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In this paper, we investigate the model checking (MC) problem for Halpern and Shoham’s inter-
val temporal logic HS. In the last years, interval temporal logic MC has received an increasing
attention as a viable alternative to the traditional (point-based) temporal logic MC, which can be
recovered as a special case. Most results have been obtained under the homogeneity assumption,
that constrains a proposition letter to hold over an interval if and only if it holds over each com-
ponent state. Recently, Lomuscio and Michaliszyn proposed a way to relax such an assumption by
exploiting regular expressions to define the behaviour of proposition letters over intervals in terms
of their component states. When homogeneity is assumed, the exact complexity of MC is a difficult
open question for full HS and for its two syntactically maximal fragments AABBE and AAEBE. In
this paper, we provide an asymptotically optimal bound to the complexity of these two fragments
under the more expressive semantic variant based on regular expressions by showing that their MC
problem is AEXPpol-complete, where AEXPpol denotes the complexity class of problems decided
by exponential-time bounded alternating Turing Machines making a polynomially bounded number
of alternations.

1 Introduction

Model checking (MC), which allows one to automatically check whether a model of a given system
satisfies a desired behavioural property, is commonly recognized as one of the most effective techniques
in automatic system verification. Besides in formal verification, it has been successfully used also in more
general contexts (e.g., databases, planning, configuration systems, multi-agent systems [12, 11, 18]).
The actual possibility of exploiting MC relies on a good balance of expressiveness and complexity in
the choice of the system model and of the language for specifying behavioural properties. Systems are
usually modeled as finite state-transition graphs (finite Kripke structures), while properties are commonly
expressed by formulas of point-based temporal logics, such as LTL, CTL, and CTL⇤ [25, 9].

In this paper, we focus on MC with interval temporal logic (ITL) as the specification language. ITL
features intervals, instead of points, as its primitive temporal entities [13, 24, 28]. ITL allows one to
deal with relevant temporal properties, such as actions with duration, accomplishments, and temporal
aggregations, which are inherently “interval-based” and cannot be properly expressed by point-based
temporal logics. ITL has been fruitfully applied in various areas of computer science, including formal
verification, computational linguistics, planning, and multi-agent systems [24, 26, 15].

Among ITLs, the landmark is Halpern and Shoham’s modal logic of time intervals HS [13], which
features one modality for each of the 13 ordering relations between pairs of intervals (the so-called
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2 Complexity of Model Checking for Maximal Fragments of HS with Regular Expressions

Allen’s relations [1]), apart from equality. (Actually, the three Allen’s modalities meets A, started-by B,
and finished-by E, together with the corresponding inverse modalities A, B, and E, suffice for expressing
the entire set of relations.) The satisfiability problem for HS is undecidable over all relevant classes of
linear orders [13], and most of its fragments (with meaningful exceptions) are undecidable as well [7, 19].

The MC problem for HS and its fragments consists in the verification of the correctness of the be-
haviour of a given system with respect to interval properties expressed in HS. Each finite computation
path is interpreted as an interval, and its labelling is defined on the basis of the labelling of the states
occurring in the path. Most results have been obtained by imposing suitable restrictions on proposition
letters labeling intervals: either a proposition letter can be constrained to hold over an interval if and
only if it holds over each component state (homogeneity assumption [27]), or interval labeling can be
defined in terms of the labeling of interval endpoints. An almost complete picture of the MC problem for
full HS and its fragments has been recently depicted with the contribution of many works by Molinari
et al. [20, 21, 22, 4, 6, 20, 23], which all consider MC over finite Kripke structures for HS endowed
with a state-based semantics (allowing branching both in the past and in the future) enforcing the ho-
mogeneity assumption. The summary of these results is depicted in the second column of Table 1 (the
first column reports the fragments of HS denoted by the list of the featured modalities). The complexity
classes shown in red represent new (upper/lower) bounds to the complexity of the problem deriving from
the results of this paper, while the other classes (in black) are known bounds. Only few, hard issues
are left open in this picture, mostly regarding the precise complexity of the full logic and its maximal
fragments. A comparison of different semantics solutions (i.e., state-based semantics, linear seman-
tics and computation-tree-based semantics), together with an expressiveness comparison with standard
point-based temporal logics LTL, CTL, and CTL⇤ can be found in [5].

Different assumptions have been done by Lomuscio and Michaliszyn in [15, 16] for some HS frag-
ments extended with epistemic operators (KC). They assume a computation-tree-based semantics (for-
mulae are interpreted over the unwinding of the Kripke structure) and interval labeling takes into account
only the endpoints of intervals. The different semantic assumptions prevent any immediate comparison
with respect to the former approach. The decidability status of MC for full epistemic HS is still unknown.
(A summary of the results by Lomuscio and Michaliszyn is depicted in the last column of Table 1.)

The first meaningful attempt to relax the homogeneity assumption can be found in [17], where Lo-
muscio and Michaliszyn propose to use regular expressions to define the labeling of proposition letters
over intervals in terms of the component states. Note that the homogeneity assumption can be trivially
encoded by regular expressions. In that work, the authors prove the decidability of MC with regular
expressions for some very restricted fragments of epistemic HS, giving some rough upper bounds to its
computational complexity. A deeper insight into the problem of MC for HS with regular expressions can
be found in [3] where, under the assumption of a state-based semantics, it is proved that MC with regular
expressions for full HS is decidable, and that a large class of HS fragments can be checked in polynomial
working space (see the third column of Table 1).

In this paper, we study the problems of MC for the two (syntactically) maximal (symmetric) frag-
ments AABBE and AAEBE with regular expressions, which are not covered by [3], proving that the
complexity of both problems is AEXPpol-complete. AEXPpol denotes the complexity class of problems
decided by exponential-time bounded alternating Turing Machines with a polynomially bounded number
of alternations. Such a class captures the precise complexity of some relevant problems [2, 10] (e.g., the
first-order theory of real addition with order [10]). First, we note that settling the exact complexity of
these fragments under the homogeneity assumption (which can be encoded by regular expressions) is
a difficult open question [22]. Moreover, considering that AEXPpol ✓ EXPSPACE and that HS under
homogeneity is subsumed by HS with regular expressions, the results proved in this paper improve the
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Table 1: Complexity of MC for HS and its fragments (†local MC).
Homogeneity Regular expressions [15] – [17]

Full HS, BE
non-elem. non-elem. BE+KC†: PSPACE

EXPSPACE-hard EXPSPACE-hard BE†: P

AABBE,AAEBE
2 EXPSPACE [2 AEXPpol] non-elem PSPACE-hard

PSPACE-hard [AEXPpol-complete]

AABE PSPACE-complete
non-elem [2 AEXPpol]

PSPACE-hard

AABB,BB,B,
PSPACE-complete PSPACE-complete AB+KC: non-elem.

AAEE,EE,E

AAB,AAE,AB,AE PNP-complete PSPACE-complete

AA,AB,AE,A,A
2 PNP[O(log2 n)]

PSPACE-complete
PNP[O(logn)]-hard

Prop,B,E co-NP-complete PSPACE-complete

upper bounds for the fragments AABBE and AAEBE given in [22].
Such results are obtained by preliminarily establishing an exponential-size model-trace property: for

each interval, it is possible to find an interval of bounded exponential length that is indistinguishable
with respect to the fulfillment of AABBE formulas (resp., AAEBE). Such a property allows us to devise
a MC procedure belonging to the class AEXPpol. Finally, the matching lower bounds are obtained by
polynomial-time reductions from the so-called alternating multi-tiling problem, and they already hold
for the fragments BE and EB of AABBE and AAEBE, respectively.

The paper is structured as follows. In Section 2, we introduce the logic HS and provide some back-
ground knowledge. In Section 3 we prove the exponential-size model-trace property for AABBE. In
Section 4, we provide an AEXPpol upper bound to the MC problem for AABBE. Finally, in Section 5,
we prove the hardness of the fragment BE. Similar proofs can be given for establishing the AEXPpol-
completeness of AAEBE, and the AEXPpol-hardness of EB. Due to space constraints, most of the proofs
are reported in the appendix.

2 Preliminaries

We introduce some preliminary notation. Let N be the set of natural numbers. For all i, j 2N, with i  j,
[i, j] denotes the set of natural numbers h such that i  h  j. Let S be an alphabet and w be a finite word
over S. We denote by |w| the length of w. By e we denote the empty word. For all 1  i  j  |w|, w(i)
denotes the i-th letter of w, while w(i, j) denotes the finite subword of w given by w(i)w(i+1) · · ·w( j).
For |w| = n, we define fst(w) = w(1) and lst(w) = w(n). The sets of all proper prefixes and suffixes
of w are Pref(w) = {w(1, i) | 1  i  n� 1} and Suff(w) = {w(i,n) | 2  i  n}, respectively. The
concatenation of two words w and w0 is denoted as usual by w ·w0. Moreover, if lst(w) = fst(w0), w?w0

represents w(1,n�1) ·w0, where n = |w| (?-concatenation).

2.1 Kripke structures, regular expressions, and finite automata

Finite state systems are usually modelled as finite Kripke structures. Let AP be a finite set of proposition
letters, which represent predicates decorating the states of the given system.

Definition 1 (Kripke structure). A Kripke structure over AP is a tuple K = (AP ,S,R,µ,s0), where S is a
set of states, R ✓ S⇥S is a transition relation, µ : S 7! 2AP is a total labelling function assigning to each
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Table 2: Allen’s relations and corresponding HS modalities.
Allen relation HS Definition w.r.t. interval structures Example

x y
v z

v z
v z

v z
v z

v z

MEETS hAi [x,y]RA[v,z] () y = v
BEFORE hLi [x,y]RL[v,z] () y < v

STARTED-BY hBi [x,y]RB[v,z] () x = v^ z < y
FINISHED-BY hEi [x,y]RE [v,z] () y = z^ x < v

CONTAINS hDi [x,y]RD[v,z] () x < v^ z < y
OVERLAPS hOi [x,y]RO[v,z] () x < v < y < z

state s the set of propositions that hold over it, and s0 2 S is the initial state. K is said finite if S is finite.

Let K = (AP ,S,R,µ,s0) be a Kripke structure. A trace (or finite path) of K is a non-empty finite
word r over S such that (r(i),r(i+ 1)) 2 R for all i 2 [1, |r|� 1]. A trace is initial if it starts from
the initial state s0. A trace r induces the finite word µ(r) over 2AP given by µ(r(1)) · · ·µ(r(n)) with
n = |r|. We call µ(r) the labeling sequence induced by r .

Let us recall now the class of regular expressions over finite words. Since we are interested in
expressing requirements over the labeling sequences induced by the traces of Kripke structures, which
are finite words over 2AP , here we consider propositional-based regular expressions (RE), where the
atomic expressions are propositional formulas over AP instead of letters over an alphabet. Formally, the
set of RE r over AP is defined as r ::= e | f | r[ r | r · r | r⇤, where f is a propositional formula over AP .
The size |r| of an RE r is the number of subexpressions of r. An RE r denotes a language L (r) of finite
words over 2AP defined as:

• L (e) = {e} and L (f) = {A 2 2AP | A satisfies f};
• L (r1 [ r2) = L (r1)[L (r2), L (r1 · r2) = L (r1) ·L (r2), and L (r⇤) = (L (r))⇤.

