS-

SACS, pp. 318–331, doi:10.1007/3-540-45315-6 21.
[11] A. Lomuscio & J. Michaliszyn (2013): An Epistemic Halpern-Shoham Logic. In: IJCAI, pp. 1010–1016.
[12] A. Lomuscio & J. Michaliszyn (2014): Decidability of model checking multi-agent systems against a class

of EHS specifications. In: ECAI, pp. 543–548.
[13] A. Lomuscio & J. Michaliszyn (2016): Model Checking Multi-Agent Systems against Epistemic HS Specifi-

cations with Regular Expressions. In: KR, pp. 298–308.
[14] A. Lomuscio & F. Raimondi (2006): MCMAS: A Model Checker for Multi-agent Systems. In: TACAS, LNCS

3920, Springer, pp. 450–454.
[15] A. Molinari, A. Montanari, A. Murano, G. Perelli & A. Peron (2016): Checking interval properties of com-

putations. Acta Informatica, doi:10.1007/s00236-015-0250-1. Accepted for publication.
[16] A. Molinari, A. Montanari & A. Peron (2015): Complexity of ITL model checking: some well-behaved

fragments of the interval logic HS. In: TIME, pp. 90–100, doi:10.1109/TIME.2015.12.
[17] A. Molinari, A. Montanari & A. Peron (2015): A Model Checking Procedure for Interval Temporal Logics

based on Track Representatives. In: CSL, pp. 193–210, doi:10.4230/LIPIcs.CSL.2015.193.
[18] A. Molinari, A. Montanari, A. Peron & P. Sala (2016): Model Checking Well-Behaved Fragments of HS: the

(Almost) Final Picture. In: KR, pp. 473–483.
[19] B. Moszkowski (1983): Reasoning About Digital Circuits. Ph.D. thesis, Stanford University, Stanford, CA.
[20] A. Pnueli (1977): The temporal logic of programs. In: FOCS, IEEE Computer Society, pp. 46–57.
[21] I. Pratt-Hartmann (2005): Temporal prepositions and their logic. Artificial Intelligence 166(1-2), pp. 1–36.
[22] P. Roeper (1980): Intervals and Tenses. Journal of Philosophical Logic 9, pp. 451–469.
[23] P. Schnoebelen (2003): Oracle Circuits for Branching-Time Model Checking. In: ICALP, LNCS 2719,

Springer, pp. 790–801.
[24] C. Zhou & M. R. Hansen (2004): Duration Calculus - A Formal Approach to Real-Time Systems. Monographs

in Theoretical Computer Science. An EATCS Series, Springer.

http://dx.doi.org/10.1007/978-3-319-40229-1_27
http://dx.doi.org/10.1007/3-540-45315-6_21
http://dx.doi.org/10.1007/s00236-015-0250-1
http://dx.doi.org/10.1109/TIME.2015.12
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.193

L. Bozzelli, A. Molinari, A. Montanari, A. Peron and P. Sala 15

Algorithm 3 Oracle(K ,y,v,DIRECTION,VA)

1: r̃ A track(K ,v, |W | · (2|y|+1)2,DIRECTION) / a
track of K from/to v of length  |W | · (2|y|+1)2

2: for all hAif 2ModSubfAA(y) do
3: for i = 1, · · · , |r̃| do
4: T [hAif , i] VA(f , fst(r̃))
5: for all subformulas j of y , not contained in (or equal to)

AA-modal subformulas of y , by increasing length do
6: if j = p, for p 2 AP then
7: T [p,1] p 2 µ(fst(r̃))
8: for i = 2, · · · , |r̃| do
9: T [p, i] T [p, i�1] and p 2 µ(r̃(i))

10: else if j = ¬j1 then
11: for i = 1, · · · , |r̃| do
12: T [j, i] not T [j1, i]
13: else if j = j1_j2 then
14: for i = 1, · · · , |r̃| do
15: T [j, i] T [j1, i] or T [j2, i]
16: else if j = hBij1 then
17: T [j,1] ?
18: for i = 2, · · · , |r̃| do
19: T [j, i] T [j, i�1] or T [j1, i�1]
20: return T [y, |r̃|]

A A PNP[O(log2 n)] model checking algorithm for AB formulas

In this section, we outline a PNP[O(log2 n)] model checking algorithm for AB formulas, which suitably
adapts the ideas and techniques used in [18] to prove a similar result for the fragment AA.

