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In this paper, we address complexity issues for timeline-based planning over dense temporal domains.
The planning problem is modeled by means of a set of independent, but interacting, components, each
one represented by a number of state variables, whose behavior over time (timelines) is governed by a
set of temporal constraints (synchronization rules). While the temporal domain is usually assumed to
be discrete, here we consider the dense case. Dense timeline-based planning has been recently shown
to be undecidable in the general case; decidability (NP-completeness) can be recovered by restricting
to purely existential synchronization rules (trigger-less rules). In this paper, we investigate the
unexplored area of intermediate cases in between these two extremes. We first show that decidability

and non-primitive recursive hardness can be proved by admitting synchronization rules with a
trigger, but forcing them to suitably check constraints only in the future with respect to the trigger
(future simple rules). More “tractable” results can be obtained by additionally constraining the form
of intervals in future simple rules: EXPSPACE-completeness is guaranteed by avoiding singular
intervals, PSPACE-completeness by admitting only intervals of the forms [0,a] and [b,+•[.

1 Introduction

In this paper, we explore the middle ground of timeline-based planning over dense temporal domains.
Timeline-based planning can be viewed as an alternative to the classical action-based approach to planning.
Action-based planning aims at determining a sequence of actions that, given the initial state of the world
and a goal, transforms, step by step, the state of the world until a state that satisfies the goal is reached.
Timeline-based planning focuses on what has to happen in order to satisfy the goal instead of what an
agent has to do. It models the planning domain as a set of independent, but interacting, components, each
one consisting of a number of state variables. The evolution of the values of state variables over time is
described by means of a set of timelines (sequences of tokens), and it is governed by a set of transition
functions, one for each state variable, and a set of synchronization rules, that constrain the temporal
relations among state variables. Figure 1 gives an account of these notions.

Timeline-based planning has been successfully exploited in a number of application domains, e.g., [5,
7, 8, 11, 15, 17], but a systematic study of its expressiveness and complexity has been undertaken only
very recently. The temporal domain is commonly assumed to be discrete, the dense case being dealt with
by forcing an artificial discretization of the domain. In [12], Gigante et al. showed that timeline-based
planning with bounded temporal relations and token durations, and no temporal horizon, is EXPSPACE-
complete and expressive enough to capture action-based temporal planning. Later, in [13], they proved
that EXPSPACE-completeness still holds for timeline-based planning with unbounded interval relations,
and that the problem becomes NEXPTIME-complete if an upper bound to the temporal horizon is added.
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2 Complexity of timeline-based planning over dense domains

Timeline-based planning (TP for short) over a dense temporal domain has been studied in [6]. The
general problem has been shown to be undecidable even when a single state variable is used. Decidability
can be recovered by suitably constraining the logical structure of synchronization rules. In the general
case, a synchronization rule allows a universal quantification over the tokens of a timeline (trigger).
By disallowing the universal quantification and retaining only rules in purely existential form (trigger-
less rules), the problem becomes NP-complete. These two bounds identify a large unexplored area of
intermediate cases where to search for a balance between expressiveness and complexity.

In this paper, we investigate restrictions under which the universal quantification of triggers can be
admitted though retaining decidability. When a token is “selected” by a trigger, the synchronization rule
allows us to compare tokens of the timelines both preceeding (past) and following (future) the trigger
token. The first restriction we consider consists in limiting the comparison to tokens in the future with
respect to the trigger (future semantics of trigger rules). The second restriction we consider imposes
that, in a trigger rule, the name of a non-trigger token appears exactly once in the interval atoms of the
rule (simple trigger rules). This syntactical restriction avoids comparisons of multiple token time-events
with a non-trigger reference time-event. From the expressiveness viewpoint, even if we do not have
a formal statement, we conjecture that future simple trigger rules, together with arbitrary trigger-less
rules allow for expressiveness strictly in between MTL [3] and TPTL [4]. Note that, by [6], the TP
problem with simple trigger rules is already undecidable. In this paper, we show that it becomes decidable,
although non-primitive recursive hard, under the future semantics of the trigger rules. Better complexity
results can be obtained by restricting also the type of intervals used in the simple trigger rules to compare
tokens. In particular, we show that future TP with simple trigger rules without singular intervals1is
EXPSPACE-complete. The problem is instead PSPACE-complete if we consider only intervals of the
forms [0,a] and [b,+•[. The decidability status of the TP problem with arbitrary trigger rules under the
future semantics remains open. However, we show that such a problem is at least non-primitive recursive
even under the assumption that the intervals in the rules have the forms [0,a] and [b,+•[.

The paper is organized as follows. In Section 2, we recall the TP framework. In Section 3, we
establish that future TP with simple trigger rules is decidable, and show membership in EXPSPACE

(resp., PSPACE) under the restriction to non-singular intervals (resp., intervals of the forms [0,a] and
[b,+•[). Matching lower bounds for the last two problems are given in Section 5. In Section 4, we prove
non-primitive recursive hardness of TP under the future semantics of trigger rules. Conclusions give an
assessment of the work and outline future research themes.

2 Preliminaries

Let N be the set of natural numbers, R+ be the set of non-negative real numbers, and Intv be the set of
intervals in R+ whose endpoints are in N[{•}. Moreover, let us denote by Intv(0,•) the set of intervals
I 2 Intv such that either I is unbounded, or I is left-closed with left endpoint 0. Such intervals I can be
replaced by expressions of the form ⇠ n for some n 2 N and ⇠2 {<,,>,�}. Let w be a finite word
over some alphabet. By |w| we denote the length of w. For all 0  i < |w|, w(i) is the i-th letter of w.

2.1 The TP Problem

In this section, we recall the TP framework as presented in [9, 12]. In TP, domain knowledge is encoded by
a set of state variables, whose behaviour over time is described by transition functions and synchronization

1An interval is called singular if it has the form [a,a], for a 2 N.
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t=0 t=7 t=10 t=13.9

x = a x = b x = c x = b

Figure 1: An example of timeline (a,7)(b,3)(c,3.9) · · · for the state variable x = (Vx,Tx,Dx), where
Vx = {a,b,c, . . .}, b 2 Tx(a), c 2 Tx(b), b 2 Tx(c). . . and Dx(a) = [5,8], Dx(b) = [1,4], Dx(c) = [2,•[. . .

rules.
Definition 1. A state variable x is a triple x = (Vx,Tx,Dx), where Vx is the finite domain of the variable
x, Tx : Vx ! 2Vx is the value transition function, which maps each v 2 Vx to the (possibly empty) set of
successor values, and Dx : Vx ! Intv is the constraint function that maps each v 2Vx to an interval.

A token for a variable x is a pair (v,d) consisting of a value v 2Vx and a duration d 2 R+ such that
d 2 Dx(v). Intuitively, a token for x represents an interval of time where the state variable x takes value v.
The behavior of the state variable x is specified by means of timelines which are non-empty sequences of
tokens p =(v0,d0) . . .(vn,dn) consistent with the value transition function Tx, that is, such that vi+1 2 Tx(vi)
for all 0  i < n. The start time s(p, i) and the end time e(p, i) of the i-th token (0  i  n) of the timeline

p are defined as follows: e(p, i) =
i

Â
h=0

dh and s(p, i) = 0 if i = 0, and s(p, i) =
i�1

Â
h=0

dh otherwise. See

Figure 1 for an example.
Given a finite set SV of state variables, a multi-timeline of SV is a mapping P assigning to each state

variable x 2 SV a timeline for x. Multi-timelines of SV can be constrained by a set of synchronization
rules, which relate tokens, possibly belonging to different timelines, through temporal constraints on
the start/end-times of tokens (time-point constraints) and on the difference between start/end-times of
tokens (interval constraints). The synchronization rules exploit an alphabet S of token names to refer to
the tokens along a multi-timeline, and are based on the notions of atom and existential statement.
Definition 2. An atom is either a clause of the form o1 e1,e2

I o2 (interval atom), or of the forms o1 e1
I n

or n e1
I o1 (time-point atom), where o1,o2 2 S, I 2 Intv, n 2 N, and e1,e2 2 {s,e}.

An atom r is evaluated with respect to a S-assignment lP for a given multi-timeline P which is a
mapping assigning to each token name o 2 S a pair lP(o) = (p, i) such that p is a timeline of P and
0  i < |p| is a position along p (intuitively, (p, i) represents the token of P referenced by the name
o). An interval atom o1 e1,e2

I o2 is satisfied by lP if e2(lP(o2))� e1(lP(o1)) 2 I. A point atom o e
I n

(resp., n e
I o) is satisfied by lP if n� e(lP(o)) 2 I (resp., e(lP(o))�n 2 I).