We also recall the class of nondeterministic finite automata over finite words (NFA). An NFA is a
tuple A = (S,Q,Q0,D,F), where S is a finite alphabet, Q is a finite set of states, Q0 ✓ Q is the set of
initial states, D ✓ Q⇥S⇥Q is the transition relation, and F ✓ Q is the set of accepting states. An NFA
A is complete if, for all (q,s) 2 Q⇥S, (q,s ,q0) 2 D for some q0 2 Q. Given a finite word w over S with
|w|= n and two states q,q0 2 Q, a run of A from q to q0 over w is a sequence of states q1, . . . ,qn+1 such
that q1 = q, qn+1 = q0, and for all i 2 [1,n], (qi,w(i),qi+1) 2 D. The language L (A ) accepted by A is
the set of finite words w on S s.t. there is a run from some initial state to some accepting state over w.
Remark 2. Given a RE r, by a standard construction [14], one can compositionally construct a complete
NFA Ar with alphabet 2AP , whose number of states is linear in the size of r. We call Ar the canonical
NFA associated with r.

2.2 The interval temporal logic HS

A systematic logical study of interval representation and reasoning was proposed by J. Y. Halpern and
Y. Shoham, who introduced the interval temporal logic HS [13] featuring one modality for each Allen
relation [1], but equality. Table 2 depicts 6 of the 13 Allen’s relations, together with the corresponding
HS (existential) modalities. The other 7 relations are the 6 inverse relations (given a binary relation R ,
its inverse R is such that bR a iff aR b) and equality.

Given a finite set Pu of uninterpreted interval properties, the HS language over Pu consists of propo-
sitions from Pu, the Boolean connectives ¬ and ^, and a temporal modality for each of the (non trivial)
Allen’s relations, i.e., hAi, hLi, hBi, hEi, hDi, hOi, hAi, hLi, hBi, hEi, hDi, and hOi. HS formulas are
defined by the grammar y ::= pu | ¬y | y ^y | hXiy , where pu 2 Pu and X 2 {A,L,B,E,D,O,A,L,B,E,
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D,O}. We also exploit the standard logical connectives (disjunction _ and implication !) as abbrevi-
ations. Furthermore, for any existential modality hXi, the dual universal modality [X ]y is defined as
¬hXi¬y . An HS formula j is in positive normal form (PNF) if negation is applied only to atomic
formulas in Pu. By using De Morgan’s laws and for any existential modality hXi, the dual universal
modality [X ], we can convert in linear-time an HS formula j into an equivalent formula in PNF, called
the PNF of j . For a formula j in PNF, the dual ej of j is the PNF of ¬j .

Given any subset of Allen’s relations {X1, . . . ,Xn}, we denote by X1 · · ·Xn the HS fragment closed
under Boolean connectives that features (existential and universal) modalities for X1, . . . ,Xn only.

Without loss of generality, we assume the non-strict semantics of HS, which admits intervals con-
sisting of a single point. (All the results we prove in the paper hold for the strict semantics as well.)
Under such an assumption, all HS modalities can be expressed in terms of modalities hBi,hEi,hBi, and
hEi [28]. HS can, thus, be viewed as a multi-modal logic with 4 primitive modalities. However, since
we focus on the HS fragments AAEBE and AABBE, that do not feature hBi and hEi respectively, we
also consider the modalities hAi and hAi. Note that the modalities hLi and hOi (resp., hLi and hOi)
can be expressed in the fragment AAEBE (resp., AABBE). As for the semantics of HS, in this paper
we follow the approach of [3], where the intervals correspond to the traces of a finite Kripke structure
K (state-based semantics) and each abstract interval proposition pu 2 Pu denotes a regular language of
finite words over 2AP . More specifically, every abstract interval proposition pu is a (propositional-based)
regular expression over AP . Thus, in the following, for the sake of simplicity, by an HS formula over AP
we mean an HS formula whose abstract interval propositions (or atomic formulas) are RE over AP .

Given a Kripke structure K = (AP ,S,E,µ,s0) over AP , a trace r of K , and an HS formula j over
AP , the satisfaction relation K ,r |= j is inductively defined as follows (we omit the standard clauses for
the Boolean connectives):

K ,r |= r , µ(r) 2 L (r) for each RE r over AP ,
K ,r |= hBij , there exists r

0 2 Pref(r) such that K ,r 0 |= j,
K ,r |= hEij , there exists r

0 2 Suff(r) such that K ,r 0 |= j,
K ,r |= hBij , K ,r 0 |= j for some trace r

0 such that r 2 Pref(r 0),
K ,r |= hEij , K ,r 0 |= j for some trace r

0 such that r 2 Suff(r 0),
K ,r |= hAij , K ,r 0 |= j for some trace r

0 such that fst(r 0) = lst(r),
K ,r |= hAij , K ,r 0 |= j for some trace r

0 such that lst(r 0) = fst(r).

K is a model of j , denoted K |= j , if for all initial traces r of K , it holds that K ,r |= j . The MC
problem for HS is checking, for a finite Kripke structure K and an HS formula j , whether K |= j or not.

Note that the state-based semantics provides a branching-time setting both in the past and in the
future. In particular, while the modalities for B and E are linear-time (they allow us to select prefixes
and suffixes of the current trace), the modalities for A and B (resp., A and E) are branching-time in the
future (resp., in the past) since they allow us to nondeterministically extend a trace in the future (resp.,
in the past). As shown in [5], for the considered semantics, the logics HS and CTL⇤ are expressively
incomparable already under the homogeneity assumption. However, under the homogeneity assumption,
the use of the past branching-time modalities A and E is necessary for capturing requirements which
cannot be expressed in CTL⇤. For instance, the requirement “each state reachable from the initial one
where p holds has a predecessor where p holds as well” cannot be expressed in CTL⇤, but can be easily
expressed in the fragment AE [5]. In the more expressive setting based on regular expressions, the future
branching-time modalities A and B are already sufficient for capturing requirements which cannot be
expressed in CTL⇤, such as the following branching-time bounded response property: “for each state
reachable from the initial one where a request req occurs, there is a computation from this state such
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that the request is followed by a response res within an even number of steps”. This requirement can be
expressed in the fragment AB as follows: [A](req ! hBi(req · (> ·>)⇤ · res)).

In the rest of the paper, we focus on the fragment AABBE. Analogous constructions and results can
be symmetrically given for the fragment AAEBE as well.

3 Exponential-size model-trace property of AABBE

In this section, we show an exponential-size model-trace property for AABBE, which will be used as
the basic step to prove that the MC problem for AABBE belongs to AEXPpol. Fix a Kripke structure
K = (AP ,S,R,µ,s0) and a finite set spec= {r1, . . . ,rH} of (propositional-based) regular expressions over
AP : such a property ensures that for each h � 0 and trace r of K , it is possible to build another trace r

0

of K , of bounded exponential length, which is indistinguishable from r with respect to the fulfilment of
any AABBE formula j having atomic formulas in spec and nesting depth of the modality hBi at most
h (written dB(j)  h). Formally, dB(j) is inductively defined as follows (i) dB(r) = 0, for any RE r
over AP ; (ii) dB(¬y) = dB(y); (iii) dB(y ^f) = max{dB(y),dB(f)}; (iv) dB(hBiy) = 1+dB(y); (v)
dB(hXiy) = dB(y), for X 2 {A,A,B,E}.

In order to state the result, we first introduce the notion of h-prefix bisimilarity between a pair of
traces r and r

0 of K . As proved by Proposition 8 below, h-prefix bisimilarity is a sufficient condition for
two traces r and r

0 to be indistinguishable with respect to the fulfillment of any AABBE formula j over
spec with dB(j)  h. Then, for a given trace r , we show how to determine a subset of positions of r ,
called the h-prefix sampling of r , that allows us to build another trace r

0 with singly exponential length
(both in h and |spec|, where |spec| is defined as Âr2spec |r|) such that r and r

0 are h-prefix bisimilar.
For any regular expression r` in spec with ` 2 [1,H], let A` = (2AP ,Q`,Q0

` ,D`, F̀ ) be the canonical
(complete) NFA accepting L (r`) (recall that |Q`|  2|r`|). Without loss of generality, we assume that
the sets of states of these automata are pairwise disjoint.

The notion of prefix bisimilarity exploits the notion of summary of a trace r of K , namely a tuple
“recording” the initial and final states of r , and, for each automaton A` with ` 2 [1,H], the pairs of states
q,q0 2 Q` such that some run of A` over µ(r) takes from q to q0.

Definition 3 (Summary of a trace). Let r be a trace of K with |r|= n. The summary S (r) of r (w.r.t.
spec) is the triple (r(1),P,r(n)), where P is the set of pairs (q,q0) such that there is ` 2 [1,H] so that
q,q0 2 Q` and there is a run of A` from q to q0 over µ(r).

Note that the number of summaries is at most |S|2 ·2(2|spec|)2 . Evidently, the following holds.

Proposition 4. Let h � 0, and r and r

0 be two traces of K such that S (r) = S (r 0). Then, for all
regular expressions r 2 spec and traces rL and rR of K such that rL ? r and r ? rR are defined, the
following conditions hold:
(1) µ(r) 2 L (r) iff µ(r 0) 2 L (r); (2) S (rL ?r) = S (rL ?r

0); (3) S (r ?rR) = S (r 0 ?rR).

We now introduce the notion of prefix bisimilarity between a pair of traces r and r

0 of K .

Definition 5 (Prefix bisimilarity). Let h � 0. Two traces r and r

0 of K are h-prefix bisimilar (w.r.t. spec)
if the following conditions inductively hold:

• for h = 0: S (r) = S (r 0);
• for h > 0: S (r) = S (r 0) and for each proper prefix n of r (resp., proper prefix n

0 of r

0), there
exists a proper prefix n

0 of r

0 (resp., proper prefix n of r) such that n and n

0 are (h� 1)-prefix
bisimilar.

Property 6. For all h � 0, h-prefix bisimilarity is an equivalence relation over traces of K .
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The h-prefix bisimilarity of two traces r and r

0 is preserved by right (resp., left) ?-concatenation
with another trace of K (the proof is reported in Appendix A.1).

Proposition 7. Let h � 0, and r and r

0 be two h-prefix bisimilar traces of K . Then, for all traces rL and
rR of K such that rL ?r and r ?rR are defined, the following holds:
(1) rL ?r and rL ?r

0 are h-prefix bisimilar; (2) r ?rR and r

0 ?rR are h-prefix bisimilar.

By exploiting Propositions 4 and 7, we can prove that h-prefix bisimilarity preserves the fulfillment
of AABBE formulas over spec having nesting depth of modality hBi at most h.

Proposition 8. Let h � 0, and r and r

0 be two h-prefix bisimilar traces of K . Then, for each AABBE
formula y over spec with dB(y) h, K ,r |= y iff K ,r 0 |= y .

Proof. We prove the proposition by a nested induction on the structure of the formula y and on the
nesting depth dB(y). For the base case, y is a regular expression in spec. Since S (r) = S (r 0) (r and
r

0 are h-prefix bisimilar) the result follows by Proposition 4. Now, let us consider the inductive case. The
cases where the root modality of y is a Boolean connective directly follow by the inductive hypothesis.
As for the cases where the root modality is either hAi or hAi, the result follows from the fact that, being
r and r

0 h-prefix bisimilar, fst(r) = fst(r 0) and lst(r) = lst(r 0). It remains to consider the cases where
the root modality is in {hBi,hBi,hEi}. We prove the implication K ,r |= y ) K ,r 0 |= y (the converse
implication being similar). Let K ,r |= y .

• y = hBij: since 0 < dB(y) h, it holds that h > 0. Since K ,r |= hBij , there is a proper prefix
n of r such that K ,n |= j . Since r and r

0 are h-prefix bisimilar, there is a proper prefix n

0 of r

0

such that n and n

0 are (h�1)-prefix bisimilar. Being dB(j)  h�1, by the inductive hypothesis
we obtain that K ,n 0 |= j . Hence, K ,r 0 |= hBij: the thesis follows.

