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Linearization of a free boundary problem

in corrosion detection

Elio Cabib∗, Dario Fasino†, Eva Sincich‡

Abstract

We consider a boundary identification problem arising in nondestructive testing of materials. The
problem is to recover a part ΓI ⊂ ∂Ω of the boundary of a bounded, planar domain Ω from one
Cauchy data pair of a harmonic potential u in Ω collected on a different boundary subset ΓA ⊂ ∂Ω.
We prove Fréchet differentiability of a suitably defined forward map, and discuss local uniqueness
and Lipschitz stability results for the linearized problem.

Mathematics Subject Classification: 35R30, 35R25, 31B20.

1 Introduction

In this paper we discuss an inverse problem arising in the nondestructive testing of materials [7, 9, 16].
Such materials are typically metallic specimens, as for instance pipes transporting water, gas, chemically
aggressive fluids or bodywork of aircraft, cars, etc., whose surfaces have been damaged by a corrosion
attack. In practice, it often happens that such surfaces are not accessible to direct inspection, hence in
order to detect the possible presence of corrosion one has to rely on measurements only performed on
the accessible part of the specimen surface. In what follows, we assume that a stationary (thermic or
electric) potential u is available from direct measurements on the accessible boundary; for definiteness,
we will refer generally to u as an electric potential. From these considerations one obtains an inverse
problem for the following elliptic boundary value problem:

∆u = 0 in Ω
∂u

∂ν
= φ on ΓA

∂u

∂ν
+ γu = 0 on ΓI

u = 0 on ΓD.

(1.1)

According to this model, Ω represents a conductor which contains no sources and no sinks, so that the
potential u is harmonic. We assume that the boundary ∂Ω is decomposed in three open and disjoint
subsets ΓA,ΓI ,ΓD. On the portion ΓA, which is the one accessible to direct inspection, we prescribe
a current density φ and we measure the corresponding voltage potential u|ΓA

. The portion ΓI , where
corrosion took place, is out of reach. On such a portion, the potential u satisfies a Robin type condition,
which models a resistive coupling with the exterior environment, where the Robin coefficient γ > 0 models
an impedance. The remaining portion of the boundary ΓD is assumed to be grounded.
In this paper we are interested in the inverse problem of determining the location of the unknown and
corroded boundary ΓI from the data collected on the accessible part of the boundary ΓA, that is, the
Cauchy data pair (φ, u|ΓA

). In particular, we generalize the main results in [9, 16] to much more general
domains.
Many authors have treated analogous boundary identification problems where an unknown boundary is
endowed by Neumann or Dirichlet boundary conditions, see for instance [2, 6, 13, 14, 15, 17]. Moreover,
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inverse problems concerning the identification of the impedance coefficient γ in (1.1) (or variants of it) have
been addresses e.g., in [3, 5, 7, 9, 13]. For what concerns the determination of a portion of the boundary,
where a Robin type condition is prescribed, we recall that in [7] it is proved, by counterexamples, that
a single measurement is not sufficient to determine simultaneously the shape of ΓI and the impedance
coefficient γ, and the same holds if the only aim is to determine ΓI and γ is a fixed constant.
However, we observe that the negative results in [7] concern domains whose unknown boundary ΓI contain
corners. Actually, a convergent numerical scheme for the reconstruction of ΓI (with a known constant γ)
is also shown in [7], under the assumption that ΓI can be parametrized by a smooth function.
Furthermore, in [5] it has been achieved a global uniqueness result for the simultanous determinantion
of ΓI and γ by means of two measurements, one of which is given for a positive current φ, and in [9, 16]
the authors prove that, in a rather particular setting with a rectangular domain, one suitable data set
collected in the accessible boundary identifies θ uniquely. Moreover, in [18] a local uniqueness result and
two reconstruction algorithms by two suitably chosen measurements are presented.
In the present paper we assume that the Robin coefficient γ is known and constant. Moreover, in order
to have a solution u to (1.1) with constant sign, we will consider only positive fluxes φ, which is also in
accordance with the hypothesis required in [5, 9, 18]. In order to investigate the location of the supposed
damage, we adopt a model in which the undamaged domain Ω ⊂ R2 is modified by a corrosion process
localized on ΓI . Since we are assuming that external physical conditions do not change significantly, we
will consider small perturbations of ΓI and we analyze the problem by a local approach.
We describe such a situation by introducing a small vector field θ ∈ C1