Definition 3. An existential statement E for a finite set SV of state variables is a statement of the form:

E := 9o1[x1 = v1] · · ·9on[xn = vn].C

where C is a conjunction of atoms, oi 2 S, xi 2 SV , and vi 2 Vxi for each i = 1, . . . ,n. The elements
oi[xi = vi] are called quantifiers. A token name used in C , but not occurring in any quantifier, is said to
be free. Given a S-assignment lP for a multi-timeline P of SV , we say that lP is consistent with the
existential statement E if for each quantified token name oi, lP(oi) = (p,h) where p = P(xi) and the
h-th token of p has value vi. A multi-timeline P of SV satisfies E if there exists a S-assignment lP for P
consistent with E such that each atom in C is satisfied by lP.
Definition 4. A synchronization rule R for a finite set SV of state variables is a rule of one of the forms

o0[x0 = v0]! E1 _E2 _ . . ._Ek, >! E1 _E2 _ . . ._Ek,



4 Complexity of timeline-based planning over dense domains

where o0 2 S, x0 2 SV , v0 2Vx0 , and E1, . . . ,Ek are existential statements. In rules of the first form (trigger
rules), the quantifier o0[x0 = v0] is called trigger, and we require that only o0 may appear free in Ei (for
i = 1, . . . ,n). In rules of the second form (trigger-less rules), we require that no token name appears free.
A trigger rule R is simple if for each existential statement E of R and each token name o distinct from
the trigger, there is at most one interval atom of E where o occurs.

Intuitively, a trigger o0[x0 = v0] acts as a universal quantifier, which states that for all the tokens of the
timeline for the state variable x0, where the variable x0 takes the value v0, at least one of the existential
statements Ei must be true. Trigger-less rules simply assert the satisfaction of some existential statement.
The intuitive meaning of the simple trigger rules is that they disallow simultaneous comparisons of
multiple time-events (start/end times of tokens) with a non-trigger reference time-event. The semantics of
synchronization rules is formally defined as follows.

Definition 5. Let P be a multi-timeline of a set SV of state variables. Given a trigger-less rule R of SV ,
P satisfies R if P satisfies some existential statement of R. Given a trigger rule R of SV with trigger
o0[x0 = v0], P satisfies R if for every position i of the timeline P(x0) for x0 such that P(x0) = (v0,d),
there is an existential statement E of R and a S-assignment lP for P which is consistent with E such that
lP(o0) = (P(x0), i) and lP satisfies all the atoms of E .

In the paper, we focus on a stronger notion of satisfaction of trigger rules, called satisfaction under
the future semantics. It requires that all the non-trigger selected tokens do not start strictly before the
start-time of the trigger token.

Definition 6. A multi-timeline P of SV satisfies under the future semantics a trigger rule R = o0[x0 =
v0] ! E1 _ E2 _ . . ._ Ek if P satisfies the trigger rule obtained from R by replacing each existential
statement Ei = 9o1[x1 = v1] · · ·9on[xn = vn].C with 9o1[x1 = v1] · · ·9on[xn = vn].C ^

Vn
i=1 o0 s,s

[0,+•[ oi.

A TP domain P = (SV,R) is specified by a finite set SV of state variables and a finite set R of
synchronization rules modeling their admissible behaviors. Trigger-less rules can be used to express
initial conditions and the goals of the problem, while trigger rules are useful to specify invariants and
response requirements. A plan of P is a multi-timeline of SV satisfying all the rules in R. A future plan of
P is defined in a similar way, but we require that the fulfillment of the trigger rules is under the future
semantics. We are interested in the following decision problems: (i) TP problem: given a TP domain
P = (SV,R), is there a plan for P? (ii) Future TP problem: similar to the previous one, but we require the
existence of a future plan.

Table 1 summarizes all the decidability and complexity results described in the following. We consider
mixes of restrictions of the TP problem involving trigger rules with future semantics, simple trigger rules,
and intervals in atoms of trigger rules which are non-singular or in Intv(0,•).

TP problem Future TP problem
Unrestricted Undecidable (Decidable?) Non-primitive recursive-hard

Simple trigger rules Undecidable Decidable (non-primitive recursive)
Simple trigger rules, non-singular intervals ? EXPSPACE-complete

Simple trigger rules, intervals in Intv(0,•) ? PSPACE-complete
Trigger-less rules only NP-complete //

Table 1: Decidability and complexity of restrictions of the TP problem.
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3 Solving the future TP problem with simple trigger rules

Recently, we have shown that the TP problem is undecidable even if the trigger rules are assumed to be
simple [6]. In this section, we show that decidability can be recovered assuming that the trigger rules
are simple and interpreted under the future semantics. Moreover, we establish that under the additional
assumption that intervals in trigger rules are non-singular (resp., are in Intv(0,•)), the problem is in
EXPSPACE (resp., PSPACE). The decidability status of future TP with arbitrary trigger rules remains
open. In Section 4, we prove that the latter problem is at least non-primitive recursive even if intervals in
rules and in the constraint functions of the state variables are assumed to be in Intv(0,•).

The rest of this section is organized as follows: in Subsection 3.1, we recall the framework of Timed
Automata (TA) [1] and Metric Temporal logic (MTL) [16]. In Subsection 3.2, we reduce the future TP
problem with simple trigger rules to the existential model-checking problem for TA against MTL over
finite timed words. The latter problem is known to be decidable [18].

3.1 Timed automata and the logic MTL

Let us recall the notion of timed automaton (TA) [1] and the logic MTL [16]. Let S be a finite alphabet. A
timed word w over S is a finite word w = (a0,t0) · · ·(an,tn) over S⇥R+ (ti is the time at which ai occurs)
such that ti  ti+1 for all 0  i < n (monotonicity). The timed word w is also denoted by (s ,t), where s
is the finite untimed word a0 · · ·an and t is the sequence of timestamps t0 · · ·tn. A timed language over S
is a set of timed words over S.

Timed Automata (TA). Let C be a finite set of clocks. A clock valuation val : C ! R+ for C is a
mapping assigning a non-negative real value to each clock in C. For t 2R+ and a reset set Res✓C, (val+t)
and val[Res] denote the valuations over C defined as follows: for all c 2C, (val+ t)(c) = val(c)+ t, and
val[Res](c) = 0 if c 2 Res and val[Res](c) = val(c) otherwise. A clock constraint over C is a conjunction
of atomic formulas of the form c 2 I or c� c0 2 I, where c,c0 2C and I 2 Intv. For a clock valuation val
and a clock constraint q , val satisfies q , written val |= q , if, for each conjunct c 2 I (resp., c�c0 2 I) of q ,
val(c) 2 I (resp., val(c)� val(c0) 2 I). We denote by F(C) the set of clock constraints over C.

Definition 7. A TA over S is a tuple A = (S,Q,q0,C,D,F), where Q is a finite set of (control) states,
q0 2 Q is the initial state, C is the finite set of clocks, F ✓ Q is the set of accepting states, and D ✓
Q⇥S⇥F(C)⇥ 2C ⇥Q is the transition relation. The maximal constant of A is the greatest integer
occurring as endpoint of some interval in the clock constraints of A .

Intuitively, in a TA A , while transitions are instantaneous, time can elapse in a control state. The
clocks progress at the same speed and can be reset independently of each other when a transition is
executed, in such a way that each clock keeps track of the time elapsed since the last reset. Moreover,
clock constraints are used as guards of transitions to restrict the behavior of the automaton.

Formally, a configuration of A is a pair (q,val), where q 2 Q and val is a clock valuation for
C. A run r of A on a timed word w=(a0,t0) · · ·(an,tn) over S is a sequence of configurations r =
(q0,val0) · · ·(qn+1,valn+1) starting at the initial configuration (q0,val0), with val0(c)=0 for all c2C and

• for all 0  i  n we have (we let t�1 = 0): (qi,ai,q ,Res,qi+1) 2 D for some q 2 F(C) and reset
set Res, (vali + ti � ti�1) |= q and vali+1 = (vali + ti � ti�1)[Res].