• y = hBij: since K ,r |= hBij , there is a trace rR such that |rR| > 1 and K ,r ? rR |= j . By
Proposition 7, r ?rR and r

0?rR are h-prefix bisimilar. By the inductive hypothesis on the structure
of the formula, we obtain that K ,r 0 ?rR |= j , hence, K ,r 0 |= hBij .

• y = hEij: this case is similar to the previous one.

In the following, we show how a trace r , whose length exceeds a suitable exponential bound—
precisely, (|S| ·2(2|spec|)2

)h+2—can be contracted preserving h-prefix bisimilarity and, consequently, ful-
fillment of formulas j with dB(j) h. The basic contraction step of r is performed by choosing a subset
of r positions called h-prefix sampling (PSh). A contraction can be performed whenever there are two
positions ` < `0 satisfying S (r(1,`)) = S (r(1,`0)) in between two consecutive positions in the linear
ordering of PSh. We prove that by taking the contraction r

0 = r(1,`) ·r(`0+ 1, |r|), we obtain a trace
of K which is h-prefix bisimilar to r . The basic contraction step can then be iterated over r

0 until the
length bound is reached.

The notion of h-prefix sampling is inductively defined using the notion of prefix-skeleton sampling.
For a set I of natural numbers, by “two consecutive elements of I” we refer to a pair of elements i, j 2 I
such that i < j and I \ [i, j] = {i, j}.

Definition 9 (Prefix-skeleton sampling). Let r be a trace of K . Given two r-positions i and j, with i  j,
the prefix-skeleton sampling of r in the interval [i, j] is the minimal set Pos ◆ {i, j} of r-positions in the
interval [i, j] satisfying:

• for each k 2 [i+1, j�1], the minimal position k0 2 [i+1, j�1] such that S (r(1,k0))=S (r(1,k))
is in Pos.

It immediately follows from Definition 9 that the prefix-skeleton sampling Pos of (any) trace r in an
interval [i, j] of r-positions is such that |Pos| (|S| ·2(2|spec|)2

)+2.
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Definition 10 (h-prefix sampling). Let h � 0. The h-prefix sampling of a trace r of K is the minimal set
PSh of r-positions inductively satisfying the following conditions:

• Base case: h = 0. PS0 = {1, |r|};
• Inductive step: h > 0. (i) PSh ◆ PSh�1 and (ii) for all pairs of consecutive positions i, j in PSh�1,

the prefix-skeleton sampling of r in the interval [i, j] is in PSh.
Let i1 < .. . < iN be the ordered sequence of positions in PSh (note that i1 = 1 and iN = |r|). The

h-sampling word of r is the sequence of summaries S (r(1, i1)) · · ·S (r(1, iN)).

The following upper bound to the cardinality of prefix samplings holds.

Property 11. The h-prefix sampling PSh of a trace r of K is such that |PSh| (|S| ·2(2|spec|)2
)h+1.

The following lemma (proved in Appendix A.2) shows that for two traces, the property of having the
same h-sampling word, is a sufficient condition to be h-prefix bisimilar.

Lemma 12. For h � 0, two traces having the same h-sampling word are h-prefix bisimilar.

By exploiting the sufficient condition of Lemma 12, we can finally state the exponential-size model-
trace property for AABBE. In the proof of Theorem 14 below, it is shown how to derive from any trace r

of K , an h-prefix bisimilar trace r

0 induced by r (in the sense that r

0 is obtained by contracting r , i.e., by
concatenating subtraces of r in an ordered way) such that |r 0| (|S| ·2(2|spec|)2

)h+2. By Proposition 8, r

0

is indistinguishable from r w.r.t. the fulfilment of any AABBE formula j over the set of atomic formulas
in spec such that dB(j) h. We preliminarily define the notion of induced trace (note that if p is induced
by r , then fst(p) = fst(r), lst(p) = lst(r), |p| |r|, and |p|= |r| iff p = r).

Definition 13 (Induced trace). Let r be a trace of K of length n. A trace induced by r is a trace p

of K such that there exists an increasing sequence of r-positions i1 < .. . < ik, with i1 = 1, ik = n, and
p = r(i1) · · ·r(ik).
Theorem 14 (Exponential-size model-trace property for AABBE). Let r be a trace of K and h � 0.
Then there exists a trace r

0 induced by r , whose length is at most (|S| · 2(2|spec|)2
)h+2, which is h-prefix

bisimilar to r . In particular, for every AABBE formula y with atomic formulas in spec and such that
dB(y) h, it holds that K ,r |= y iff K ,r 0 |= y .

Proof. We show that if |r| > (|S| · 2(2|spec|)2
)h+2, then there exists a trace r

0 induced by r such that
|r 0|< |r| and r and r

0 have the same h-sampling word. Hence, by iterating the reasoning and applying
Proposition 8 and Lemma 12, the thesis follows. Assume that |r| > (|S| · 2(2|spec|)2

)h+2. Let PSh : 1 =

i1 < .. . < iN = |r| be the h-prefix sampling of r . By Property 11, |PSh| (|S| ·2(2|spec|)2
)h+1. Since the

number of distinct summaries (w.r.t. spec) associated with the prefixes of r is at most |S| ·2(2|spec|)2 , there
must be two consecutive positions i j and i j+1 in PSh such that for some `,`0 2 [i j+1, i j+1�1] with `< `0,
S (r(1,`)) = S (r(1,`0)). It easily follows that the sequence r

0 given by r

0 := r(1,`) ·r(`0+1, |r|) is
a trace induced by r such that |r 0|< |r| and r and r

0 have the same h-sampling word.

4 AEXPpol-membership of MC for AABBE

In this section, we exploit the exponential-size model-trace property of AABBE to design a MC algo-
rithm for AABBE belonging to the class AEXPpol, namely, the class of problems solvable by singly
exponential-time bounded Alternating Turing Machines (ATMs, for short) with a polynomial-bounded
number of alternations. More formally, given an ATM M (we refer to [8] or Appendix B.1 for standard
syntax and semantics of ATMs), M is singly exponential-time bounded if there is an integer constant
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check(K ,j) [K is a finite Kripke structure and j is an AABBE in PNF]

existentially choose an AA-labeling Lab for (K ,j);
for each state s and y 2 Lab(s) do

case y = hAiy

0 (resp., y = hAiy

0): existentially choose a certificate r with
fst(r) = s (resp., lst(r) = s) and call checkTrue(K ,j,Lab)({(y 0,r)});

case y = [A]y 0 (resp., y = [A]y 0): universally choose a certificate r with
fst(r) = s (resp., lst(r) = s) and call checkTrue(K ,j,Lab)({(y 0,r)});

end for

universally choose a certificate r for (K ,j) with fst(r) = s0 (s0 is the initial state of K )
and call checkTrue(K ,j,Lab)({(j,r)});

Figure 1: Procedure check

c � 1 such that for each input a , any computation starting on a halts after at most 2|a|c steps. The ATM
M has a polynomial-bounded number of alternations if there is an integer constant c � 1 such that, for
all inputs a and computations p starting from a , the number of alternations of existential and universal
configurations along p is at most |a|c.

In the sequel, we assume that AABBE formulas are in PNF. For a formula j , let spec be the set of
regular expressions occurring in j . The size |j| of j is given by the number of non-atomic subformulas
of j plus |spec|. As another complexity measure of an AABBE formula j , we consider the standard
alternation depth, denoted by °(j), between the existential hXi and universal modalities [X ] (and vice
versa) occurring in the PNF of j for X 2 {B,E}. Note that the definition does not consider the modalities
associated with the Allen’s relations in {A,A,B}. Moreover, let FMC be the set of pairs (K ,j) consisting
of a Kripke structure K and an AABBE formula j s.t. K |= j . The complexity upper bound is as follows.

Theorem 15. One can construct a singly exponential-time bounded ATM accepting FMC whose number
of alternations on an input (K ,j) is at most °(j)+2.

In the rest of the section, we define a procedure (which can be easily translated into an ATM) proving
the assertion of Theorem 15. We start with some auxiliary notation. Fix a finite Kripke structure K with
set of states S and an AABBE formula j in PNF. Let h= dB(j), and spec be the set of regular expressions
occurring in j .

A certificate of (K ,j) is a trace r of K whose length is less than (|S| ·2(2|spec|)2
)h+2 (the bound for the

exponential trace property in Theorem 14). A B-witness (resp., E-witness) of a certificate r for (K ,j), is
a certificate r

0 of (K ,j) such that r

0 is h-prefix bisimilar to a trace of the form r ?r

00 (resp., r

00 ?r) for
some certificate r

00 of (K ,j) with |r 00|> 1. By SD(j) we denote the set consisting of the subformulas
y of j and the duals e

y . By the results of Section 3, we deduce the following (see Appendix B.2):

Proposition 16. Let K be a finite Kripke structure, j be an AABBE formula in PNF, and r be a
certificate for (K ,j). The following properties hold:

1. for each hXiy 2 SD(j) with X 2 {B,E}, K ,r |= hXiy iff there exists an X-witness r

0 of r for
(K ,j) such that K ,r 0 |= y;

2. for each trace of the form r ? r

0 (resp., r

0 ? r) such that r

0 is a certificate for (K ,j), one can
construct in time singly exponential in the size of (K ,j), a certificate r

00 which is h-prefix bisimilar
to r ?r

0 (resp., r

0 ?r), with h = dB(j).

The set AA(j) is the set of formulas in SD(j) of the form hXiy 0 or [X ]y 0 with X 2 {A,A}. An
AA-labeling Lab for (K ,j) is a mapping associating to each state s of K a maximally consistent set
of subformulas of AA(j). More precisely, for all s 2 S, Lab(s) is such that for all y, ey 2 AA(j),
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checkTrue(K ,j,Lab)(W ) [W is a well-formed set and Lab is an AA-labeling for (K ,j)]

while W is not universal do
deterministically select (y,r) 2W such that y is not of the form [E]y 0 and [B]y 0

update W  W \{(y,r)};
case y = r with r 2 RE: if r /2L (r) then reject the input;
case y = ¬r with r 2 RE: if r 2L (r) then reject the input;
case y = hAiy 0 or y = [A]y 0: if y /2 Lab(lst(r)) then reject the input;
case y = hAiy 0 or y = [A]y 0: if y /2 Lab(fst(r)) then reject the input;
case y = y1_y2: existentially choose i = 1,2, update W  W [{(yi,r)};
case y = y1^y2: update W  W [{(y1,r),(y2,r)};
case y = hBiy 0: existentially choose r

0 2 Pref(r), update W  W [{(y 0,r 0)};
case y = [B]y 0: update W  W [{(y 0,r 0) | r

0 2 Pref(r)};
case y = hXiy 0 with X 2 {E,B}: existentially choose an X-witness r

0 of r

for (K ,j), update W  W [{(y 0,r 0)};
end while

if W = /0 then accept else universally choose (y,r) 2 fW and call checkFalse(K ,j,Lab)({(y,r)})

Figure 2: Procedure checkTrue

Lab(s)\ {y, ey} is a singleton. We say that Lab is valid if for all states s 2 S ad y 2 Lab(s), K ,s |= y

(we consider s as a length-1 trace). Finally, a well-formed set for (K ,j) is a finite set W consisting of
pairs (y,r) such that y 2 SD(j) and r is a certificate of (K ,j). We say that W is universal if each
formula occurring in W is of the form [X ]y with X 2 {B,E}. The dual fW of W is the well-formed
set obtained by replacing each pair (y,r) 2 W with (ey,r). A well-formed set W is valid if for each
(y,r) 2W , K ,r |= y .