0 (ΓI) so that the damaged domain
Ωθ is such that

∂Ωθ = ΓA ∪ ΓD ∪ ΓI,θ

where ΓI,θ = {z ∈ R2 : z = w + θ(w), w ∈ ΓI}. Hence our inverse problem may be reformulated as
follows: Find θ ∈ C1

0 (ΓI) given a single measurement (φ, u|ΓA
) with φ > 0.

In Section 2 we collect technical details required in the rest of the paper. In Section 3 we consider the
forward map

F : θ 7→ u|ΓA

and, by adapting the techniques developed in [11, 12], we show that F is Fréchet differentiable at ΓI .
In Section 4 we study the linearized problem and discuss some stability properties, provided that

2H(x) + γ > 0 (1.2)

where H(x) is the mean curvature of the undamaged boundary ΓI . Let us observe that the hypothesis
(1.2) is well justified when, for instance, Ω models a 2D transverse section of a metallic plate being,
in that case, the curvature equal to zero. In particular, we prove a local uniqueness result for θ and a
Lipschitz stability result ‘à la Bellout and Friedman’ [4], by establishing that the Gâteaux derivative does
not vanish. Furthermore, we give a quantitative bound of the L1-norm of θ in an inner portion of ΓI in
terms of the solution u′ to the linearized problem on ΓA. Finally, we observe that the Fréchet differential
operator is compact over suitable spaces, hence the local identification issue of θ may be reformulated as
the regularized inversion of a compact operator.

2 Definitions and assumptions

Throughout this paper, let Ω be a bounded domain in R2. We will refer to Ω as the undamaged or
reference domain. As already stated in the Introduction, we consider an inverse problem for the elliptic
equation (1.1). Recall that γ is assumed to be a known positive constant.
We denote by Br the ball in R2 centerd in zero with radius r. We borrow from [10] the two following
definitions:

Definition 2.1. We shall say that the boundary ∂Ω of Ω is of Lipschitz class with constants r0, M > 0
if for every P ∈ ∂Ω there exists a rigid transformation of coordinates under which we have P = 0 and

Ω ∩Br0 = {(x, y) : y > g(x)},
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where
g : (−r0, r0) ⊂ R → R

fulfills g(0) = 0 and
‖g‖C0,1((−r0,r0)) 6 Mr0,

with the notation

‖g‖C0,1((−r0,r0)) = ‖g‖L∞((−r0,r0)) + r0 sup
x1,x2∈(−r0,r0)

x1 6=x2

|g(x1)− g(x2)|
|x1 − x2|

.

Definition 2.2. Given an integer k > 1 and a scalar α, 0 < α < 1, we shall say that a portion S of
∂Ω is of class Ck,α with constants r0, M > 0 if for any P ∈ S there exists a rigid transformation of
coordinates under which we have P = 0 and

Ω ∩Br0 = {(x, y) : y > ϕ(x)}

where
ϕ : (−r0, r0) ⊂ R → R

is a Ck,α function satisfying |D`ϕ(0)| = 0 for 0 6 ` 6 k and

‖ϕ‖Ck,α((−r0,r0)) 6 Mr0,

where we denote

‖ϕ‖Ck,α((−r0,r0)) =
k∑
j=0

‖Djϕ‖L∞((−r0,r0)) +

+r0
k+α sup

x1,x2∈(−r0,r0)
x1 6=x2

|Dkϕ(x1)−Dkϕ(x2)|
|x1 − x2|α

.

Hereafter, we list assumptions and a-priori informations that will hold true throughout this paper.