The run r is accepting if qn+1 2 F . The timed language LT (A ) of A is the set of timed words w over S
such that there is an accepting run of A over w.
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The logic MTL. We now recall the framework of Metric Temporal Logic (MTL) [16], a well-known
timed linear-time temporal logic which extends standard LTL with time constraints on until modalities.

For a finite set P of atomic propositions, the set of MTL formulas j over P is defined as follows:

j ::=> | p | j _j | ¬j | jUIj

where p 2 P , I 2 Intv, and UI is the standard strict timed until MTL modality. MTL formulas over P

are interpreted over timed words over 2P . Given an MTL formula j , a timed word w = (s ,t) over 2P ,
and a position 0  i < |w|, the satisfaction relation (w, i) |= j , meaning that j holds at position i of w, is
defined as follows (we omit the clauses for atomic propositions and Boolean connectives):

• (w, i) |= j1UIj2 , there is j > i such that (w, j) |= j2,t j �ti 2 I, and (w,k) |= j1 for all i < k < j.
A model of j is a timed word w over 2P such that (w,0) |= j . The timed language LT (j) of j is the set
of models of j . The existential model-checking problem for TA against MTL is the problem of checking
for a TA A over 2P and an MTL formula j over P whether LT (A )\LT (j) 6= /0.

In MTL, we use standard shortcuts: FIj stands for j _ (>UIj) (timed eventually), and GIj stands
for ¬FI¬j (timed always). We also consider two fragments of MTL, namely, MITL (Metric Interval
Temporal Logic) and MITL(0,•) [2]: MITL is obtained by allowing only non-singular intervals in Intv,
while MITL(0,•) is the fragment of MITL obtained by allowing only intervals in Intv(0,•). The maximal
constant of an MTL formula j is the greatest integer occurring as an endpoint of some interval of (the
occurrences of) the UI modality in j .

3.2 Reduction to existential model checking of TA against MTL

In this section, we solve the future TP problem with simple trigger rules by an exponential-time reduction
to the existential model-checking problem for TA against MTL.

In the following, we fix an instance P = (SV,R) of the problem such that the trigger rules in R are
simple. The maximal constant of P, denoted by KP, is the greatest integer occurring in the atoms of R and
in the constraint functions of the variables in SV .

The proposed reduction consists of three steps: (i) first, we define an encoding of the multi-timelines
of SV by means of timed words over 2P for a suitable finite set P of atomic propositions, and show
how to construct a TA ASV over 2P accepting such encodings; (ii) next, we build an MTL formula j8
over P such that for each multi-timeline P of SV and encoding wP of P, wP is a model of j8 if and
only if P satisfies all the trigger rules in R under the future semantics; (iii) finally, we construct a TA A9
over 2P such that for each multi-timeline P of SV and encoding wP of P, wP is accepted by A9 if and
only if P satisfies all the trigger-less rules in R. Hence, there is a future plan of (SV,R) if and only if
LT (ASV )\LT (A9)\LT (j8) 6= /0.

For each x 2 SV , let x = (Vx,Tx,Dx). Given an interval I 2 Intv and a natural number n2N, n+ I (resp.,
n� I) denotes the set of non-negative real numbers t 2R+ such that t �n 2 I (resp., n�t 2 I). Note that
n+ I (resp., n� I) is a (possibly empty) interval in Intv whose endpoints can be trivially calculated. For an
atom r in R involving a time constant (time-point atom), let I(r) be the interval in Intv defined as follows:

• if r is of the form o e
I n (resp., n e

I o), then I(r) := n� I (resp., I(r) = n+ I).
We define IntvR := {J 2 Intv | J = I(r) for some time-point atom r occurring in a trigger rule of R}.

Encodings of multi-timelines of SV . We assume that for distinct state variables x and x0, the sets Vx
and Vx0 are disjunct. We exploit the following set P of propositions to encode multi-timelines of SV :

P :=
[

x2SV
Mainx [Deriv,
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Mainx := ({begx}[Vx)⇥Vx [Vx ⇥{endx}, Deriv := IntvR [{p>}[
[

x2SV

[

v2Vx

{pastsv,pastev}.

Intuitively, we use the propositions in Mainx to encode a token along a timeline for x. The propositions
in Deriv, as explained below, represent enrichments of the encoding, used for translating simple trigger
rules in MTL formulas under the future semantics. The tags begx and endx in Mainx are used to mark
the start and the end of a timeline for x. In particular, a token tk with value v along a timeline for x is
encoded by two events: the start-event (occurring at the start time of tk) and the end-event (occurring
at the end time of tk). The start-event of tk is specified by a main proposition of the form (vp,v), where
either vp = begx (tk is the first token of the timeline) or vp is the value of the x-token preceding tk. The
end-event of tk is instead specified by a main proposition of the form (v,vs), where either vs = endx (tk is
the last token of the timeline) or vs is the value of the x-token following tk. Now, we explain the meaning
of the propositions in Deriv. Elements in IntvR reflect the semantics of the time-point atoms in the trigger
rules of R: for each I 2 IntvR, I holds at the current position if the current timestamp t satisfies t 2 I. The
tag p> keeps track of whether the current timestamp is strictly greater than the previous one. Finally,
the propositions in

S
x2SV

S
v2Vx

{pastsv,pastev} keep track of past token events occurring at timestamps
coinciding with the current timestamp. We first define the encoding of timelines for x 2 SV .

A code for a timeline for x is a timed word w over 2Mainx[Deriv of the form

w = ({(begx,v0)}[S0,t0),({(v0,v1)}[S1,t1) . . .({(vn,endx)}[Sn+1,tn+1)

where, for all 0  i  n+ 1, Si ✓ Deriv, and (i) vi+1 2 Tx(vi) if i < n; (ii) t0 = 0 and ti+1 � ti 2 Dx(vi)
if i  n; (iii) Si \ IntvR is the set of intervals I 2 IntvR such that ti 2 I, and p> 2 Si iff either i = 0 or
ti > ti�1; (iv) for all v 2Vx, pastsv 2 Si (resp., pastev 2 Si) iff there is 0  h < i such that th = ti and v = vh
(resp., th = ti, v = vh�1 and h > 0). Note that the length of w is at least 2. The timed word w encodes
the timeline for x of length n+ 1 given by p = (v0,t1)(v1,t2 � t1) · · ·(vn,tn+1 � tn). Note that in the
encoding, ti and ti+1 represent the start time and the end time of the i-th token of the timeline (0  i  n).

Next, we define the encoding of a multi-timeline for SV . For a set P ✓ P and x 2 SV , let P[x] :=
P \

S
y2SV\{x} Mainy. A code for a multi-timeline for SV is a timed word w over 2P of the form w =

(P0,t0) · · ·(Pn,tn) such that the following conditions hold: (i) for all x 2 SV , the timed word obtained
from (P0[x],t0) · · ·(Pn[x],tn) by removing the pairs (Pi[x],ti) such that Pi[x]\Mainx = /0 is a code of a
timeline for x; (ii) P0[x]\Mainx 6= /0 for all x 2 SV (initialization).

One can easily construct a TA ASV over 2P accepting the encodings of the multi-timelines of SV . In
particular, the TA ASV uses a clock cx for each state variable x for checking the time constraints on the
duration of the tokens for x. Two additional clocks c> and cglob are exploited for capturing the meaning
of the proposition p> and of the propositions in IntvR (in particular, cglob is a clock which measures the
current time and is never reset). Hence, we obtain the following result (for details, see Appendix A).

Proposition 8. One can construct a TA ASV over 2P , with 2O(Âx2SV |Vx|) states, |SV |+ 2 clocks, and
maximal constant O(KP), such that LT (ASV ) is the set of codes for the multi-timelines of SV .

Encodings of simple trigger rules by MTL formulas. We now construct an MTL formula j8 over P

capturing the trigger rules in R, which, by hypothesis, are simple, under the future semantics.

Proposition 9. If the trigger rules in R are simple, then one can construct in linear-time an MTL formula
j8, with maximal constant O(KP), such that for each multi-timeline P of SV and encoding wP of P, wP is
a model of j8 iff P satisfies all the trigger rules in R under the future semantics. Moreover, j8 is an MITL
formula (resp., MITL(0,•) formula) if the intervals in the trigger rules are non-singular (resp., belong
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to Intv(0,•)). Finally, j8 has O(Âx2SV |Vx|+Na) distinct subformulas, where Na is the overall number of
atoms in the trigger rules in R.