The procedure check, reported in Figure 1, defines the ATM required to prove the assertion of The-
orem 15. The procedure check takes a pair (K ,j) as input and: (1) it guesses an AA-labeling Lab for
(K ,j); (2) it checks that the guessed labeling Lab is valid; (3) for every certificate r starting from the
initial state, it checks that K ,r |= j . To perform steps (2)–(3), it exploits the auxiliary ATM proce-
dure checkTrue reported in Figure 2. The procedure checkTrue takes as input a well-formed set W for
(K ,j) and, assuming that the current AA-labeling Lab is valid, checks whether W is valid. For each pair
(y,r) 2 W such that y is not of the form [X ]y 0 with X 2 {B,E}, checkTrue directly checks whether
K ,r |= y . In order to allow a deterministic choice of the current element of the iteration, we assume that
the set W is implemented as an ordered data structure. At each iteration of the while loop in checkTrue,
the current pair (y,r) 2W is processed according to the semantics of HS, exploiting the guessed AA-
labeling Lab and Proposition 16. The processing is either deterministic or based on an existential choice,
and the currently processed pair (y,r) is either removed from W , or replaced with pairs (y 0,r 0) such
that y

0 is a strict subformula of y .
At the end of the while loop, the resulting well formed set W is either empty or universal. In the

former case, the procedure accepts. In the latter case, there is a switch in the current operation mode. For
each element (y,r) in the dual of W (note that the root modality of y is either hEi or hBi), the auxiliary
ATM procedure checkFalse is invoked, which accepts the input {(y,r)} iff K ,r 6|= y . The procedure
checkFalse is the dual of checkTrue: it is simply obtained from checkTrue by switching accept and reject,
by switching existential choices and universal choices, and by converting the last call to checkFalse into
checkTrue (see Figure 3 in Appendix B.3). Thus checkFalse accepts an input W iff W is not valid.
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Recall that the length of a certificate is singly exponential in the size of the input (K ,j). Thus, since the
number of alternations of the ATM check between existential and universal choices is evidently the num-
ber of switches between the calls to the procedures checkTrue and checkFalse plus two, by Theorem 14
and Proposition 16, we state the following result that directly implies Theorem 15 (Appendix B.3).

Proposition 17. The ATM check is a singly exponential-time bounded ATM accepting FMC whose num-
ber of alternations on an input (K ,j) is at most °(j)+2.

5 AEXPpol-hardness of the fragment BE

In this section, we show that the MC problem for the fragment BE is AEXPpol-hard (implying the
AEXPpol-hardness of AABBE). The result is obtained by a polynomial-time reduction from a variant
of the domino-tiling problem for grids with rows and columns of exponential length called alternating
multi-tiling problem.

An instance of this problem is a tuple I = (n,D,D0,H,V,M,Dacc), where: n is a positive even
natural number encoded in unary; D is a non-empty finite set of domino types; D0 ✓ D is a set of initial
domino types; H ✓D⇥D and V ✓D⇥D are the horizontal and vertical matching relations, respectively;
M ✓ D⇥D is the multi-tiling matching relation; Dacc ✓ D is a set of accepting domino types. A tiling of
I is a map assigning a domino type to each cell of a 2n ⇥2n squared grid coherently with the horizontal
and vertical matching relations. Formally, a tiling of I is a mapping f : [0,2n �1]⇥ [0,2n �1]! D s.t.:

• for all i, j 2 [0,2n �1]⇥ [0,2n �1] with j < 2n �1, ( f (i, j), f (i, j+1)) 2 H;
• for all i, j 2 [0,2n �1]⇥ [0,2n �1] with i < 2n �1, ( f (i, j), f (i+1, j)) 2V .

The initial condition Init( f ) of the tiling f is the content of the first row of f , namely Init( f ) :=
f (0,0) f (0,1) . . . f (0,2n � 1). A multi-tiling of I is a tuple ( f1, . . . , fn) of n tilings which are coher-
ent w.r.t. the multi-tiling matching relation M, namely, such that:

• (i) for all i, j 2 [0,2n � 1]⇥ [0,2n � 1] and ` 2 [1,n� 1], ( f`(i, j), f`+1(i, j)) 2 M (multi-cell re-
quirement), and (ii) fn(2n �1, j) 2 Dacc for some j 2 [0,2n �1] (acceptance).

The alternating multi-tiling problem for an instance I is checking whether
• 8w1 2 (D0)2n

,9w2 2 (D0)2n
, . . . ,8wn�1 2 (D0)2n

,9wn 2 (D0)2n such that there exists a multi-tiling
( f1, . . . , fn) where for all i 2 [1,n], Init( fi) = wi.

Theorem 18. The alternating multi-tiling problem is AEXPpol-complete.

See Appendix C.1 for a proof of Theorem 18. The fact that the MC problem for the fragment BE is
AEXPpol-hard is an immediate corollary of the following result.

Theorem 19. One can construct, in time polynomial in the size of I , a finite Kripke structure KI and
a BE formula jI over the set of propositions AP = D[ ({r,c}⇥{0,1})[{?,end} such that KI |= jI

iff I is a positive instance of the alternating multi-tiling problem.

The rest of this section is devoted to the construction of the Kripke structure KI and the BE formula
jI proving Theorem 19. Let AP be as in the statement of Theorem 19. The Kripke structure KI is given
by KI = (AP ,S,R,µ,s0), where S = AP , s0 = end, µ is the identity mapping (we identify a singleton set
{p} with p), and R = {(s,s0) : s 2 AP \{end},s0 2 AP}. Note that the initial state end has no successor,
and that a trace of KI can be identified with its induced labeling sequence. The construction of the
BE formula jI is based on a suitable encoding of multi-tilings which is described in the following.
The symbols {r}⇥ {0,1} and {c}⇥ {0,1} in AP are used to encode the values of two n-bits counters
numbering the 2n rows and columns, respectively, of a tiling. For a multi-tiling F = ( f1, . . . , fn) and for
all i, j 2 [0,2n �1], the (i, j)-th multi-cell ( f1(i, j), . . . , fn(i, j)) of F is encoded by the word C of length
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3n over AP , called multi-cell code, given by d1 · · ·dn(r,b1) · · ·(r,bn)(c,b01) · · ·(c,b0n) where b1 · · ·bn and
b01 · · ·b0n are the binary encodings of the row number i and column number j, respectively, and for all
` 2 [1,n], d` = f`(i, j) (i.e., the content of the (i, j)-th cell of component f`). The content of C is d1 · · ·dn.
Since F is a multi-tiling, the following well-formedness requirement must be satisfied by the encoding
C: for all ` 2 [1,n�1], (d`,d`+1) 2 M. We call such words well-formed multi-cell codes.
Definition 20 (Multi-tiling codes). A multi-tiling code is a finite word w over AP obtained by concate-
nating well-formed multi-cell codes in such a way that the following conditions hold:

• for all i, j 2 [0,2n � 1], there is a multi-cell code in w with row number i and column number j
(completeness requirement);

• for all multi-cell codes C and C0 occurring in w, if C and C0 have the same row number and column
number, then C and C0 have the same content (uniqueness requirement);

• for all multi-cell codes C and C0 in w having the same row-number (resp., column number), column
numbers (resp., row numbers) j and j+1, respectively, and contents d1 · · ·dn and d0

1 · · ·d0
n, respec-

tively, it holds that (d`,d0
`) 2 H (resp. (d`,d0

`) 2 V ) for all ` 2 [1,n] (row-adjacency requirement)
(resp., (column-adjacency requirement));

• there is a multi-cell code in w with row-number 2n � 1 whose content is in Dn�1 · dacc for some
dacc 2 Dacc (acceptance requirement).

Finally, we have to encode the initial conditions of the components of a multi-tiling. An initial
cell code encodes a cell of the first row of a tiling and is a word w of length n+ 1 of the form w =
d(c,b1) · · ·(c,bn), where d 2 D0 and b1, . . . ,bn 2 {0,1}. We say that d is the content of w and the integer
in [0,2n �1] encoded by b1 · · ·bn is the column number of w.
Definition 21 (Multi-initialization codes). An initialization code is a finite word w over AP which is the
concatenation of initial cell codes such that:

• for all i 2 [0,2n �1], there is an initial cell code in w with column number i.
• for all initial cell codes C and C0 occurring in w, if C and C0 have the same column number, then C

and C0 have the same content.
A multi-initialization code is a finite word over AP of the form ? ·wn · · ·? ·w1 · end such that for all
` 2 [1,n], w` is an initialization code.
Definition 22 (Initialized multi-tiling codes). An initialized multi-tiling code is a finite word over AP of
the form ? ·w ·? ·wn · · ·? ·w1 · end such that w is a multi-tiling code, ? ·wn · · ·? ·w1 · end is a multi-
initialization code, and the following requirement holds:

• for each multi-cell code in w having row number 0, column number i, and content d1 · · ·dn and for
all `2 [1,n], there is an initial cell code in w` having column number i and content d` (initialization
coherence requirement).

We sketch now the idea for the construction of the BE formula jI ensuring that KI |= jI iff I
is a positive instance of the alternating multi-tiling problem. We preliminarily observe that since the
initial state of KI has no successors, the only initial trace of KI is the trace end of length 1. To guess
a trace corresponding to an initialized multi-tiling code, KI is unraveled backward starting from end,
exploiting the modality E. The structure of the formula jI is jI := [E](j1 !hEi(j2^(. . .([E](jn�1 !
hEi(jn ^ hEijIMT))) . . .))). The formula jI features n+ 1 unravelling steps starting from the initial
trace end. The first n steps are used to guess a sequence of n initialization codes. Intuitively, each
formula ji is used to constrain the i-th unravelling to be an initialization code, in such a way that at
depth n in the formula a multi-initialization code is under evaluation. The last unravelling step (the
innermost in the formula) is used to guess the multi-tiling code. Intuitively, the innermost formula jIMT
is evaluated over a trace corresponding to an initialized multi-tiling code, and checks its structure: multi-
cell codes are “captured” by regular expressions (encoding in particular their row and column numbers



L. Bozzelli, A. Molinari, A. Montanari & A. Peron 13

and contents); moreover the completeness, uniqueness, row- and column-adjacency requirements of
Definition 20 are enforced by the joint use of [E] and regular expressions: intuitively, by means of
[E], one or two multi-cell codes are generated “separately”; then, if they appear in the considered multi-
tiling code, the aforementioned constraints are verified by means of auxiliary formulas, consisting of
suitable regular expressions. The initialization coherence requirement of Definition 22 is guaranteed in an
analogous way, by comparing initial cell codes and multi-cell codes. Note that the first n�1 occurrences
of alternations between universal and existential modalities [E] and hEi correspond to the alternations
of universal and existential quantifications in the definition of alternating multi-tiling problem. The
correctness of the construction of jI is stated by the next proposition (the definition of j1, . . . ,jn, jIMT
and a proof of Proposition 23 are in Appendix C.2).

Proposition 23. One can build, in time polynomial in the size of I , n+1 BE formulas jIMT,j1, . . . ,jn
such that °(jIMT) = °(j1) = . . .= °(jn) = 0, and fulfilling the following conditions.

• For all finite words r over AP of the form r = r

0 ·? ·wn · · ·? ·w1 · end such that r

0 6= e and
? ·wn · · ·? ·w1 · end is a multi-initialization code, KI ,r |= jIMT if and only if r is an initialized
multi-tiling code.