• Assumptions on the domain: Recall that Ω is a bounded domain in R2. We suppose that there
exist constants r0, M > 0, and 0 < α < 1, such that ∂Ω is of Lipschitz class with constants r0,M ,
see Definition 2.1, and that the portion of the boundary ΓI is of class C2,α with constants r0,M ,
see Definition 2.2.

• Assumptions on the prescribed current density: We assume that the flux φ is such that

‖φ‖
H−

1
2 (ΓA)

6 G

for some positive constant G.

• Assumptions on u: We assume that there exists a constant U > 0 such that

‖u‖C2(ΓI) 6 U . (2.1)

We observe that, based on the aforementioned assumptions on Ω and φ, the assumption (2.1) can
be fulfilled by limiting ourselves to particular geometries, as for instance a cylinder, or by supposing
that ΓI is a connected component of the boundary ∂Ω, see [10].

• A priori informations on θ: We suppose that θ is a vector in C1
0 (ΓI) such that if

θν(x) = θ(x) · ν(x) ≡ 0 , x ∈ ΓI

where ν(x) is the unit outward normal in x ∈ ΓI , then

θ(x) ≡ 0 x ∈ ΓI .
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Moreover, denoting with ϕ the acute angle such that

|θν | = |θ|| cos(ϕ)|

we assume that

| cos(ϕ)| > A > 0. (2.2)

In what follows, the constants r0,M, α,G, γ, U, A will be referred to as the a priori data.
Any sufficiently small vector field θ : ΓI 7→ R2, θ ∈ C1

0 (ΓI) induces a perturbation of ∂Ω which is still
the boundary of a domain that we denote with Ωθ, with

∂Ωθ = ΓA ∪ ΓD ∪ ΓI,θ

where
ΓI,θ = {z ∈ R2 : z = w + θ(w), w ∈ ΓI}.

For notational convenience, we will generally identify ΓI,θ with the vector field θ defining it; in particular,
the reference boundary ΓI corresponds to θ = 0. Furthermore, we denote by ν the outward normal to
the boundary ΓI , and by θν and θt the normal and tangential components of the field θ, respectively.

Definition 2.3. We shall denote with F the forward map

F : C1
0 (ΓI) → H

1
2 (ΓA) (2.3)

θ 7→ uθ|ΓA

where uθ ∈ H1
0 (Ω,ΓD) is the solution to the problem

∆uθ = 0 in Ωθ
∂uθ
∂ν

= φ on ΓA
∂uθ
∂ν

+ γuθ = 0 on ΓI,θ
u = 0 on ΓD.

(2.4)

With the help of the foregoing definition, we can state our boundary identification problem as the solution
on the nonlinear equation F (θ) = η for a given η = u|ΓA

, the trace on the accessible boundary ΓA of the
potential u that solves (1.1) with a prescribed flux φ.

3 Fréchet differentiability of the forward map

This section contains the main results of this paper. In the forthcoming theorem, we prove that the
forward map introduced in Definition 2.3 is Fréchet differentiable (for θ = 0), and provide the explicit
form of the derivative. In the subsequent corollary, we specialize this result to the case where Ω is a
rectangle, as considered in [9].

Theorem 3.1. The operator F in (2.3) is Fréchet differentiable at ΓI , namely

1
‖θ‖C1

0 (ΓI)

‖F (ΓI,θ)− F (ΓI)− F ′(ΓI)θ‖
H

1
2 (ΓA)

→ 0 as θ → 0

with derivative F ′(ΓI)θ = u′|ΓA
, where u′ is the solution to the following boundary value problem

∆u′ = 0 in Ω
∂u′

∂ν
= 0 on ΓA

∂u′

∂ν
+ γu′ =

d
ds

(
θν

d
ds

u

)
+ γθν (γ + 2H) u on ΓI

u′ = 0 on ΓD,

(3.1)

where H denotes the mean curvature of the boundary ΓI .