Proof. We first introduce some auxiliary propositional (Boolean) formulas over P . Let x 2 SV and v 2Vx.
We denote by y(s,v) and y(e,v) the two propositional formulas over Mainx defined as follows:

y(s,v) := (begx,v)_
_

u2Vx

(u,v) y(e,v) := (v,endx)_
_

u2Vx

(v,u)

Intuitively, y(s,v) (resp., y(e,v)) states that a start-event (resp., end-event) for a token for x with value
v occurs at the current time. We also exploit the formula y¬x := ¬

W
m2Mainx

m asserting that no event
for a token for x occurs at the current time. Additionally, for an MTL formula q , we exploit the MTL
formula EqTime(q) := q _ [¬p>U�0(¬p>^q)] which is satisfied by a code of a multi-timeline of SV at
the current time, if q eventually holds at a position whose timestamp coincides with the current timestamp.

The MTL formula j8 has a conjunct jR for each trigger rule R. Let R be a trigger rule of the form
ot [xt = vt ]! E1 _E2 _ . . ._Ek. Then, the MTL formula jR is given by

jR := G�0
�
y(s,vt)!

k_

i=1
FEi

�

where the MTL formula FEi , with 1  i  k, ensures the fulfillment of the existential statement Ei of the
trigger rule R under the future semantics. Let E 2 {E1, . . . ,Ek}, O be the set of token names existentially
quantified by E , A be the set of interval atoms in E , and, for each o 2 O, v(o) be the value of the token
referenced by o in the associated quantifier. In the construction of FE , we crucially exploit the assumption
that R is simple: for each token name o 2 O, there is at most one atom in A where o occurs.

For each token name o 2 {ot}[O, we denote by Intvso (resp., Intveo) the set of intervals J 2 Intv such
that J = I(r) for some time-point atom r occurring in E , which imposes a time constraint on the start time
(resp., end time) of the token referenced by o. Note that Intvso, Intveo ✓P , and we exploit the propositional
formulas x s

o =
V

I2Intvso I and x e
o =

V
I2Intveo I to ensure the fulfillment of the time constraints imposed by

the time-point atoms associated with the token o. The MTL formula FE is given by:

FE := x s
ot
^ [y¬xtU�0(y(e,vt)^x e

ot
)]^

^

r2A

cr ,

where, for each atom r 2 A, the formula cr captures the future semantics of r .
The construction of cr depends on the form of r . We distinguishes four cases.
• r = o e1,e2

I ot and o 6= ot . We assume 0 2 I (the other case being simpler). First, assume that
e2 = s. Under the future semantics, r holds iff the start time of the trigger token ot coincides with
the e1-time of token o. Hence, in this case (e2 = s), cr is given by:

cr := x e1
o ^

�
paste1

v(o)_EqTime(y(e1,v(0)))
�

If instead e2 = e, then cr is defined as follows:

cr := [y¬xtU�0{x e1
o ^y(e1,v(0))^y¬xt ^ (y¬xtUIy(e,vt))}]_ [(y(e1,v(0))_paste1

v(o))^x e1
o ]_

[y¬xtU�0{y(e,vt)^EqTime(y(e1,v(0))^x e1
o )}]

The first disjunct considers the case where the e1-event of token o occurs strictly between the
start-event and the end-event of the trigger token ot (along the encoding of a multi-timeline of SV ).
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The second considers the case where the e1-event of token o precedes the start-event of the trigger
token: thus, under the future semantics, it holds that the e1-time of token o coincides with the start
time of the trigger token. Finally, the third disjunct considers the case where the e1-event of token o
follows the end-event of the trigger token (in this case, the related timestamps have to coincide).

• r = ot e1,e2
I o and o 6= ot . We assume e1 = e and 0 2 I (the other cases being simpler). Then,

cr = [y¬xtU�0(y(e,ut)^FI(y(e2,v(o))^x e2
o ))]_ [y¬xtU�0(y(e,ut)^paste2

v(o)^x e2
o )],

where the second disjunct captures the situation where the e2-time of o coincides with the end time
of the trigger token ot , but the e2-event of o occurs before the end-event of the trigger token.

• r = ot e1,e2
I ot . This case is straightforward and we omit the details.

• r = o1 e1,e2
I o2, o1 6= ot and o2 6= ot . We assume o1 6= o2 and 0 2 I (the other cases are simpler).

Then,

cr :=[paste1
v(o1)

^x e1
o F̂I(y(e2,v(o2))^x e2

o )]_[F�0{y(e1,v(o1))^x e1
o ^FI(y(e2,v(o2))^x e2

o )}]_

[paste1
v(o1)

^x e1
o ^paste2

v(o2)
^x e2

o ]_ [paste2
v(o2)

^x e2
o ^EqTime(y(e1,v(o1))^x e1

o )]_

[F�0{y(e2,v(o2))^x e2
o ^EqTime(y(e1,v(o1))^x e1

o )}]

The first two disjuncts handle the cases where (under the future semantics) the e1-event of token o1
precedes the e2-event of token o2, while the last three disjuncts consider the dual situation. In the
latter case, the e1-time of token o1 and the e2-time of token o2 are equal.

Note that the MTL formula j8 is an MITL formula (resp., MITL(0,•) formula) if the intervals in the trigger
rules are non-singular (resp., belong to Intv(0,•)). This concludes the proof.

Encoding of trigger-less rules by TA. We note that an existential statement in a trigger-less rule
requires the existence of an a priori bounded number of temporal events satisfying mutual temporal
relations. Hence, one can easily construct a TA which guesses such a chain of events and checks the
temporal relations by clock constraints and clock resets. Thus, by the well-known effective closure of TA
under language union and intersection [1], we obtain the following result (for details, see Appendix B).

Proposition 10. One can construct in exponential time a TA A9 over 2P such that, for each multi-
timeline P of SV and encoding wP of P, wP is accepted by A9 iff P satisfies all the trigger-less rules in
R. Moreover, A9 has 2O(Nq) states, O(Nq) clocks, and maximal constant O(KP), where Nq is the overall
number of quantifiers in the trigger-less rules of R.

Conclusion of the construction. By applying Propositions 8–10 and well-known results about TA and
MTL over finite timed words [1, 18], we obtain the main result of this section.

Theorem 11. The future TP problem with simple trigger rules is decidable. Moreover, if the intervals
in the atoms of the trigger rules are non-singular (resp., belong to Intv(0,•)), then the problem is in
EXPSPACE (resp., in PSPACE).

Proof. We fix an instance P = (SV,R) of the problem with maximal constant KP. Let Nv := Âx2SV |Vx|,
Nq be the overall number of quantifiers in the trigger-less rules of R, and Na be the overall number of
atoms in the trigger rules of R. By Propositions 8–10 and the effective closure of TA under language
intersection [1], we can build a TA AP and an MTL formula j8 such that there is a future plan of P iff
LT (AP)\LT (j8) 6= /0. Moreover, AP has 2O(Nq+Nv) states, O(Nq + |SV |) clocks, and maximal constant
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O(KP), while j8 has O(Na +Nv) distinct subformulas and maximal constant O(KP). By [18], checking
non-emptiness of LT (AP)\LT (j8) is decidable. Hence, the first part of the theorem holds. For the
second part, assume that the intervals in the trigger rules are non-singular (resp., belong to Intv(0,•)). By
Proposition 9, j8 is an MITL (resp., MITL(0,•)) formula. Thus, by [2], one can build a TA A8 accepting
LT (j8) having 2O(KP·(Na+Nv)) states, O(KP · (Na +Nv)) clocks (resp., O(2(Na+Nv)) states, O(Na +Nv)
clocks), and maximal constant O(KP). Non-emptiness of a TA A can be solved by an NPSPACE search
algorithm in the region graph of A which uses space logarithmic in the number of control states of A

and polynomial in the number of clocks and in the length of the encoding of the maximal constant of
A [1]. Thus, since AP, A8, and the intersection A^ of AP and A8 can be constructed on the fly, and the
search in the region graph of A^ can be done without explicitly constructing A^, the result follows.

4 Non-primitive recursive hardness of the future TP problem

In this section, we establish the following result.

Theorem 12. Future TP with one state variable is non-primitive recursive-hard even under one of the
following two assumptions: either (1) the trigger rules are simple, or (2) the intervals are in Intv(0,•).