• For all ` 2 [1,n] and words r of the form r = r

0 ·? ·w`�1 · · ·? ·w1 · end such that r

0 6= e and
w j 2 (AP \ {?})⇤ for all j 2 [1,`� 1], KI ,r |= j` if and only if r

0 is of the form r

0 = ? ·w`,
where w` is an initialization code.

Since the initial state of KI has no successors and corresponds to the atomic proposition end, by
Proposition 23 and Definitions 20–22, we obtain that KI |= jI iff I is a positive instance of the
alternating multi-tiling problem. This concludes the proof of Theorem 19.

6 Conclusions

In this paper, we have investigated the MC problem for two maximal fragments of HS, AABBE and
AAEBE, endowed with interval labeling based on regular expressions, and we have proved that such
a problem is AEXPpol-complete. The paper also settles, in the more general setting of the regular
expression-based semantics, the open complexity question for the same fragments under the homogene-
ity assumption. Future work will focus on the problem of determining the exact complexity of MC for
full HS, both under homogeneity and in the regular expression-based semantics. In addition, we will
study the MC problem for HS over visibly pushdown systems (VPS), in order to deal with recursive
programs and infinite state systems.
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Appendix

A Proofs from Section 3

A.1 Proof of Proposition 7

Proposition 7. Let h � 0, and r and r

0 be two h-prefix bisimilar traces of K . Then, for all traces rL and
rR of K such that rL ?r and r ?rR are defined, the following holds:
(1) rL ?r and rL ?r

0 are h-prefix bisimilar; (2) r ?rR and r

0 ?rR are h-prefix bisimilar.

Proof. First note that since S (r) = S (r 0), fst(r) = fst(r 0) and lst(r) = lst(r 0). Hence, rL ?r (resp.,
r ?rR) is defined iff rL ?r

0 (resp., r

0 ?rR) is defined. The proofs of Properties 1 and 2 are by induction
on h.

Property 1: Since r and r

0 are h-prefix bisimilar, S (r) = S (r 0). Thus, by Proposition 4, S (rL ?r) =
S (rL ? r

0). Thus, if h = 0 (base case), the result follows. Now, assume that h > 0 (induction step).
Assume that n is a proper prefix of rL ? r (the symmetric case, where we choose a proper prefix of
rL ?r

0 is similar). We need to show that there exists a proper prefix n

0 of rL ?r

0 such that n and n

0 are
(h�1)-prefix bisimilar. If n is a prefix of rL, then we set n

0 = n and the result trivially holds (note that
since r and r

0 are h-prefix bisimilar, it holds that |r|> 1 iff |r 0|> 1). Otherwise, there is a proper prefix
x of r such that n = rL ? x . Since r and r

0 are h-prefix bisimilar, there exists a proper prefix x

0 of r

0

such that x and x

0 are (h�1)-prefix bisimilar. Thus, by setting n

0 = rL ?x

0, by the inductive hypothesis,
the result follows.

Property 2: By Proposition 4, S (r ?rR) = S (r 0 ?rR). Thus, if h = 0, the result follows. Now, assume
that h > 0. We proceed by a double induction on |rR|. For the base case, where |rR| = 1 the result is
obvious. Now, assume that |rR| > 1. Let n be a proper prefix of r ? rR (the symmetric case, where
we choose a proper prefix of r

0 ?rR is similar). We need to show that there exists a proper prefix n

0 of
r

0 ?rR such that n and n

0 are (h� 1)-prefix bisimilar. If n = r or n is a proper prefix of r , then there
exists a prefix n

0 of r

0 such that n and n

0 are (h�1)-prefix bisimilar. Thus, since n

0 is a proper prefix of
r

0 ?rR, the result follows. Otherwise, there exists a proper prefix x of rR such that n = r ?x . By setting
n

0 = r

0 ?x , considering the inductive hypothesis on |rR|, we obtain that n and n

0 are h-prefix bisimilar,
hence (h�1)-prefix bisimilar as well, concluding the proof.

A.2 Proof of Lemma 12

We prove a stronger result.
Lemma 24. Let h � 0, r and r

0 be two traces of K , and PSh and PS0h be the two h-prefix samplings of r

and r

0, respectively. Assume that r and r

0 have the same h-sampling word. Hence, there is N � 1 such
that

• PSh : i1 < i2 < .. . < iN;
• PS0h : i01 < i02 < .. . < i0N;
• for all j 2 [1,N], S (r(1, i j)) = S (r 0(1, i0j)).

Then, for all j 2 [1,N �1], n 2 [i j +1, i j+1] and n0 2 [i0j +1, i0j+1] such that S (r[1,n]) = S (r 0[1,n0]), it
holds that r(1,n) and r

0(1,n0) are h-prefix bisimilar.

Proof. The proof is by induction on h � 0. For h = 0, the result is obvious. Now, assume that h > 0. If
N = 1 (resp., N = 2), then r = r

0 and |r|= |r 0|= N. Hence, evidently, the result follows. Now, assume
that N > 2. Since by hypothesis, S (r(1,n)) = S (r 0(1,n0)), we need to show that
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1. for each m 2 [1,n�1], there exists m0 2 [1,n0 �1] such that r(1,m) and r

0(1,m0) are (h�1)-prefix
bisimilar;

2. for each m0 2 [1,n0 �1], there exists m 2 [1,n�1] such that r(1,m) and r

0(1,m0) are (h�1)-prefix
bisimilar;

We prove Property 1 (the proof of Property 2 being symmetric). We use the following fact that can be
easily proved.

Claim: let k 2 [0,h�1] and 1 = x1 < .. . < xr = N be the subsequence of 1, . . . ,N such that ix1 < .. . < ixr

is the k-prefix sampling of r . Then, i0x1
< .. . < i0xr

is the k-prefix sampling of r

0.

Now, we prove Property 1. Let m 2 [1,n�1]. If m = 1, we set m0 = 1, and the result follows. Now,
assume that m � 2. Since h > 0, there must exist x,y 2 [1,N] such that x < y, m 2 [ix+1, iy], and ix and iy
are two consecutive positions in the (h�1)-prefix sampling of r . By the claim above, i0x and i0y are two
consecutive positions in the (h�1)-prefix sampling of r

0. We distinguish two cases:
• m = iy. Since n 2 [i j + 1, i j+1] and m < n, it holds that iy  i j. Hence, i0y  i0j as well. Moreover,

since n0 > i0j, it holds that i0y < n0. We set m0 = i0y. Since S (r(1, iy)) = S (r 0(1, i0y)), m = iy,
m0 = i0y, and ix and iy (resp., i0x and i0y) are two consecutive positions in the (h�1)-prefix sampling
of r (resp., r

0), by the induction hypothesis on h, the result follows.
• m 6= iy. Hence, m2 [ix+1, iy�1]. Since ix and iy are two consecutive positions in the (h�1)-prefix

sampling of r , there must exist z 2 [x+1,y�1] such that iz  m and S (r(1,m)) = S (r(1, iz)).
Since iz  m, m < n, and n 2 [i j +1, i j+1], it holds that iz  i j. Hence, i0z  i0j < n0. We set m0 = i0z.
Since S (r(1, iz)) = S (r 0(1, i0z)), we obtain that S (r(1,m)) = S (r 0(1,m0)), m 2 [ix +1, iy] and
m0 2 [i0x+1, i0y]. Thus, being ix and iy (resp., i0x and i0y) two consecutive positions in the (h�1)-prefix
sampling of r (resp., r

0), by the induction hypothesis on h, the result follows.

B Proofs from Section 4

B.1 Alternating Turing Machines

We shortly recall the framework of Alternating Turing Machines (ATM, for short) [8]. Without loss of
generality, we consider a model of alternation with a binary branching degree. Formally, an ATM is a
tuple M = (S,Q,Q8,Q9,q0,d ,F), where S is the input alphabet, which contains the blank symbol #, Q is
the finite set of states which is partitioned into Q = Q8 [Q9, Q9 (resp., Q8) is the set of existential (resp.,
universal) states, q0 is the initial state, F ✓ Q is the set of accepting states, and the transition function
d is a mapping d : Q⇥S ! (Q⇥S⇥ {L,R})2. Configurations of M are words in S⇤ · (Q⇥S) ·S⇤. A
configuration C = h · (q,s) ·h 0 denotes that the tape content is h ·s ·h 0, the current state (resp., input
symbol) is q (resp., s ), and the reading head is at position |h |+ 1. From configuration C, the machine
M nondeterministically chooses a triple (q0,s 0,dir) in d (q,s) = ((ql,sl,dirl),(qr,sr,dirr)), and then
moves to state q0, writes s

0 in the current tape cell, and its reading head moves one cell to the left or to the
right, according to dir. We denote by succl(C) and succr(C) the successors of C obtained by choosing
respectively the left and the right triple in ((ql,sl,dirl),(qr,sr,dirr)). The configuration C is accepting
(resp., universal, resp., existential) if the associated state q is in F (resp., in Q8, resp., in Q9). Given
an input a 2 S⇤, a (finite) computation tree of M over a is a finite tree in which each node is labeled
by a configuration. The root of the tree corresponds to the initial configuration associated with a , i.e.,
(q0,a(1)) ·a(2, |a|). An internal node that is labeled by a universal configuration C has two children,
corresponding to succl(C) and succr(C), while an internal node labeled by an existential configuration
C has a single child, corresponding to either succl(C) or succr(C). The tree is accepting iff each of its
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leaves is labeled by an accepting configuration. An input a 2 S⇤ is accepted by M iff there exists an
accepting computation tree of M over a .

The ATM M is singly exponential-time bounded if there is an integer constant c � 1 such that for
each input a , when started on a—no matter what are the universal and existential choices—M halts in
at most 2|a|c steps. The ATM M has a polynomial-bounded number of alternations if there is an integer
constant c � 1 such that for all inputs a and computation paths p from a , the number of alternations of
existential and universal configurations along p is at most |a|c.

B.2 Proof of Proposition 16

Proposition 16. Let K be a finite Kripke structure, j an AABBE formula in PNF, and r a certificate
for (K ,j). The following properties hold:

1. for each hXiy 2 SD(j) with X 2 {B,E}, K ,r |= hXiy iff there exists an X-witness r

0 of r for
(K ,j) such that K ,r 0 |= y;

2. for each trace of the form r ? r

0 (resp., r

0 ? r) such that r

0 is a certificate for (K ,j), one can
construct in time singly exponential in the size of (K ,j), a certificate r

00 which is h-prefix bisimilar
to r ?r

0 (resp., r

0 ?r), with h = dB(j).

Proof. First, we prove Property 1. Let hXiy 2 SD(j) with X 2 {B,E}, h = dB(j), and r be a certificate
for (K ,j). Assume that X = E (the case where X = B being similar). First, assume that there exists an
E-witness r

0 of r for (K ,j) such that K ,r 0 |= y . Hence, r

0 is h-prefix bisimilar to a trace of the form
r

00 ?r with |r 00|> 1. Since hEiy 2 SD(j), it holds that dB(hEiy) h. By Proposition 8, it follows that
K ,r |= hEiy . For the converse implication, assume that K ,r |= hEiy . Then, there exists a trace of the
form r

00 ?r with |r 00|> 1 such that K ,r 00 ?r |= y . By Theorem 14, there exists a certificate n for (K ,j)
which is h-prefix bisimilar to r

00. By Proposition 7, n ?r is h-prefix bisimilar to r

00 ?r . By applying
Proposition 8, we deduce that K ,n ?r |= y . By applying again Theorem 14, there exists a certificate r

0

for (K ,j) which is h-prefix bisimilar to n ?r such that K ,r 0 |= y . Thus, since r

0 is an E-witness of r

for (K ,j), Property 1 follows.