Since we are considering a sub-fragment of AAB, if we restrict Algorithm 2 to Algorithm 3 by re-
moving the case for the hAi operator, we get a procedure for which Lemma 1 holds. Since Algorithm 3 is
in NP, there must exist a reduction to SAT, i.e., given an instance (K ,y,v,DIRECTION,VA) for Oracle,
there is a Boolean formula Y(K ,y,v,DIRECTION,VA)

, which depends on (K ,y,v,DIRECTION,VA), that is sat-
isfiable if and only if Oracle(K ,y,v,DIRECTION,VA) admits a successful computation for the given
input. By Lemma 1, this is the case iff:

• there exists r 2 TrkK such that fst(r) = v and K ,r |= y , in the case DIRECTION is FORWARD;
• there exists r 2 TrkK such that lst(r) = v and K ,r |= y , in the case DIRECTION is BACKWARD,

provided that for each hAif 2ModSubfAA(y) and v0 2W , VA(f ,v
0) => iff there exists r

0 2 TrkK such
that lst(r 0) = v0 and K ,r 0 |= f .

We now sketch the construction of the formula Y(K ,y,v,DIRECTION,VA)
, which is built over the union of

the following sets of Boolean variables:
• for any i = 1, · · · , |W | and t = 1, · · · , |W | · (2|y|+ 1)2, there exists a variable vt

i such that vt
i is

assigned the truth value > iff the t-th state of a track r we are considering is wi 2W , that is,
r(t) = wi;

• for each entry T [j, i] of T (the Boolean table of Oracle) there is a variable x
j,i such that x

j,i is
assigned the truth value > iff T [j, i] =>.

The formula Y(K ,y,v,DIRECTION,VA)
is the conjunction of the following formulas:

• a Boolean formula jtrack that, when satisfied, gives the encoding of a track r , whose length is at
most |W | ·(2|y|+1)2, obtained by unravelling K starting from/up to v (depending on DIRECTION),
and, for each 1 i |r̃|, determines which are the proposition letters that hold on r(1, i);

• for any hAif 2 ModSubfAA(y), we introduce the conjunct
⇣

xhAif ,1 $
W|W |

j=1(v
1
j ^VA(f ,w j))

⌘
,

where w j 2W , and the conjunct
V

t(xhAif ,1$ xhAif ,t);
• for all subformulas j of y , not contained in (or equal to) AA-modal subformulas of y:

– if j = ¬j1, we introduce the conjuncts (x
j,i$ ¬x

j1,i), for all 1 i |r|;
– j = j1_j2, we introduce the conjuncts (x

j,i$ x
j1,i_ x

j2,i), for all 1 i |r|;
– j = hBij1, we create the conjuncts (x

j,i$
W

1 j<i x
j1, j), for all 1 i |r|;

Notice that from the above construction, Y(K ,y,v,DIRECTION,VA)
is polynomial in the size of |K | and of |y|.

16 Model Checking the Logic of Allen’s Relations Meets and Started-by is PNP-Complete

B

9V1.F1(Y,V1)

G1

9V2.F2(Y,V2)

G2

· · · 9Vp.Fp(Y,Vp)

Gp
x1 x2 xp

E1(X) E2(X) · · · Ek(X)

z : z1 z2 zk

y1: y1
1 y1

2 · · · y1
k · · · ym

1 ym
2 · · · ym

kym:

Figure 6: The general form of a block.

B1

B2 B3

B4 B5 B6 B7

Figure 7: A tree of blocks (B5 has degree m = 0).

Now following the approach proposed in [18], we reduce the model checking problem for AB to
the problem TB(SAT)1⇥M, which is the first complete problem for the class PNP[O(log2 n)] that has been
proposed in the literature [23].

For the purpose of self-containment, we briefly recall here the problem TB(SAT)1⇥M. As a prelimi-
narily step, we need to introduce the notion of block. A block (see Figure 6) is a circuit B whose input
lines are organized in m bit vectors y1, . . . , ym, each one with k entries: yi = (yi

1, · · · ,yi
k). We denote

Y = {y j
s | j = 1, · · · ,m, s = 1, · · · ,k}. The values m and k are respectively called the degree and the width

of B. The input lines are connected to p internal gates G1, . . . , Gp. Each gate Gi queries a SAT oracle
to decide whether the associated Boolean formula Fi(Y,Vi) is satisfiable for some truth assignment to
the variables of Vi, where Vi is a set of private variables of Fi (Vj \Vi = /0, for j 6= i, and Vi \Y = /0).
The output of Gi is conveyed by xi, which evaluates to > if and only if Fi(Y,Vi) is satisfiable. Finally, k
classical circuits (without oracles) E1, . . . , Ek compute, from X = {x1, · · · ,xp}, the final k bits, output of
the block B, conveyed by the output lines z1, . . . , zk (thus the number of output lines equals the width of
B). The size of B is the total number of gates, as usual, plus the sizes of all the formulas Fi(Y,Vi).

Blocks of the same width can be combined together to form a tree-structured complex circuit, called
tree of blocks (see Figure 7 for an example). Every block Bi in the tree has a level: blocks which are
leaves of the tree are at level 1; a block Bi whose inputs depend on (at least) a block B j at level d�1 and
possibly on other blocks at some levels  d� 1, is at level d. In Figure 7, B4, B5, B6, B7 are at level 1,
B2 and B3 at level 2, and B1 at level 3.