Theorem 12 is proved by a polynomial-time reduction from the halting problem for Gainy counter
machines [10], a variant of standard Minsky machines, where the counters may erroneously increase.
Fix such a machine M = (Q,qinit,qhalt,n,D), where (i) Q is a finite set of (control) locations, qinit 2 Q is
the initial location, and qhalt 2 Q is the halting location, (ii) n 2 N\{0} is the number of counters, and
(iii) D ✓ Q⇥L⇥Q is a transition relation over the instruction set L = {inc,dec,zero}⇥{1, . . . ,n}. We
adopt the following notational conventions. For an instruction op 2 L, let c(op)2 {1, . . . ,n} be the counter
associated with op. For a transition d 2 D of the form d = (q,op,q0), define from(d ) := q, op(d ) := op,
c(d ) := c(op), and to(d ) := q0. We denote by opinit the instruction (zero,1). W.l.o.g., we make these
assumptions: (i) for each transition d 2 D, from(d ) 6= qhalt and to(d ) 6= qinit, and (ii) there is exactly one
transition in D, denoted dinit, having as source the initial location qinit.

An M-configuration is a pair (q,n) consisting of a location q 2 Q and a counter valuation n :
{1, . . . ,n}! N. Given two valuations n and n 0, we write n � n 0 iff n(c)� n 0(c) for all c 2 {1, . . . ,n}.

The gainy semantics is obtained from the standard Minsky semantics by allowing incrementing errors.
Formally, M induces a transition relation, denoted by �!gainy, defined as follows: for configurations
(q,n) and (q0,n 0), and instructions op 2 L, (q,n) op�!gainy (q0,n 0) if the following holds, where c = c(op):
(i) (q,op,q0) 2 D and n 0(c0) � n(c0) for all c0 2 {1, . . . ,n} \ {c}; (ii) n 0(c) � n(c)+ 1 if op = (inc,c);
(iii) n 0(c)� n(c)�1 if op = (dec,c); (iv) n(c) = 0 if op = (zero,c).

A (gainy) computation of M is a finite sequence of global gainy transitions

(q0,n0)
op0�!gainy (q1,n1)

op1�!gainy · · ·
opk�1�!gainy (qk,nk)

M halts if there is a computation starting at the initial configuration (qinit,ninit), where ninit(c) = 0 for
all c 2 {1, . . . ,n}, and leading to some halting configuration (qhalt,n). The halting problem is to decide
whether a given gainy machine M halts, and it was proved to be decidable and non-primitive recursive [10].
We prove the following result, from which Theorem 12 directly follows.

Proposition 13. One can construct in polynomial time a TP instance P = ({xM},RM) s.t. the trigger
rules in RM are simple (resp., the intervals in P are in Intv(0,•)) and M halts iff there is a future plan of P.
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Proof. We focus on the reduction where the intervals in P are in Intv(0,•). At the end of the proof, we
show how to adapt the construction for the case of simple trigger rules with arbitrary intervals.

First, we define a suitable encoding of a computation of M as a timeline for xM . For this, we exploit the
finite set of symbols V :=Vmain [Vsec [Vdummy corresponding to the finite domain of the state variable xM .
The sets of main values Vmain is given by Vmain := {(d ,op) 2 D⇥L | op 6= (inc,c) if op(d ) = (zero,c)}.
The set of secondary values Vsec is defined as (#inc and #dec are two special symbols used as markers):
Vsec :=Vmain ⇥{1, . . . ,n}⇥2{#inc,#dec}. Finally, the set of dummy values is (Vmain [Vsec)⇥{dummy}.

Intuitively, in the encoding of an M-computation a main value (d ,op) keeps track of the transition d
used in the current step of the computation, while op represents the instruction exploited in the previous
step (if any) of the computation. The set Vsec is used for encoding counter values, while the set Vdummy is
used for specifying punctual time constraints by means of non-simple trigger rules over Intv(0,•). For a
word w 2V ⇤, we denote by ||w|| the length of the word obtained from w by removing dummy symbols.

For c 2 {1, . . . ,n} and vmain = (d ,op) 2 Vmain, the set Tag(c,vmain) of markers of counter c for the
main value vmain is the subset of {#inc,#dec} defined as follows: (i) #inc 2 Tag(c,vmain) iff op = (inc,c);
(ii) #dec 2 Tag(c,vmain) iff op(d ) = (dec,c);

A c-code for the main value vmain = (d ,op) is a finite word wc over Vsec such that either (i) wc is empty
and #inc /2 Tag(c,vmain), or (ii) op(d ) 6= (zero,c) and wc = (vmain,c,Tag(c,vmain))(vmain,c, /0,dummy)h0 ·
(vmain,c, /0) · (vmain,c, /0,dummy)h1 · · ·(vmain,c, /0) · (vmain,c, /0,dummy)hn for some n � 0 and h0,h1, . . . ,
hn � 0. The c-code wc encodes the value for counter c given by ||wc||.

A configuration-code w for a main value vmain = (d ,op) 2Vmain is a finite word over V of the form
w = vmain · (vmain,dummy)h ·w1 . . .wn, where h � 0 and for each counter c 2 {1, . . . ,n}, wc is a c-code
for the main value vmain. The configuration-code w encodes the M-configuration(from(d ),n), where
n(c) = ||wc|| for all c 2 {1, . . . ,n}. Note that if op(d ) = (zero,c), then n(c) = 0 and op 6= (inc,c).
Moreover, the marker #inc occurs in w iff op is an increment instruction, and in such a case #inc marks the
first symbol of the encoding wc(op) of counter c(op). Intuitively, if the operation performed in the previous
step of the computation increments counter c, then the tag #inc “marks” the unit of the counter c in the
current configuration which has been added by the increment. Additionally, the marker #dec occurs in w
iff d is a decrement instruction and the value of counter c(d ) in w is non-null; in such a case, #dec marks
the first symbol of the encoding wc(d ) of counter c(d ). Intuitively, if the operation to be performed in the
current step decrements counter c and the current value of c is non-null, then the tag #dec marks the unit
of the counter c in the current configuration which has to be removed by the decrement.

A computation-code is a sequence of configuration-codes p = w(d0,op0) · · ·w(dk,opk), where, for all
0  i  k, w(di,opi) is a configuration-code with main value (di,opi), and whenever i < k, it holds that
to(di) = from(di+1) and op(di) = opi+1. Note that by our assumptions to(di) 6= qhalt for all 0  i < k, and
d j 6= dinit for all 0 < j  k. The computation-code p is initial if the first configuration-code w(d0,op0) is
(dinit,opinit) (which encodes the initial configuration), and it is halting if for the last configuration-code
w(dk,opk) in p , it holds that to(dk) = qhalt. For all 0  i  k, let (qi,ni) be the M-configuration encoded by
the configuration-code w(di,opi) and ci = c(di). The computation-code p is well-formed if, additionally, for
all 0 j  k�1, the following holds: (i) n j+1(c)� n j(c) for all c2 {1, . . . ,n}\{c j} (gainy monotonicity);
(ii) n j+1(c j) � n j(c j)+ 1 if op(d j) = (inc,c j) (increment req.); (iii) n j+1(c j) � n j(c j)� 1 if op(d j) =
(dec,c j) (decrement req.). Clearly, M halts iff there is an initial and halting well-formed computation-code.

Definition of xM and RM. We now define a state variable xM and a set RM of synchronization rules for
xM with intervals in Intv(0,•) such that the untimed part of every future plan of P = ({xM},RM) is an initial
and halting well-formed computation-code. Thus, M halts iff there is a future plan of P.
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Formally, variable xM is given by xM = (V,T,D), where, for each v 2V , D(v) =]0,•[ if v /2Vdummy,
and D(v) = [0,•[ otherwise. Thus, we require that the duration of a non-dummy token is always greater
than zero (strict time monotonicity). The value transition function T of xM ensures the following.

Claim 14. The untimed parts of the timelines for xM whose first token has value (dinit,opinit) correspond
to the prefixes of initial computation-codes. Moreover, (dinit,opinit) /2 T (v) for all v 2V .

By construction, it is a trivial task to define T so that the previous requirement is fulfilled. Let
Vhalt = {(d ,op) 2Vmain | to(d ) = qhalt}. By Claim 14 and the assumption that from(d ) 6= qhalt for each
transition d 2 D, for the initialization and halting requirements, it suffices to ensure that a timeline has
a token with value (dinit,opinit) and a token with value in Vhalt. This is captured by the trigger-less rules
>! 9o[xM = (dinit,opinit)].> and >!