For Property 2, from the trace r ?r

0 (resp., r

0 ?r), where both r and r

0 are certificates for (K ,j),
we first compute the h-prefix sampling of r ?r

0 (resp., r

0 ?r), where h = dB(j). Then, proceeding as in
the proof of Theorem 14, we extract from r ?r

0 (resp., r

0 ?r) a trace which is h-prefix bisimilar to r ?r

0

(resp., r

0 ? r). Since the lengths of r and r

0 are singly exponential in the sizes of (K ,j), Property 2
follows.

B.3 Proof of Proposition 17

In order to prove Proposition 17, for technical convenience, for an AABBE formula j , we consider a
slight variant °w(j) of °(j). Formally, °w(j) is given by °(hBij) (or, equivalently, by °(hEij)).
Note that for each AABBE formula j and X 2 {E,B}, °w([X ]j) = °w( g[X ]j)+1.

Let K be a finite Kripke structure, j be an AABBE formula in PNF, and W be a well-formed set for
(K ,j). We denote by °w(W ) the maximum over the alternation depths °w(y), where y is a formula
occurring in W (we set °w(W ) = 0 if W = /0). Note that for each non-empty universal well-formed set
W for (K ,j), °w( fW ) = °w(W )�1. Now, we prove Proposition 17.

Proposition 17. The ATM check is a singly exponential-time bounded ATM accepting FMC whose num-
ber of alternations on an input (K ,j) is at most °(j)+2.
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Proof. Fix an input (K ,j), where j is an AABBE formula in PNF. Note that whenever there is a switch
between the procedures checkTrue and checkFalse, e.g. from checkTrue to checkFalse, the input {(y,r)}
of the called procedure is contained in the dual fW of the currently processed well-formed set W for
(K ,j), and W is non-empty and universal: hence °w({(y,r)})< °w(W ). Moreover, a well-formed set
W for (K ,j) contains only formulas y such that y 2 SD(j). Additionally, in each iteration of the while
loops of procedures checkTrue and checkFalse, the processed pair (y,r) in the current well-formed set
W either is removed from W or is replaced with pairs (y 0,r 0) such that y

0 is a strict subformula of
y . This ensures that the algorithm always terminates. Furthermore, since the number of alternations of
the ATM check between existential choices and universal choices is evidently the number of switches
between the calls to procedures checkTrue and checkFalse plus two, and the top calls to checkTrue take
in input well-formed sets for (K ,j) of the form {(y,r)}, where y 2 SD(j), we obtain the following
result.

Claim 1. The number of alternations of the ATM check on an input (K ,j) is at most °(j)+2.

Next, we show the following.

Claim 2. The ATM check runs in time singly exponential in the size of the input.

Proof of Claim 2. Fix an input (K ,j). Let T (j) be the standard tree encoding of j , where each
node is labeled by some subformula of j . Let y 2 SD(j). If y is a subformula of j , we define
d

y

as the maximum over the distances from the root in T (j) of y-labeled nodes. If instead y is the
dual of a subformula of j , we let d

y

:= de
y

. Let us denote by H(K ,j) the length of a certificate for
(K ,j). Recall that H(K ,j) = (|S| · 2(2|spec|)2

)h+2, where S is the set of K -states, spec is the set of
atomic formulas (regular expressions) occurring in j , and h = dB(j). By Proposition 16, it follows that
each step in an iteration of the while loops in procedures checkTrue and checkFalse can be performed in
time singly exponential in the size of (K ,j). Then, in order to prove Claim 2, it suffices to show that for
all computations p of the ATM check from input (K ,j), the overall number N

y

of iterations of the while
loops (of procedures checkTrue and checkFalse) along p where the formula y is processed is at most
(2|j| ·H(K ,j))d

y . The proof is done by induction on d
y

. For the base case, d
y

= 0. Therefore, y = j

or y = e
j , and by construction of the algorithm, N

j

and Ne
j

are at most equal to 1. Hence, the result
holds. For the inductive step, assume that d

y

> 0. We consider the case where y is a subformula of j

(the case where e
y is a subformula of j is similar). Then, the result follows from the following chain of

inequalities, where P(y) denotes the set of nodes of T (j) which are parents of the nodes labeled by y ,
and for each node x, fo(x) denotes the formula labeling x.

N
y

 Â
x2P(y)

Nfo(x) ·H(K ,j) Â
x2P(y)

(2|j| ·H(K ,j))dfo(x) ·H(K ,j)
�
2|j| ·H(K ,j)

�d
y

The first inequality directly follows from the construction of the algorithm (note that if fo(x) = [B]y ,
then the processing of subformula fo(x) in an iteration of the two while loops generates at most H(K ,j)
new “copies” of y). The second inequality follows from the inductive hypothesis and the last inequality
follows from the fact that |P(y)| 2|j| and dfo(x)  d

y

�1 for all x 2 P(y). This concludes the proof of
Claim 2.

It remains to show that the ATM check accepts FMC. Fix an input (K ,j) and let Lab be the AA-
labeling initially and existentially guessed by check. Evidently, after the top calls to checkTrue, each
configuration of the procedure check can be described by a tuple (`,Lab,W , f ), where: (i) W is a well-
formed set for (K ,j), (ii) f = true if W is processed within checkTrue, and f = false otherwise, and
(iii) ` is an instruction label corresponding to one of the instructions of the procedures checkTrue and
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checkFalse(K ,j,Lab)(W ) [W is a well-formed set and Lab is an AA-labeling for (K ,j)]

while W is not universal do
deterministically select (y,r) 2W s.t. y is not of the form [E]y 0 and [B]y 0

update W  W \{(y,r)};
case y = r with r 2 RE: if r /2L (r) then accept the input;
case y = ¬r with r 2 RE: if r 2L (r) then accept the input;
case y = hAiy 0 or y = [A]y 0: if y /2 Lab(lst(r)) then accept the input;
case y = hAiy 0 or y = [A]y 0: if y /2 Lab(fst(r)) then accept the input;
case y = y1_y2: universally choose i = 1,2, update W  W [{(yi,r)};
case y = y1^y2: update W  W [{(y1,r),(y2,r)};
case y = hBiy 0: universally choose r

0 2 Pref(r), update W  W [{(y 0,r 0)};
case y = [B]y 0: update W  W [{(y 0,r 0) | r

0 2 Pref(r)};
case y = hXiy 0 with X 2 {E,B}: universally choose an X-witness r

0 of r

for (K ,j), update W  W [{(y 0,r 0)};
end while

if W = /0 then reject the input
else existentially choose (y,r) 2 fW and call checkTrue(K ,j,Lab)({(y,r)})

Figure 3: Procedure checkFalse

checkFalse. We denote by `0 the label associated with the while instruction. A main configuration is a
configuration associated with the label `0. Let LabW be the restriction of Lab to the set of formulas in
AA(j) which are subformulas of formulas occurring in W . In other terms, for each state s, LabW (s)
contains all and only the formulas y 2 Lab(s) such that either y or its dual e

y is a subformula of some
formula occurring in W . LabW is valid if for all states s and y 2 LabW (s), K ,s |= y .

Claim 3 Let W be a well-formed set for (K ,j) and assume that LabW is valid. Then:
1. the main configuration (`0,Lab,W ,true) leads to acceptance iff W is valid;
2. the main configuration (`0,Lab,W ,false) leads to acceptance iff W is not valid.

Proof of Claim 3. We associate with W a natural number kW k defined as follows. Fix an ordering
y1, . . . ,yk of the formulas in SD(j) such that for all i 6= j, |yi|> |y j| implies i < j. First, we associate
to W a (k+1)-tuple (n0,n1, . . . ,nk) of natural numbers defined as follows: the first component n0 in the
tuple is the alternation depth °w(W ) and for the other components ni with 1 i k, ni is the number of
elements of W associated with the formula yi (i.e., the number of elements of the form (yi,r)). Then,
kW k is the position of the tuple (n0,n1, . . . ,nk) along the total lexicographic ordering over Nk+1. Note
that if W is non-empty and universal, then since °w( fW )<°w(W ), it holds that kfW k< kW k. Moreover,
note that kW k strictly decreases at each iteration of the while loop in the procedures checkTrue and
checkFalse (this because at each iteration, °w(W ) does not increase and an element of W is replaced
with elements associated with smaller formulas).

The proof of Claim 3 is given by induction on kW k. For the base case, kW k = 0, hence W is
empty and evidently valid. By construction, checkTrue accepts the empty set, while checkFalse rejects
the empty set. Hence, for the base case, the result holds. For the inductive step, let kW k> 0, hence W
is not empty. First, assume that W is universal. Recall that kfW k< kW k. Then:
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• Property 1: W is valid () for each (y,r) 2 fW , {(y,r)} is not valid () (by the induction
hypothesis) for each (y,r) 2 fW , the main configuration (`0,Lab,{(y,r)},false) leads to ac-
ceptance () (by construction of the algorithm and since W is universal) the main configuration
(`0,Lab,W ,true) leads to acceptance.

• Property 2: W is not valid () for some (y,r) 2 fW , {(y,r)} is valid () (by the induction
hypothesis) for some (y,r) 2 fW , the main configuration (`0,Lab,{(y,r)},true) leads to ac-
ceptance () (by construction of the algorithm and since W is universal) the main configuration
(`0,Lab,W ,false) leads to acceptance.

Hence, Properties 1 and 2 of Claim 3 hold if W is universal. Now, assume that the non-empty
set W is not universal. We consider Property 2 of Claim 3 (the proof of Property 1 being dual). Let
(y,r) 2 W be the pair selected by the procedure checkFalse in the iteration of the while loop associated
with the main configuration (`0,Lab,W ,false). Here, we examine the cases where either y = hAiy

0,
or y = [B]y 0 or y = hXiy 0 with X 2 {B,E} (the other cases being similar or simpler).

• Case y = hAiy

0. We have that {(hAiy

0,r)} is valid iff K , lst(r) |= hAiy

0. By hypothesis, LabW

is valid. Hence, {(hAiy

0,r)} is not valid iff hAiy

0 /2 LabW (lst(r)). Let W 0 = W \ {(y,r)}.
Note that kW 0k < kW k. Then, we have that W is not valid () either hAiy

0 /2 LabW (lst(r))
or W 0 is not valid () (by the induction hypothesis) either hAiy

0 /2 LabW (lst(r)) or the main
configuration (`0,Lab,W 0,false) leads to acceptance () (by construction of checkFalse) the
main configuration (`0,Lab,W ,false) leads to acceptance.

• Case y = [B]y 0. Let W 0 = (W \ {(y,r)})[ {(y 0,r 0) | r

0 2 Pref(r)}. Note that kW 0k < kW k.
Then,we have that W is not valid () W 0 is not valid () (by the induction hypothesis) the main
configuration (`0,Lab,W 0,false) leads to acceptance () (by construction of checkFalse) the
main configuration (`0,Lab,W ,false) leads to acceptance.

• Case y = hXiy 0 with X 2 {B,E}. By Proposition 16(1), K ,r |= hXiy 0 iff there exists an X-
witness r

0 of r for (K ,j) such that K ,r 0 |= y

0. Then, Property 2 of Claim 3 directly follows
from the following chain of equivalences: W is not valid () either W \ {(y,r)} is not valid,
or for each X-witness r

0 of r for (K ,j), {(y 0,r 0)} is not valid () for each X-witness r

0 of r

for (K ,j), (W \ {(y,r)})[ {(y 0,r 0)} is not valid () (by the induction hypothesis) for each
X-witness r

0 of r for (K ,j), the main configuration (`0,Lab,(W \{(y,r)})[{(y 0,r 0)},false)
leads to acceptance () (by construction of the procedure checkFalse) the main configuration
(`0,Lab,W ,false) leads to acceptance.