TB(SAT) is the problem of deciding whether a specific output zi (of the root) of a tree of blocks T
is > or ?, given the values for the inputs (of the leaf blocks) of T . As proved in [23], TB(SAT) is PNP-

L. Bozzelli, A. Molinari, A. Montanari, A. Peron and P. Sala 17

complete. The problem TB(SAT)1⇥M is the problem TB(SAT) with a restriction: the Boolean formulas
(SAT queries) of each block B of the tree of blocks must have the form 9`1, · · · ,`m 9V 0i Fi(y1

`1
, · · · ,ym

`m
,`1,

· · · ,`m,V 0i), with ` j 2 {1, · · · ,k}, where 1 jm, and m and k are respectively the degree and the width
of B. This amounts to say that Fi can use only one bit from each input vector of B (no matter which),
hence “1⇥M”. As a matter of fact, the existential quantification over the indexes `1, · · · ,`m is an abuse
of notation borrowed from [23]; however, 9` j 2 {1, · · · ,k} is just a shorthand for k bits (belonging to the
set of private variables) “` j = 1”, . . . , “` j = k”, among which exactly one is 1. In [23], the author proves
that TB(SAT)1⇥M is PNP[O(log2 n)]-complete.

Given an AB formula y (w.l.o.g., we assume that y contains only existential modalities and disjunc-
tions) to be checked over a finite Kripke structure K = (AP ,W,d ,µ,w1), where W = {w1, · · · ,w|W |}, we
consider its negation ¬y and we build a tree of blocks TK ,¬y

for ¬y . Each block of TK ,¬y

has a type,
FORWARD or BACKWARD, and it is associated with a subformula of ¬y . The root block Broot has type
FORWARD and it is associated with ¬y . All the other blocks have type BACKWARD. Each block B has
an output line zi for each state wi 2W , thus the width of all blocks is k = |W |.

Starting from Broot , TK ,¬y

is built recursively as follows. If a block B is associated with a formula
j , then, for each hAix 0 2 ModSubfAA(j), we create a BACKWARD child B0 of B associated with x

0.
Notice that B has thus degree m = |ModSubfAA(j)|. Then, the procedure is applied recursively to all the
generated children of B, terminating when ModSubfAA(j) = /0.

This procedure allows us to determine the general structure of TK ,¬y

. We now need to describe the
internal structure of a (generic) block B in TK ,¬y

for a formula j . We refer again to Figure 6. First of
all, each output line zi is directly linked to the output xi of the oracle gate Gi, avoiding circuits E1,. . . , Ek,
which can be omitted from B. The formula of Gi is precisely Y(K ,j,wi,DIRECTION,VA)

as described above,

where VA(x ,w j) is replaced by yx

j —which denotes the input of B linked to the j-th output of the child B0

associated with the formula x — and DIRECTION equals the type of B.
The basic fact used to prove the correctness of the construction, stated by the following Theorem 4,

is the result proved in [2] (Theorem 10), already exploited in the previous sections: if some r 2 TrkK
is such that K ,r |= y , where y is an AABB formula, then there exists r̃ 2 TrkK such that K , r̃ |= y ,
fst(r̃) = fst(r), lst(r̃) = lst(r), and |r̃| |W | · (2|y|+1)2.

The proof of Theorem 4 is analogous to that given in [18], and it is therefore omitted.
Theorem 4. Given an AB formula y and a finite Kripke structure K = (AP ,W,d ,µ,w1), for each block
B of TK ,¬y

, if B is associated with an AB formula j , then
• if B is FORWARD (i.e., it is the root Broot), 8i 2 {1, · · · , |W |}, B(zi) = > iff there exists a track

r 2 TrkK such that fst(r) = wi and K ,r |= j;
• if B is BACKWARD, 8i2 {1, · · · , |W |}, B(zi) => iff there exists a track r 2 TrkK such that lst(r) =

wi and K ,r |= j;
The next two corollaries immediately follow.

Corollary 6. Let y be an AB formula, K = (AP ,W,d ,µ,w1) be a finite Kripke structure, and Broot be
the root block of TK ,¬y

. It holds that Broot(z1) =? () K |= y .
Corollary 7. The model checking problem for formulas of the fragment AB over finite Kripke structures
is in PNP[O(log2 n)].

Proof. The result follows from Corollary 6 and the fact that the instance of TB(SAT)1⇥M generated from
an AB formula y and a Kripke structure K is polynomial in |y| and |K |.

The same complexity result holds for the symmetric fragment AE.

	Introduction
	Preliminaries
	A `39`42`"613A``45`47`"603AP`39`42`"613A``45`47`"603ANP model checking algorithm for AAB formulas
	`39`42`"613A``45`47`"603AP`39`42`"613A``45`47`"603ANP-hardness of model checking for AB formulas
	Conclusions and future work
	A `39`42`"613A``45`47`"603AP`39`42`"613A``45`47`"603ANP[O(log2 n)] model checking algorithm for AB formulas