W
v2Vhalt

9o[xM = v].>.
Finally, the crucial well-formedness requirement is captured by the trigger rules in RM which express

the following punctual time constraints. Note that we take advantage of the dense temporal domain to
allow for the encoding of arbitrarily large values of counters in two time units.

• 2-Time distance between consecutive main values: the overall duration of the sequence of tokens
corresponding to a configuration-code amounts exactly to two time units. By Claim 14, strict
time monotonicity, and the halting requirement, it suffices to ensure that each token tk having a
main value in Vmain \Vhalt is eventually followed by a token tk0 such that tk0 has a main value and
s(tk0)� s(tk) = 2. To this aim, for each v 2Vmain \Vhalt, we have the following non-simple trigger
rule with intervals in Intv(0,•) which uses a dummy-token for capturing the punctual time constraint:
o[xM = v]!

W
u2Vmain

W
ud2Vdummy

9o0[xM = u]9od [xM = ud ].o s,s
[1,+•[ od ^ od s,s

[1,+•[ o0 ^ o s,s
[0,2] o0.

• For a counter c 2 {1, . . . ,n}, let Vc ✓ Vsec be the set of secondary states given by Vmain ⇥ {c}⇥
2{#inc,#dec}. We require that each token tk with a Vc-value of the form ((d ,op),c,Tag) such that
c 6= c(d ) and to(d ) 6= qhalt is eventually followed by a token tk0 with a Vc-value such that s(tk0)�
s(tk) = 2. Note that our encoding, Claim 14, strict time monotonicity, and 2-Time distance between
consecutive main values guarantee that the previous requirement captures gainy monotonicity.
Thus, for each counter c and v 2Vc such that v is of the form ((d ,op),c,Tag), where c 6= c(d ) and
to(d ) 6= qhalt, we have the following non-simple trigger rule over Intv(0,•):
o[xM = v]!

W
u2Vc

W
ud2Vdummy

9o0[xM = u]9od [xM = ud ].o s,s
[1,+•[ od ^ od s,s

[1,+•[ o0 ^ o s,s
[0,2] o0.

• For capturing the increment and decrement requirements, by construction, it suffices to enforce that
(i) each token tk with a Vc-value of the form ((d ,op),c,Tag) such that to(d ) 6= qhalt and d = (inc,c)
is eventually followed by a token tk0 with a Vc-value which is not marked by the tag #inc such
that s(tk0)� s(tk) = 2, and (ii) each token tk with a Vc-value of the form ((d ,op),c,Tag) such that
to(d ) 6= qhalt, d = (dec,c), and #dec /2 Tag is eventually followed by a token tk0 with a Vc-value
such that s(tk0)� s(tk) = 2. These requirements can be expressed by non-simple trigger rules with
intervals in Intv(0,•) similar to the previous ones.

Finally, to prove Proposition 13 for the case of simple trigger rules with arbitrary intervals, it suffices
to remove the dummy values and replace the conjunction o s,s

[1,+•[ od ^ od s,s
[1,+•[ o0 ^ o s,s

[0,2] o0 in the
previous trigger rules with the punctual atom o s,s

[2,2] o0. This concludes the proof of Proposition 13.

5 Hardness of future TP with simple rules and non-singular intervals

In this section, we first consider the future TP problem with simple trigger rules and non-singular intervals,
and prove that it is EXPSPACE-hard by a polynomial-time reduction from a domino-tiling problem for
grids with rows of single exponential length, which is known to be EXPSPACE-complete [14]. Since the
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$ $̃x>1 x>2 x?3 x>4 x̃1
> x̃2

? x̃3
> x̃4

? $. . . . . .

| {z }

'j

$̃x?1 x>2 x?3 x>4
| {z }

'j+1

Figure 2: Let the formula j be defined over two sets of variables, G = {x1,x2,x3,x4} and G+1 =
{x+1

1 ,x+1
2 ,x+1

3 ,x+1
4 }. The j-th copy (we assume j is odd) of j , i.e., j j, is satisfied by the assignment

x j
1 7! >, x j

2 7! >, x j
3 7! ?, x j

4 7! >, x j+1
1 7! >, x j+1

2 7! ?, x j+1
3 7! >, x j+1

4 7! ?. The analogous for j j+1.

reduction is standard, we refer the reader to Appendix C for the details of the construction.
Theorem 15. The future TP problem with simple trigger rules and non-singular intervals is EXPSPACE-
hard (under polynomial-time reductions).

We now focus on the special case with intervals of the forms [0,a], with a 2 N+, and [b,+•[, with
b 2 N, only, proving that it is PSPACE-hard by reducing periodic SAT to it in polynomial time.

The problem periodic SAT is defined as follows [19]. We are given a Boolean formula j in conjunctive
normal form, defined over two sets of variables, G = {x1, . . . ,xn} and G+1 = {x+1

1 , . . . ,x+1
n }, namely, j =Vm

t=1(
W

x2(G[G+1)\L+
t

x_
W

x2(G[G+1)\L�
t
¬x), where m is the number of conjuncts of j and, for 1  t  m,

L+
t (resp., L�

t ) is the set of variables occurring non-negated (resp., negated) in the t-th conjunct of j .
Moreover, the formula j j, for j 2 N+, is defined as j in which we replace each variable xi 2 G by a fresh
one x j

i , and x+1
i 2 G+1 by x j+1

i . Periodic SAT is to decide the satisfiability of the (infinite-length) formula
F =

V
j2N+ j j, that is, deciding the existence of a truth assignment of (infinitely many) variables x j

i , for
i = 1, . . . ,n, j 2 N+, satisfying F. Periodic SAT is PSPACE-complete [19]; in particular membership
to such a class is proved by showing that one can equivalently check satisfiability of the (finite-length)
formula F f =

V22n+1
j=1 j j. Intuitively, 22n is the number of possible truth assignments to variables of

G[G+1, thus, after 22n +1 copies of j , we can find a repeated assignment: from that point, we can just
copy the previous assignments. We now reduce periodic SAT to our problem. Hardness also holds when
only a single state variable is involved, and also restricting to intervals of the form [0,a].
Theorem 16. The future TP problem with simple trigger rules and intervals [0,a], with a 2 N+, is
PSPACE-hard (under polynomial-time reductions).

Proof. Let us define the state variable y = (V,T,D), where (i) V = {$, $̃,stop}[ {x>i ,x
?
i , x̃i

>, x̃i
? |

i = 1, . . . ,n}, (ii) T ($) = {x>1 ,x
?
1 }, T ($̃) = {x̃1

>, x̃1
?} and T (stop) = {stop}, (iii) for i = 1, . . . ,n� 1,

T (x>i ) = T (x?i ) = {x>i+1,x
?
i+1}, (iv) for i = 1, . . . ,n�1, T (x̃i

>) = T (x̃i
?) = { ˜xi+1

>, ˜xi+1
?}, (v) T (x>n ) =

T (x?n ) = {$̃,stop}, (vi) T (x̃n
>) = T (x̃n

?) = {$,stop}, and (vii) for all v 2 V , D(v) = [2,+•[. Intuitively,
we represent an assignment of variables x j

i by means of a timeline for y: after every occurrence of the
symbol $, n tokens are present, one for each xi, and the value x>i (resp., x?i ) represents a positive (resp.,
negative) assignment of x j

i , for some odd j � 1. Then, there is an occurrence of $̃, after which n more
tokens occur, again one for each xi, and the value x̃i

> (resp., x̃i
?) represents a positive (resp., negative)

assignment of x j
i , for some even j � 2. See Figure 2 for an example.

We start with the next simple trigger rules, one for each v 2 V : o[y = v]! o s,e
[0,2] o. Paired with

the function D, they enforce all tokens’ durations to be exactly 2: intuitively, since we exclude singular
intervals, requiring, for instance, that a token o0 starts t instants of time after the end of o, with t 2 [`,`+1]
and ` 2 N is even, boils down to o0 starting exactly ` instants after the end of o. We also observe that,
given the constant token duration, the density of the time domain does not play any role in this proof.

We now add the rules: (i) >! 9o[y = $].o �s
[0,1] 0; (ii) >! 9o[y = $̃].o �s

[0,1] (2
2n +1) ·2(n+1);

(iii) >! 9o[y = stop].o �s
[0,1] (2

2n +2) ·2(n+1). They respectively impose that (i) a token with value $
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starts exactly at t = 0 (recall that the duration of every token is 2); (ii) there exists a token with value $̃
starting at t = (22n +1) ·2(n+1); (iii) a token with value stop starts at t = (22n +2) ·2(n+1). We are
forcing the timeline to encode truth assignments for variables x1

1, . . . ,x
1
n, . . . ,x

22n+2
1 , . . . ,x22n+2

n : as a matter
of fact, we will decide satisfiability of the finite formula F f =

V22n+1
j=1 j j, which is equivalent to F.