4



Proof. Let us recall that a weak solution to the problem (3.1) is a function u′ ∈ H1
0 (Ω,ΓD) such that∫

Ω

∇u′∇v +
∫

ΓI

γu′v = γ

∫
ΓI

θν(γ + 2H)uv −
∫

ΓI

θν
du

ds

dv

ds
(3.2)

for all v ∈ H1
0 (Ω,ΓD). Moreover, recall that the Sobolev space H1

0 (Ω,ΓD) is defined as follows:

H1
0 (Ω,ΓD) = {v ∈ H1(Ω) : v = 0 on ΓD in the trace sense}.

With a little abuse of notation, we denote by θ ∈ C1(Ω) a smooth prolongation of the original vector
field θ to the whole Ω which satisfies θ(x) = 0 on ΓA and ‖θ‖C1(Ω) 6 c‖θ‖C1

0 (ΓI) where c > 0 depends on
the a priori data only. Note that, with this convention, the theorem can be proved by showing the limit

‖uθ − u− u′‖
H

1
2 (ΓA)

‖θ‖C1(Ω)
→ 0

as ‖θ‖C1(Ω) → 0, where uθ is the solution of (2.4). Therefore, we introduce a change of variables defined
onto the unperturbed domain Ω:

ϕ : Ω → Ωθ, ϕ(x) = x + θ(x).

Then, consider the function ũθ = uθ ◦ ϕ and the bilinear form

Rθ(ũθ, v) :=
∫

Ω

(∇ũθJψJTψ∇v) detJϕ +
∫

ΓI

γũθv det J̃ϕ

for any v ∈ H1(Ω), where Jϕ denotes the Jacobian of ϕ, φ the inverse of ϕ with Jacobian Jψ and J̃ϕ the
Jacobian of ϕ with respect to the surface integral.
Since u and uθ have the same Neumann data φ on ΓA we conclude that

R(u, v) = Rθ(ũθ, v) ∀v ∈ H1
0 (Ω,ΓD), (3.3)

where
R(u, v) =

∫
Ω

∇u∇v +
∫

ΓI

γuv

is the bilinear form associated to (3.2).

The a priori regularity assumption (2.1) on u implies that d2u
d2s ∈ (H

1
2
00(ΓI))

∗ and hence there exists a
unique solution u′ ∈ H1

0 (Ω,ΓD) to the problem (3.1). We define w = u′ + θ · ∇u and we notice that
u′|ΓA

= w|ΓA
.

By the coercitivity of R it is sufficient to prove that

∀v ∈ H1
0 (Ω,ΓD),

1
‖θ‖C1(Ω)

R(ũθ − u− w, v) → 0

when θ tends to zero. By (3.3) we obtain that

R(u− ũθ, v) = Rθ(ũθ, v)−R(ũθ, v)

=
∫

Ω

∇ũθ(JψJTψ det Jϕ − I)∇v +
∫

ΓI

γ(det J̃ϕ − 1)ũθv. (3.4)

Dealing as in [11, Theorem 2.1] and [12] we can infer that

‖JψJTψ det Jϕ − I + Jθ + JTθ − div θI‖C0(Ω) = O(‖θ‖2
C1(Ω)), (3.5)

‖det J̃ϕ − 1− div θt + 2Hθν‖C0(ΓI) = O(‖θ‖2
C1(Ω)). (3.6)

By the estimates (3.5), (3.6) and by (3.4) we deduce by coercivity that

‖ũθ − u‖H1(Ω) → 0 as θ → 0.
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Therefore, due to the equation (3.4) it remains to prove that

R(w, v) =
∫

Ω

∇u(Jθ + JTθ − div θI)∇v +
∫

ΓI

γu(div θt − 2Hθν)v

for all v ∈ H1
0 (Ω,ΓD).

Since u′ is a solution to (3.1) we get from the boundary condition that

R(w, v) =
∫

Ω

∇(θ · ∇u)∇v −
∫

ΓI

γ

[
θ · ∇u− θν

(
∂u

∂ν
− 2Hu

)]
v

−
∫

ΓI

div(θν∇tu)v .