This concludes the proof of Claim 3.

By exploiting Claim 3, we now prove the following result, which concludes the proof of Proposi-
tion 17.

Claim 4. The ATM check accepts an input (K ,j) iff K |= j .
Proof of Claim 4: fix an input (K ,j) and an AA-labeling Lab for (K ,j). A Lab-guessing for (K ,j) is
a well-formed set W for (K ,j) which minimally satisfies the following conditions for all states s of K :

• for all certificates r for (K ,j) with fst(r) = s0, (j,r) 2 W ;
• for all hAiy 2 Lab(s) (resp., hAiy 2 Lab(s)), there is a certificate r for (K ,j) with fst(r) = s

(resp., lst(r) = s) such that (y,r) 2 W ;
• for all [A]y 2 Lab(s) (resp., [A]y 2 Lab(s)) and for all certificates r for (K ,j) with fst(r) = s

(resp., lst(r) = s), (y,r) 2 W ;

Evidently, by construction of the procedure check, for each input (K ,j), it holds that:
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• (*) Procedure check accepts (K ,j)() there exists an AA-labeling Lab and a Lab-guessing W
for (K ,j) such that for all (y,r) 2W , the main configuration (`0, Lab, {(y,r)},true) leads to
acceptance.

Fix an input (K ,j). First, assume that K |= j . Let Lab be the valid AA-labeling defined as follows
for all states s: for all y 2 AA(j), y 2 Lab(s) iff K ,s |= y . By Theorem 14, there exists a Lab-
guessing W for (K ,j) such that for all (y,r) 2 W , K ,r |= y . By Claim 3, for all (y,r) 2 W , the
main configuration (`0, Lab,{(y,r)},true) leads to the acceptance. Hence, by Condition (*), procedure
check accepts (K ,j).

For the converse direction, assume that procedure check accepts (K ,j). By Condition (*), there
exists an AA-labeling Lab and a Lab-guessing W for (K ,j) such that for all (y,r) 2 W , the main
configuration (`0,Lab,{(y,r)},true) leads to acceptance. First, we show that Lab is valid. Fix a state s
and a formula y 2 Lab(s). We need to prove that K ,s |=y . The proof is by induction on the nesting depth
dAA(y) of modalities hAi, hAi, [A], and [A] in y . Assume that y = [A]y 0 for some y

0 (the other cases,
where either y = hAiy 0, or y = hAiy 0 or y = [A]y 0 being similar). By definition of Lab-guessing, for
each certificate r for (K ,j) with fst(r) = s, (y 0,r) 2W . Moreover, by the induction hypothesis, one
can assume that Lab{(y 0,r)} is valid (note that for the base case, i.e. when y

0 does not contain occurrences
of modalities hAi, hAi, [A], and [A], Lab{(y 0,r)} is trivially valid). By hypothesis, the main configuration
(`0,Lab,{(y 0,r)},true) leads to acceptance. By Claim 3, it follows that for each certificate r for (K ,j)
with fst(r) = s, it holds that K ,r |= y

0. Thus, by Theorem 14, we obtain that K ,s |= y . Hence, Lab
is valid. By definition of Lab-guessing, for each certificate r for (K ,j) with fst(r) = s0, (j,r) 2 W .
Thus, by hypothesis, Claim 3, and Theorem 14, we obtain that K |= j . This concludes the proof of
Claim 4 and Proposition 17 as well.

C Proofs from Section 5

C.1 Proof of Theorem 18

In this section, we show that the alternating multi-tiling problem is AEXPpol-complete. The membership
in AEXPpol can be easily proved. Thus, we focus on the hardness result which is the relevant one in this
context. We establish the AEXPpol-hardness of the alternating multi-tiling problem in two steps. In
the first step, we consider a variant of the considered problem, called TM alternation problem, which is
defined in terms of multi-tape deterministic Turing machines, and we prove that this problem is AEXPpol-
hard. Then, in the second step, we provide a polynomial-time reduction from the TM alternation problem
to the alternating multi-tiling problem.

C.1.1 TM alternation problem

Let n� 1. An n-ary deterministic Turing Machine (TM, for short) is a deterministic Turing machine M =
(n, I,A,Q,{qacc,qrej},q0,d ) operating on n ordered semi-infinite tapes and having only one read/write
head (shared by all tapes), where: I (resp., A� I) is the input (resp., work) alphabet, A contains the blank
symbol # /2 I, Q is the set of states, qacc (resp., qrej) is the terminal accepting (resp., rejecting) state, q0 is
the initial state, and d : Q⇥A 7! {?}[(Q⇥A⇥{ ,!})[(Q⇥{prev,next}) is the transition function,
where the symbol ? is for ‘undefined’ and for all (q,a) 2 Q⇥A, d (q,a) = ? iff q 2 {qacc,qrej}. In
each non-terminal step, if the read/write head scans the kth cell from the left of the `th tape (` 2 [1,n]
and k � 1) and (q,a) 2 (Q \ {qacc,qre j})⇥A is the current pair state/scanned cell content, one of the
following occurs:
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• d (q,a) 2 Q⇥A⇥ { ,!} (ordinary moves): M overwrites the tape cell being scanned, there
is a change of state, and the read/write head moves one position to the left ( ) or right (!) in
accordance with d (q,a).1

• d (q,a) 2 Q⇥ {prev,next} (jump moves): if d (q,a) = (q0,prev) (resp., d (q,a) = (q0,next)) for
some q0 2 Q, then the read/write head jumps to the kth cell of the (`� 1)th tape (resp., (`+ 1)th
tape) and M moves to state q0 if `> 1 (resp., `< n); otherwise, M moves to the rejecting state.

Initially, each tape contains a word in I⇤ and the read/write head points to the left-most cell of the first
tape. Thus, an input of M , called n-ary input, can be described by a tuple (w1, . . . ,wn) 2 (I⇤)n, where
for all i 2 [1,n], wi represent the initial content of the ith tape. M accepts a n-ary input (w1, . . . ,wn) 2
(I⇤)n, written M (w1, . . . ,wn), if the computation of M from (w1, . . . ,wn) is accepting. We consider the
following problem.

TM Alternation Problem. An instance of the problem is a tuple (n,M ), where n > 1 and M is a
polynomial-time bounded n-ary deterministic Turing Machine with input alphabet I. The instance
(n,M ) is positive iff the following holds, where Q` = 9 if ` is odd, and Q` = 8 otherwise (for all
` 2 [1,n]),

Q1x1 2 I2n
.Q2x2 2 I2n

. . . .Qnxn 2 I2n
.M (x1, . . . ,xn)

Note that the quantifications Qi are restricted to words over I of length 2n. Thus, even if M is
polynomial-time bounded, it operates on an input whose size is exponential in n.

Proposition 25. The TM Alternation Problem is AEXPpol-complete.

The proof of Proposition 25 is standard. However, for completeness, we give a proof of the hardness
result in Proposition 25, which is the relevant one in this context. In particular, the lower bound in
Proposition 25 directly follows from the following lemma.

Lemma 26. Let MA be a singly exponential-time bounded ATM with a polynomial bounded number
of alternations. Moreover, let c � 1 and ca � 1 be integer constants such that for each input a , when
started on a , MA has at most |a|ca alternations and MA reaches a terminal configuration in at most
2|a|c steps. Then, given an input a , one can construct in time polynomial in a and in the size of MA

an instance (2|a|max{c,ca},M ) of the TM Alternation Problem such that the instance is positive iff MA

accepts a .

Proof. Let MA , c, and ca be as in the statement of Lemma 26. Let IA (resp., AA ) be the input (resp.,
work) alphabet of MA , where IA ⇢ AA , and Q be the set of MA -states. Without loss of generality,
we assume that the initial state of MA is existential. Fix an input a 2 I⇤A . Define k := max{c,ca} and
n := 2|a|k. An a-configuration is a word in A⇤A · (Q⇥AA ) ·A⇤A of length exactly 2|a|k . Note that any
configuration of MA reachable from the input a can be encoded by an a-configuration. We denote by
C

a

the initial (existential) a-configuration associated with the input a . A partial computation of MA is
a finite sequence p =C1, . . . ,Cp of a-configurations such that p 2|a|k and for each 1 i < p, Ci+1 is a
MA -successor of Ci (note that a computation of MA over a is a partial computation). We say that p is
uniform if additionally one of the following holds:

• Cp is terminal and p visits only existential n-configurations;
• Cp is terminal and p visits only universal n-configurations;
• p > 1, Cp is existential and for each 1 h < p, Ch is universal;

1If the read/write head points to the left-most cell of the `th tape and d (q,a) is of the form (q0,a, ), then M moves to the
rejecting state.
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• p > 1, Cp is universal and for each 1  h < p, Ch is existential.

Let } be a fresh symbol and I = AA [ {}}. The code of a partial computation p = C1, . . . ,Cp is
the word over I of length exactly 2n (recall that n = 2|a|k) given by C1, . . . ,Cp,C0

p+1, . . . ,C
0
2|a|k , where

C0
i 2 {}}2|a|k for all p+ 1  i  2|a|k . We construct a polynomial-time bounded n-ary deterministic

Turing Machine M , which satisfies Lemma 26 for the given input a of MA . The input alphabet of M
is I. Given a n-ary input (w1, . . . ,wn) 2 (I⇤)n, M operates in n-steps (macro steps). At step i (i 2 [1,n]),
the behavior of M is as follows, where for a partial computation p = C1, . . . ,Cp, first(p) = C1 and
last(p) =Cp:

• First step: i = 1.
1. If w1 2 I2n and w1 encodes a uniform partial computation p1 of MA from C

a

, then the
behavior is as follows. If last(p1) is accepting (resp., rejecting), then M accepts (resp.,
rejects) the input. Conversely, if last(p1) is not a terminal configuration, then M goes to step
i+1.

2. Otherwise, M rejects the input.

• i > 1.
1. If wi 2 I2n and wi encodes a uniform partial computation pi of MA such that first(pi) =

last(pi�1), where pi�1 is the uniform partial computation encoded by wi�1, then the behavior
is as follows. If last(pi) is accepting (resp., rejecting), then M accepts (resp., rejects) the
input. If instead last(pi) is not a terminal configuration, then M goes to step i+1, if i+1 n,
and rejects the input otherwise.

2. Otherwise, if i is odd (resp., even), then M rejects (resp., accepts) the input.

Note that Conditions 1 in the steps above can be checked by M in polynomial time (in the size of
the input) by using the transition function of MA and n-bit counters. Hence, M is a polynomial-time
bounded n-ary deterministic Turing Machine which, evidently, can be constructed in time polynomial in
n and in the size of MA . Now, we prove that the construction is correct, i.e. (n,M ) is a positive instance
of the TM Alternation Problem iff MA accepts a . For each ` 2 [1,n], let Q` = 9 if ` is odd, and Q` = 8
otherwise. Since C

a

is existential, MA accepts a iff there is a uniform partial computation p1 of MA

from C
a

such that last(p1) leads to acceptance. Moreover, for each w1 2 I2n , M accepts an input of the
form (w1,w0

2, . . . ,w
0
k) only if w1 encodes a non-rejecting uniform partial computation of MA from C

a

.
Thus, since Q1 = 9, correctness of the construction directly follows from the following claim.