We now consider the next rules, that enforce the satisfaction of each j j or, equivalently, of j over the
assignments of (x j

1, . . . ,x
j
n,x

j+1
1 , . . . ,x j+1

n ). For the t-th conjunct of j , we define the future simple rule:

o[y = $̃]!
⇣_

xi2G\L+
t

9o0[y = x̃i
>].o e,s

[0,4n] o0
⌘
_
⇣_

x+1
i 2G+1\L+

t

9o0[y = x>i ].o e,s
[0,4n] o0

⌘
_

⇣_

xi2G\L�
t

9o0[y = x̃i
?].o e,s

[0,4n] o0
⌘
_
⇣_

x+1
i 2G+1\L�

t

9o0[y = x?i ].o e,s
[0,4n] o0

⌘
_9o00[y = stop].o e,s

[0,2n] o00.

Basically, this rule (the rule where the trigger has value $ being analogous) states that, after every
occurrence of $̃, a token o0, making true at least a (positive or negative) literal in the conjunct, must occur
by 4n time instants (i.e., before the following occurrence of $̃). The disjunct 9o00[y = stop].o e,s

[0,2n] o00 is
present just to avoid evaluating j on the n tokens before (the first occurrence of) stop.

The variable y and all synchronization rules can be generated in time polynomial in |j| (in particular,
all interval bounds and time constants of time-point atoms have a value, encoded in binary, in O(22n)).

6 Conclusion

In this paper, we investigated decidability and complexity issues for TP over dense temporal domains.
Such a problem is known to be undecidable [6] even if restricted to simple trigger rules. Here, we have
shown that decidability can be recovered by adding the future semantics to simple trigger rules. Moreover,
future TP with simple trigger rules has been proved to be non-primitive recursive-hard (the same result
holds in the case of future TP with all intervals being in Intv(0,•)). Finally, if, additionally, singular
intervals are avoided, it turns out to be EXPSPACE-complete, and PSPACE-complete if we consider
only intervals in Intv(0,•). Future work will focus on decidability of future TP with arbitrary trigger rules
which remains open.
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A Proof of Proposition 8

Proposition 8. One can construct a TA ASV over 2P , with 2O(Âx2SV |Vx|) states, |SV |+ 2 clocks, and
maximal constant O(KP), such that LT (ASV ) is the set of codes for the multi-timelines of SV .

Proof. We fix an ordering SV = {x1, . . . ,xN} of the state variables. Let H := Deriv\ (IntvR [{p>}) and
V 0

i =Vxi [{begxi
,endxi} for all 1  i  N. The TA ASV = (2P ,Q,q0,C,D,F) is defined as follows.

The set of states is given by Q =V 0
1 ⇥ . . .⇥V 0

N ⇥2H . Intuitively, for a state (v1, . . . ,vN ,H), the i-th
component vi keeps track of the value of the last start-event for an xi-token read so far if vi /2 {begxi

,endxi}.
If vi = begxi

(resp., vi = endxi), then no start-event for an xi-token has been read so far (resp., no start-event
for an xi-token can be read). Moreover, the last component H of the state keeps track of past token events
occurring at a timestamp coinciding with the last timestamp. The initial state q0 is (begx1

, . . . ,begxN
, /0),

while the set F of accepting states is the set of states of the form (endx1 , . . . ,endxN ,H).
The set of clocks C is given by C = {c1, . . . ,cN ,c>,cglob}. Thus, we have a clock ci for each state

variable xi: ci is used for checking that the duration of a token for xi with value v is in Dxi(v). Moreover,
the clock c> is a clock which is always reset and is used for capturing the meaning of proposition p>,
while cglob is a clock which measures the current time and is never reset.

D consists of the transitions ((v1, . . . ,vN ,H),P,q1 ^ . . .qN ^q>^qglob,Res,(v01, . . . ,v
0
N ,H

0)) such that:
• if (v1, . . . ,vN ,H) = q0, then P\Mainx 6= /0 for all x 2 SV ;

• for all 1  i  N, the following holds:
– either P\Mainxi = /0, v0i = vi, qi =>, and ci /2 Res,
– or P\Mainxi = (vi,v0i) (hence, vi 6= endxi), v0i 2 Txi(vi) if vi,v0i 2 Vxi , ci 2 Res, and qi = ci 2

Dxi(vi) (resp., qi = ci 2 [0,0]) if vi 6= begxi
(resp., vi = begxi

);

• cglob /2 Res and qglob =
^

I2P\IntvR

cglob 2 I ^
^

I2IntvR\P

cglob 2 Î, where for each I 2 IntvR \P, Î is a

(possibly empty) maximal interval in R+ disjunct from I (note that Î 2 Intv);

• c> 2 Res; moreover, if (v1, . . . ,vN ,H) = q0, then p> 2 P and q> =>, otherwise, either p> 2 P and
q> = c> 2 ]0,+•[, or p> /2 P and q> = c> 2 [0,0];

• P\H = /0 if p> 2 P; otherwise P\H = H;

• For all x 2 SV and v 2 Vx, pastsv 2 H 0 iff either P\Mainxi is of the form (v0,v), or p> /2 P and
pastsv 2 H;

• For all x 2 SV and v 2 Vx, pastev 2 H 0 iff either P\Mainxi is of the form (v,v0), or p> /2 P and
pastev 2 H.

This concludes the proof.

B Proof of Proposition 10

We recall that, in the encoding of multi-timelines of SV , we assume that, for distinct state variables x 2 SV
and x0 2 SV , the sets Vx and Vx0 are disjunct.
Proposition 10. One can construct in exponential time a TA A9 over 2P such that, for each multi-
timeline P of SV and encoding wP of P, wP is accepted by A9 iff P satisfies all the trigger-less rules in
R. Moreover, A9 has 2O(Nq) states, O(Nq) clocks, and maximal constant O(KP), where Nq is the overall
number of quantifiers in the trigger-less rules of R.
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Proof. Let E be an existential statement for SV such that no token name appears free in E . We first show
how to construct a TA AE over 2P such that for each multi-timeline P of SV and encoding wP of P,
wP is accepted by AE iff P satisfies E . Then, we exploit the well-known effective closure of TA under
language union and language intersection to prove the proposition.

Let O be the set of token names existentially quantified by the existential statement E and for each
o 2 O, v(o) be the value of the token referenced by o in the associated quantifier. For each token name
o 2 O, we denote by Intvso (resp., Intveo) the set of intervals J 2 Intv such that J = I(r) for some time-point
atom r occurring in E which imposes a time constraint on the start time (resp., end time) of the token
referenced by o.

We first illustrate the construction of AE . We associate two clock variables with each token name
o 2 O, namely cso and ceo, which, intuitively, are reset when the token chosen for o starts and ends,
respectively. The clocks cso and ceo are non-deterministically reset when a start-event for v(o) and the
related end-event occur along a code of a multi-timeline. The automaton AE ensures that the clocks
cso and ceo are reset exactly once. Thus, AE moves to an accepting state only if all the clocks cso and ceo
for each o 2 O have been reset and the time constraints encoding the interval atoms in E are fulfilled.
Moreover, to deal with time-point atoms, we also exploit a global clock cglob which measures the current
time and is never reset. In particular, whenever the clock cso (resp., ceo) is reset, we require that the clock
constraint

^

I2Intvso

cglob 2 I (resp.,
^

I2Intveo

cglob 2 I) is fulfilled.

The TA AE = (2P ,Q,q0,C,D,F) is formally defined as follows. The set C of clocks is {cglob}[[

o2O
{cso,c

e
o}. The set of states is 2C\{cglob}. Intuitively, a state keeps track of the clocks in C \{cglob} which

have been reset so far. The initial state q0 is /0, and F = {C \{cglob}}. Finally, the transition relation D
consists of the transitions (C1,P,q ^qglob,Res,C2) such that either (i) C1 =C \{cglob}, C2 =C1, Res = /0,
q =>, and qglob => (intuitively AE loops in its final state), or (ii) C1 ⇢C \{cglob}, C2 ◆C1, and the
following holds:

• for each cso 2C2 \C1, there is a main proposition in P of the form (v0,o(v)).