The formula
div (ν ×W ) = −ν · curlW

for a vector field W ∈ H1(Ω) yields to

R(w, v) =
∫

Ω

∇(θ · ∇u)∇v −
∫

ΓI

γθν2Huv +

−
∫

ΓI

γθt · (∇tu)v −
∫

ΓI

ν · curl (θν(∇u× ν))v.

The Green’s formula for test functions v ∈ H2(Ω) leads to

R(w, v) = −
∫

Ω

(θ · ∇u)∆v −
∫

ΓI

(θ · ∇u)
∂v

∂ν
−
∫

ΓI

γθν2Huv +

−
∫

ΓI

γθt · (∇tu)v −
∫

ΓI

ν · curl (θν(∇u× ν))v.

Moreover, according to the Green’s formula for a vector field W ∈ H2(Ω) and a scalar function v ∈ H1(Ω)
we have that ∫

∂Ω

ν · curlWv =
∫

Ω

curlW∇v =
∫
∂Ω

ν ×W∇v. (3.7)

Hence, by (3.7) with W = θν(∇u× ν), recalling that θ ∈ C1(Ω) and by Gauss theorem we deduce that

R(w, v) =
∫

Ω

div[(θ · ∇u)∇v + (θ · ∇v)∇u− (∇u · ∇v)θ]− (θ · ∇u)∆v +

+
∫

ΓI

[(θ · ∇v)∇u− θ(∇u · ∇v)] · ν −
∫

ΓI

γθν2Huv +

−
∫

ΓI

γθt · (∇tu)v +
∫

ΓI

θν∇tu · ∇tv.

By the formula (see [11])

∇u(Jθ + JTθ − divθI)∇v = div[(θ · ∇u)∇v + (θ · ∇v)∇u− (∇u · ∇v)θ] +
−(θ · ∇u)∆v

we conclude that

R(w, v) =
∫

Ω

∇u(Jθ + JTθ − div θI)∇v −
∫

ΓI

γθν2Huv +

−
∫

ΓI

γθt · (∇tu)v +
∫
γI

θt · ∇tv
∂u

∂ν
.

6



From the Robin boundary condition for u and the identity∫
ΓI

γθt · (∇tuv) = −
∫

ΓI

γuv div θt

for the surface gradient we obtain the thesis.

Corollary 3.2. Let Ω = (0, a) × (0, b) be such that ΓA = (0, a) × {0}, ΓI = (0, a) × {b}, ΓD = {0} ×
(0, b) ∪ {a} × (0, b) and let θ = (θ1, θ2) ∈ C1

0 ((0, a)). Hence u′ ∈ H1(Ω) is the solution to
∆u′ = 0 in Ω
u′(0, y) = u′(a, y) = 0 y ∈ (0, b)
u′y(x, b) + γu′(x, b) = β(x) x ∈ (0, a)
u′y(x, 0) = 0 x ∈ (0, a)

where β(x) = −θ2(x)
(
uyy(x, b)− γ2u(x, b)

)
+ θ′2(x)ux(x, b).

Proof. The claim follows from Theorem 3.1, noticing that in this special geometry we have θν = θ2,
H = 0, and the solution u of problem (1.1) is harmonic up to the boundary ΓI .

4 Applications

In this section we prove some consequences of our main results in the previous section, which are relevant
for the analysis and numerical solution of our boundary identification problem. Indeed, Theorem 4.2
proves that the “domain derivative” operator F ′(ΓI) is injective, under some reasonable hypotheses.
This fact is relevant to conclude that the solution of our inverse problem is identifiable (i.e., unique
whenever it exists), at least for sufficiently small perturbations. Moreover, Theorem 4.3 and Theorem
4.4 give two “local stability” results. In particular, in Theorem 4.4 we prove a lower bound for θ on a
suitable portion of ΓI in terms of u|ΓA

= F ′θ, thus showing that the inversion of F ′ is not too much
ill-behaved, at least in the conditions stated therein.
From a computational point of view, the availability of the expression of the operator F ′ allows to tackle
the solution of the boundary identification problem by a regularized Newton-type iteration. In this case,
the main computational task consists of the solution of a sequence of linear operator equations, associated
to the operator F ′. The ill-posed character of these linearized problems is clarified by Theorem 4.5.
Hereafter, we denote by ΓρI a portion of the boundary ΓI sufficiently distant from its endpoints; more
precisely, given ρ > 0, we set

ΓρI = {x ∈ ΓI : dist(x, ∂ΓI) > ρ}.

Lemma 4.1. Let φ ∈ Lp(ΓA), p > 2, be a non-negative a.e. function and let u the solution to the problem
(1.1). Then we have that

u(x) > 0 ∀x ∈ ΓI .

Proof. For the proof we refer to [8, Lemma 2]. Moreover, we observe that the arguments in [3, Proposition
2.3] leading to a quantitative control of the vanishing rate of u, in the more difficult case when φ has a
variable sign, might be adapted in order to achieve the estimate

u(x) > cρ ∀x ∈ ΓρI , (4.1)

where cρ is a positive constant depending on the a-priori data and on ρ only.

Theorem 4.2 (Injectivity of F ′). Let the hypothesis of Lemma 4.1 be satisfied. Let us assume that
2H(x) + γ > 0 and θν(x) 6 0 for any x ∈ ΓI . Then F ′ is injective.

Proof. Let us suppose that F ′θ = 0. By Holmgren unique continuation theorem, we have that u′ ≡ 0 in
Ω. Hence by (3.1) and by the a-priori regularity assumption (2.1) we have that

d
ds

(
θν

d
ds

u

)
= −γθν(γ + 2H)u on ΓI .
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By Lemma 4.1 we have that
d
ds

(
θν

d
ds

u

)
< 0 on ΓI

and thus θν
d
dsu is decreasing in ΓI . Since θ ∈ C1

0 (ΓI) we have that θν
d
dsu = 0 on ∂ΓI and thus by the

monotonicity we infer that θν
d
dsu ≡ 0 in ΓI . This implies that

0 ≡ d

ds

(
θν

d

ds
u

)
= −γθν(γ + 2H)u on ΓI .

Hence by Lemma 4.1 and by the hypothesis we deduce that θν ≡ 0 and thus θ ≡ 0.

Theorem 4.3 (Local Lipschitz stability). Let the hypothesis of Lemma 4.1 be satisfied and let 2H(x)+
γ > 0 for any x ∈ ΓI .
Given θ̄ ∈ C1

0 (ΓI) such that θ̄ν = θ̄ · ν 6 0 and given h ∈ (h0, h0) with h0 > 0, we set θh = h · θ̄. Denoting
by uh the solution to (2.4) with uθ and θ = θh we have that

lim
h→0

‖uh − u‖
H

1
2 (ΓA)

|h|
> 0. (4.2)

Proof. By Theorem 3.1 we can infer that there exists ε(h) ∈ H1
0 (Ω) such that

uh = u + hv′ + ε(h) (4.3)

where ‖ε(h)‖H1
0 (Ω) → 0 as h → 0 and where v′ ∈ H1

0 (Ω) is the weak solution to (1.1) with u′ = v′ and
θ = θ̄. According to (4.3), we have that (4.2) is equivalent to

‖v′‖
H

1
2 (ΓA)

> 0 .

Let us assume that v′ = 0 on ΓA. Then, arguing as in Theorem 4.2, we will obtain that

γθ̄ν(γ + 2H)u ≡ 0 on ΓI .

This would imply that u vanishes in a set of positive measure of ΓI , which is in contradiction with Lemma
4.1.

Theorem 4.4. Let the hypothesis of Lemma 4.1 be satisfied. Moreover, let us assume that 2H(x)+γ > 0
and θν 6 0 for any x ∈ ΓI . Then, for any ρ > 0 there exists a positive constant Cρ depending on the
a-priori data and on ρ only such that

‖u′‖
H

1
2 (ΓA)

> Cρ

∫
Γρ

I

|θ|.