• for each o 2 O, ceo 2C2 \C1 if and only if cso 2C1 and (o(v),v0) 2 P for some v.

• q => if C2 ⇢C\{cglob} (in this case AE is not transitioning to its final state), and q =
^

r2A

code(r)

if C2 =C \{cglob} (here, AE moves to the final state), where A is the set of interval atoms of E

and for each interval atom r 2 A of the form o1 e1,e2
I o2, the clock constraint code(r) is defined

as follows:
– if ce2

o2
/2 C1 and ce1

o1
/2 C1, then: code(r) := ce2

o2
� ce1

o1
2 I (in this case, both ce2

o2
and ce1

o1
are

reset simultaneously by the transition to the final state C2, meaning that the e2-event and the
e1-event have the same timestamp; hence it must be that ce2

o2
� ce1

o1
= 0 2 I for the atom to be

satisfied);
– if ce2

o2
2C1 and ce1

o1
2C1, then: code(r) := ce1

o1
� ce2

o2
2 I;

– if ce2
o2
2C1 and ce1

o1
/2C1, then: code(r) := ce2

o2
2 [0,0]^ ce2

o2
2 I (the e2-event and the e1-event

must have the same timestamp; as before, it must be that 0 2 I);
– if ce2

o2
/2C1 and ce1

o1
2C1, then: code(r) := ce1

o1
2 I.

• qglob =
^

ce
o2C2\C1

^

I2Intve
o

cglob 2 I.

• Res =C2 \C1.
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Figure 3: A (generic) instance of the domino-tiling problem, where di
j denotes f (i, j).

Note that AE has 2O(m) states, O(m) clocks and maximal constant O(K), where m is the number of
quantifiers in E and K is the maximal constant in E .

Given a trigger-less rule R := >! E1 _E2 _ . . ._Ek, we construct the TA AR resulting from the
union of the automata AE1 , . . . ,AE1 . Then, the TA A9 is obtained as intersection of the automata AR , for
R 2 R being a trigger-less rule. By [1], A9 has 2O(Nq) states, O(Nq) clocks, and maximal constant O(KP),
where Nq is the overall number of quantifiers in the trigger-less rules of R.

This concludes the proof.

C EXPSPACE-hardness of the future TP problem with simple trigger

rules and non-singular intervals

We now prove that the future TP problem with simple trigger rules and non-singular intervals is
EXPSPACE-hard. The claim is proved by a polynomial-time reduction from a domino-tiling prob-
lem for grids with rows of single exponential length [14].

An instance I of a domino-tiling problem for grids with rows of single exponential length is a tuple
I = (C,D,n,dinit,dfinal), where C is a finite set of colors, D ✓C4 is a set of tuples (cdown,cleft,cup,cright)
of four colors, called domino-types, n > 0 is a natural number encoded in unary, and dinit,dfinal 2 D are
two distinguished domino-types (respectively, the initial and final domino-types). The size of I is defined
as |C|+ |D|+n.

Intuitively, a tiling of a grid is a color labelling of the edges of each cell (see Figure 3). Formally, a
tiling of I is a mapping f : [0,k]⇥ [0,2n �1]! D, for some k � 0, that satisfies the following constraints:

• two adjacent cells in a row have the same color on the shared edge, namely, for all (i, j) 2
[0,k]⇥ [0,2n �2], [ f (i, j)]right = [ f (i, j+1)]left (horizontal constraint);

• two adjacent cells in a column have the same color on the shared edge, namely, for all (i, j) 2
[0,k�1]⇥ [0,2n �1], [ f (i, j)]up = [ f (i+1, j)]down (vertical constraint);

• f (0,0) = dinit (initialization) and f (k,2n �1) = dfinal (acceptance).
It is well-known that checking the existence (resp., the non-existence) of a tiling of I is an

EXPSPACE-complete problem [14]. We now prove that the future TP problem with simple trigger
rules and non-singular intervals is EXPSPACE-hard by reducing domino-tiling to it. Hardness holds also
when only a single state variable is involved.
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d00 d01 d02n�1 $ d10 d11 d12n�1 $ · · ·· · · · · ·
· · ·
· · ·

· · ·
· · ·

dk0 dk1 dk2n�1 $0
· · ·
· · ·
· · ·

Figure 4: Timeline encoding the ordered concatenation of the rows of a tiling. Red lines represent the
horizontal and vertical constraints among domino-types.

Theorem 11. The future TP problem with simple trigger rules and non-singular intervals is EXPSPACE-
hard (under polynomial-time reductions).

Proof. Let us define the state variable y = (V,T,D), where
• V = {$,$0}[D (with $,$0 /2 D),

• T ($) = D and T ($0) = {$0},

• for d 2 D\{dfinal}, T (d) = {$}[{d0 2 D | [d]right = [d0]left},

• T (dfinal) = {$,$0}[{d0 2 D | [dfinal]right = [d0]left},

• for all v 2 V , D(v) = [2,+•[.
Basically, the domain of the state variable y contains all domino-types, as well as two auxiliary symbols $
and $0. The idea is encoding a tiling by the concatenation of its rows, separated by an occurrence of $.
The last row is terminated by $0.

More precisely, each cell of the grid is encoded by (the value of) a token having duration 2. A row of
the grid is then represented by the sequence of tokens of its cells, ordered by increasing column index.
Finally, a full tiling is just given by the timeline for y obtained by concatenating the sequences of tokens
of all rows, ordered by increasing row index. See Figure 4 for an example.

We observe that T guarantees the horizontal constraint among domino-types, and that it allows only
occurrences of $0 after the first $0.

We start with the next simple trigger rules, one for each v 2V :

o[y = v]! o s,e
[0,2] o.

These, paired with the constraint function D, enforce all tokens’ durations to be exactly 2. This is done for
technical convenience: intuitively, since we exclude singular intervals, requiring, for instance, that a token
o0 starts t instants of time after the end of o, with t 2 [`,`+1] and ` 2 N is even, boils down to o0 starting
exactly ` instants after the end of o. We also observe that, given the constant token duration, in this proof
density of time domain does not play any role.

We now define the following synchronization rules (of which all trigger ones are simple and future).
The next ones state (together) that the first occurrence of (a token having value) $ starts exactly at 2 ·2n:

>! 9o[y = $].o �s
[0,1] 2 ·2n, (1)

and
o[y = $]! o �s

[0,+•[ 2 ·2n. (2)

Thus, all tokens before such a first occurrence of $ have a value in D.
Every occurrence of $ must be followed, after exactly 2 ·2n instants of time (namely, after 2n tokens),

by another occurrence of $ or of $0.

o[y = $]! (9o0[y = $].o e,s
[2·2n,2·2n+1] o0)_ (9o00[y = $0].o e,s

[2·2n,2·2n+1] o00). (3)
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Now we force every token with value d 2 D either (i) to be followed, after 2 ·2n instants, by another
token with value d0 2 D, in particular, satisfying the vertical requirement, i.e., [d]up = [d0]down, or (ii) to
be in the last row (which is terminated by $0). For each d 2 D,

o[y = d]!
⇣_

d02D, [d]up=[d0]down

9o0[y = d0].o e,s
[2·2n,2·2n+1] o0

⌘
_ (9o00[y = $0].o e,s

[0,2·2n�2] o00). (4)

It is straightforward to check that rules (1), (2), (3), and (4), along with the horizontal constraint
guaranteed by the function T , enforce the following property.

Proposition 12. There exists k0 2N+ such that all tokens with value $ end at all and only times k ·2(2n+1),
for 1  k < k0. Moreover the first token with value $0 ends at time k0 ·2(2n +1). Finally, all other tokens
having end time less than k0 ·2(2n +1) have value in D and satisfy the horizontal and vertical constraints.

Finally, we settle the initialization and acceptance requirements by means of the following pair of
trigger-less rules:

>! 9o[y = dinit].o �s
[0,1] 0,

>! 9o[y = dfinal]9o0[y = $0].o e,s
[0,1] o0.

The former rule states that a token with value dinit must start at t = 0, the latter that a token with value
dfinal must occur just before the terminator of the last row $0.

To conclude the proof, we observe that the state variable y = (V,T,D) as well as all synchronization
rules can be generated in polynomial time in the size of the instance I of the domino-tiling problem (in
particular, note that all interval bounds and time constants of time-point atoms have a value, encoded in
binary, which is in O(2n)).
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