Proof. From the weak formulation of the problem (3.1), which is shown in (3.2), we have that∫
Ω

∇u′∇u = −
∫

ΓI

γu′u + γ2

∫
ΓI

θνu
2 + γ

∫
ΓI

θν2Hu2 +
∫

ΓI

θν

(
du

ds

)2

.

On the other hand, we have that ∫
Ω

∇u′∇u = −
∫

ΓI

γu′u +
∫

ΓA

u′
∂u

∂ν
.

Combining the last two equalities we have that∫
ΓA

u′
∂u

∂ν
= γ2

∫
ΓI

θνu
2 + γ

∫
ΓI

θν2Hu2 +
∫

ΓI

θν

(
du

ds

)2

.
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By the Schwartz inequality and the hypotheses, we infer that

‖u′‖
H

1
2 (ΓA)

‖φ‖
H−

1
2 (ΓA)

>

∣∣∣∣∣
∫

ΓI

γθν(γ + 2H)u2 +
∫

ΓI

θν

(
du

ds

)2
∣∣∣∣∣

>
∫

ΓI

|γθν(γ + 2H)|u2

>
∫

Γρ
I

|γθν(γ + 2H)|u2.

By the estimates (4.1) and (2.2), we infer that there exists a constant Cρ > 0 depending on the a priori
data and on ρ only such that

‖u′‖
H

1
2 (ΓA)

> Cρ

∫
Γρ

I

|θ|,

and the proof is complete.

Theorem 4.5. The linear operator

F ′(ΓI) : C1
0 (ΓI) → L2(ΓA)

θ 7→ u′|ΓA

is compact.

Proof. Let us first prove that F ′(ΓI) as operator from C1
0 (ΓI) to H

1
2 (ΓA) is bounded. In what follows,

we will denote by C a generic positive constant depending on the a-priori data only, whose value may
change from one occurrence to another.
By the weak formulation (3.2) with v = u′ we have that∫

Ω

|∇u′|+ γ

∫
ΓI

|u′|2 = γ

∫
ΓI

θν(γ + 2H)uu′ −
∫

ΓI

θν
du′

ds

du

ds
.

By a Poincaré type inequality we have that there exists a constant C such that

‖u′‖2
H1(Ω) 6 C1

(
γ

∫
ΓI

θν(γ + 2H)u′u−
∫

ΓI

θν
du′

ds

du

ds

)
.

Moreover, by the a priori hypothesis (2.1) and the continuous embedding H2(ΓI) ↪→ C1(ΓI) (see for
instance [1, Chap. 8]) we have that

‖u′‖2
H1(Ω) 6 C‖u′‖C1(ΓI)

(
γ

∫
ΓI

|θν(γ + 2H)u′|+
∫

ΓI

∣∣∣∣θν du′

ds

∣∣∣∣)
6 C

(∫
ΓI

|θν(γ + 2H)u′|+
∫

ΓI

∣∣∣∣θν du′

ds

∣∣∣∣) .

Furthermore, by the Schwartz inequality and standard trace inequality we have that

‖u′‖2
H1(Ω) 6 C

(
‖θ‖2

L2(ΓI)

ε
+ ε‖u′‖2

H1(Ω)

)
.

Hence, choosing ε = 1
2C (with the same C of the previous formula), we deduce that

‖u′‖2
H1(Ω) 6 C‖θ‖2

C1
0 (ΓI).

Finally, by a standard trace inequality, we deduce that

‖u′‖2

H
1
2 (ΓA)

6 C‖θ‖2
C1

0 (ΓI).

Hence F ′ : C1
0 (ΓI) → H

1
2 (ΓA) is bounded. The thesis follows immediately by the compact embedding

H
1
2 (ΓA) ↪→ L2(ΓA),

see for instance [1, Chap. 8].
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We observe that, in view of the above theorem, the issue of the identification of θ may be reformulated
as the regularized inversion of a compact operator. Such kind of reformulation allows the use of singular
values decomposition and the approximate inversion by the technique of Tikhonov regularization.
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