Claim. Let ` 2 [1,n] and p = p1 . . .p` be a partial computation of MA from C
a

such that p` is uniform
and for each 1  j < `, p j is non-empty and p j ·first(p j+1) is uniform as well. Let w` 2 I2n be the word
encoding p` and for each 1  j < `, w j 2 I2n be the word encoding p j ·first(p j+1). Then, last(p`) leads
to acceptance in MA if and only if

Q`+1x`+1 2 I2n
. . . . Qnxn 2 I2n

.M (w1, . . . ,w`,x`+1, . . . ,xn) (1)

Proof of the claim. The proof is by induction on n� `.

Base Step: `= n. Note that in this case last(pn) is a terminal configuration of MA (otherwise, the number
of alternations of existential and universal configurations along p would be greater than n� 1 � |a|ca).
Thus, we need to show that last(pn) is accepting iff M (w1, . . . ,wn). By construction, when started on
the input (w1, . . . ,wn), M reaches the nth step and Condition 1 in this step is satisfied. Moreover, either
last(pn) is accepting and M accepts the input (w1, . . . ,wn), or last(pn) is rejecting and M rejects the
input (w1, . . . ,wn). Hence, the result follows.
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Induction Step: ` < n. First, assume that last(p`) is a terminal configuration. By construction on any
input of the form (w1, . . . ,w`,w0

`+1, . . . ,w
0
n), M reaches the `th step and Condition 1 in this step is sat-

isfied. Moreover, either last(p`) is accepting and M accepts the input (w1, . . . ,w`,w0
`+1, . . . ,w

0
n), or

last(p`) is rejecting and M rejects the input (w1, . . . ,w`,w0
`+1, . . . ,w

0
n). Hence, in this case the result

holds. Now, assume that last(p`) is not terminal. We consider the case where `+ 1 is even (the other
case being similar). Then, Q`+1 = 8. Since C

a

is existential and last(p`) is not terminal, by hypoth-
esis, last(p`) must be a universal configuration. First, assume that last(p`) leads to acceptance. Let
w`+1 2 I2n . By construction on any input of the form (w1, . . . ,w`,w`+1,w0

`+2 . . . ,w
0
n), M reaches the

(`+ 1)th step. If w`+1 satisfies Condition 2 in this step, then since `+ 1 is even, M accepts the input.
Hence, Q`+2x`+2 2 I2n

. . . .Qnxn 2 I2n
.M (w1, . . . ,w`,w`+1,x`+2, . . . ,xn). Otherwise, w`+1 encodes a uni-

form partial computation p`+1 of MA from last(p`). Since last(p`) leads to acceptance and last(p`)
is universal, last(p`+1) leads to acceptance as well. Thus, by applying the inductive hypothesis to the
partial computation p1 . . .p`�1p

0
`p`+1 (where p

0
` is obtained from p` by removing last(p`)), it follows

that Q`+2x`+2 2 I2n
. . . .Qnxn 2 I2n

.M (w1, . . . ,w`,w`+1,x`+2, . . . , xn). Thus, the previous condition holds
for each w`+1 2 I2n . Since Q`+1 = 8, it follows that Equation (1) holds. For the converse direction,
assume that Equation (1) holds. Let p`+1 be any uniform partial computation of MA from last(p`). We
need to show that last(p`+1) leads to acceptance. Since Equation (1) holds and Q`+1 = 8, we can apply
the inductive hypothesis to the partial computation p1 . . .p`�1p

0
`p`+1 (where p

0
` is obtained from p` by

removing last(p`)). Hence, the result follows. This concludes the proof of the claim and Lemma 26 as
well.

C.1.2 AEXPpol-hardness of the alternating multi-tiling problem

We show the AEXPpol-hardness of the alternating multi-tiling problem by a polynomial time reduction
from the TM alternation problem. Fix an instance (n,M ) of the TM alternation problem where M =
(n, I,A,Q,{qacc,qrej},q0,d ) is a polynomial-time bounded n-ary deterministic Turing Machine.
Remark 27 (Assumptions on M ). In order to simplify the reduction, without loss of generality, we can
assume that M satisfies the following constraints:

• n is even;
• for each n-ary input (w1, . . . ,wn) 2 I2n ⇥ . . .⇥ I2n , M reaches a terminal configuration in exactly

2n �1 steps, and when M halts, the read/write head points to a cell of the nth tape;
• there is no move leading to the initial state q0;
• for all a 2 A, d (q0,a) 2 Q⇥A⇥{!};
• for all (q,a),(q0,a0) 2 Q⇥A, if d (q,a) 2 {q0}⇥{prev,next}, then d (q0,a0) /2 Q⇥{prev,next}.
We construct in polynomial time in the size of (n,M ) an instance I of the alternating multi-tiling

problem such that (n,M ) is a positive instance of the TM alternation problem iff I is a positive in-
stance of the alternating multi-tiling problem. Evidently, by the definitions of the considered problems,
it suffices to show the following.
Proposition 28. One can construct in time polynomial in the size of (n,M ), an instance I = (n,D,D0,
H,V,M,Dacc) of the alternating multi-tiling problem such that D0 = I and the following holds: for each
n-ary input (w1, . . . ,wn) 2 I2n ⇥ . . .⇥ I2n

, M (w1, . . . ,wn) iff there exists a multi-tiling F = ( f1, . . . , fn) of
I such that for all ` 2 [1,n], the initial condition Init( fi) of the tiling fi is wi.

Proof. We adapt the well-known translation between time-space diagrams of computations (also known
as computation tableau) of a nondeterministic TM and tilings for a set of domino types entirely de-
termined by the given TM. In such a translation, adjacent rows in the tiled region encode successive
configurations in a computation of the machine.
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Let dAe be a fresh copy of the work alphabet A of M . For a word w over A, we denote by dwe the
associated word over dAe. Define U := A⇥ [1,n] and dUe := dAe⇥ [1,n]. We adopt the following set D
of domino types:

D = I[U [dUe[ (Q⇥U)[ ((Q⇥{ ,!,prev,next})⇥U)

Intuitively, in the encoding, we keep trace of the tape-indexes of M . Moreover, the domino types in
(Q⇥{ ,!})⇥U (resp., (Q⇥{prev,next})⇥U) are used to encode the effects of the ordinary moves
(resp., jump moves). For each d 2D, we denote by symb(d) the associated letter in A (recall that I ⇢ A).
Moreover, if d 2 D \ I, we write tape(d) to mean the associated tape index ` 2 [1,n]. Additionally, if
d 2 (Q⇥U)[ ((Q⇥ { ,!,prev,next})⇥U), we denote by state(d), the state q 2 Q associated with
d. If instead d 2 I[U [dUe, we set state(d) =? (? is for ‘undefined’).

Given ` 2 [1,n] and a word v over the alphabet

A[dAe[ (Q⇥A)[ ((Q⇥{ ,!,prev,next})⇥A)

we write v� ` to denote the word over the alphabet D\ I defined in the obvious way.
Fix an n-ary input (w1, . . . ,wn) 2 I2n⇥ . . .⇥ I2n and a non-rejecting configuration C of M reachable

from the input (w1, . . . ,wn). Assume that in C, the read/write head points to the kth cell of the `th tape
for some k� 1 and ` 2 [1,n], and let (q,a) 2Q⇥A be the pair state/scanned cell content associated with
C. Since on the input (w1, . . . ,wn), M halts in 2n�1 steps, it holds that k 2n and C can be encoded by
the tuples of words in D2n of the form (wC

1 �1, . . . ,wC
n �n) defined as follows:

• cases q = qacc or d (q,a)2Q⇥A⇥{ ,!}: for each j 2 [1,n]\{`}, wC
j = w j or wC

j = dw jewhere
w j is the content of the first 2n cells of the jth tape, and one of the following holds:

– q = qacc: wC
` is of the form w0 · (q,a) ·dw00e, where w0 ·a ·w00 is the content of the first 2n cells

of the `th tape and |w0|= k�1 (the read/write head points to the kth cell of the `th tape);
– d (q,a) 2 {q0}⇥A⇥{!} for some q0 2 Q: wC

` is of the form w0 · (q,a) · ((q0,!),a0) · dw00e,
where w0 ·a ·a0 ·w00 is the content of the first 2n cells of the `th tape and |w0|= k�1;

– d (q,a) 2 {q0}⇥A⇥{ } for some q0 2 Q: wC
` is of the form w0 · ((q0, ),a0) · (q,a) · dw00e,

where w0 ·a0 ·a ·w00 is the content of the first 2n cells of the `th tape and |w0|= k�1;
• case d (q,a) 2 {q0}⇥{prev} for some q0 2 Q:

– for each j 2 [1,n] \ {`,`� 1}, wC
j = w j or wC

j = dw je where w j is the content of the first 2n

cells of the jth tape;
– wC

` is of the form w0 · (q,a) ·dw00e, where w0 ·a ·w00 is the content of the first 2n cells of the `th
tape and |w0|= k�1;

– if `> 1, wC
`�1 is of the form w0 ·((q0,prev),a) ·dw00e, where w0 ·a ·w00 is the content of the first

2n cells of the (`�1)th tape and |w0|= k�1;
• case d (q,a) 2 {q0}⇥{next} for some q0 2 Q:

– for each j 2 [1,n] \ {`,`+ 1}, wC
j = w j or wC

j = dw je where w j is the content of the first 2n

cells of the jth tape;
– wC

` is of the form w0 · (q,a) ·dw00e, where w0 ·a ·w00 is the content of the first 2n cells of the `th
tape and |w0|= k�1;

– if ` < n, wC
`+1 is of the form w0 · ((q0,next),a) · dw00e, where w0 · a ·w00 is the content of the

first 2n cells of the (`+1)th tape and |w0|= k�1;

We construct in polynomial-time an instance I = (n,D,D0,H,V,M,Dacc) of the alternating multi-
tiling problem with D0 = I and Dacc = {qacc}⇥U such that for each n-ary input (w1, . . . ,wn) 2 I2n ⇥
. . .⇥ I2n , M (w1, . . . ,wn) iff there exists a multi-tiling F = ( f1, . . . , fn) of I such that for all ` 2 [1,n],
the initial condition of the tiling fi is wi. Moreover, if M (w1, . . . ,wn), then the following holds:
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• let p =C1 . . .C2n�1 be the accepting computation of M over (w1, . . . ,wn) (by our assumptions, the
write/read head in the accepting configuration C2n�1 points to the nth tape). Then, there exist multi-
tilings F = ( f1, . . . , fn) of I associated with the input (w1, . . . ,wn) such that for all j 2 [1,2n�1],
there is an encoding cod(Cj) of configuration Cj so that for all ` 2 [1,n], the row of index j of f`
coincides with the `th component of cod(Cj).

We define the matching relations H,V and M in order to ensure the above conditions. In particular,
the horizontal matching relation H guarantees that the TM configurations are correctly encoded, while
the vertical matching relation is used to encode the ordinary moves of M . Finally, the multi-tiling
matching relation M is used to encode the jump moves. Additionally, H, V and M also ensure that the
rows of index 1 encode the initial configuration of M associated with the given n-ary input (the latter
corresponds to the tuple of rows of index 0).

Formally, H is the set of pairs (d,d0) 2 D⇥D satisfying the following constraints:
• d 2 I iff d0 2 I;
• if d 2 D\ I, then d0 2 D\ I and tape(d) = tape(d0);
• if d,d0 2U [dUe, then either d,d0 2U , or d,d0 2 dUe;
• state(d0) 6= q0, and whenever state(d) = q0, then d 2 {q0}⇥U and tape(d) = 1;
• if d 2 dUe or d 2 (Q⇥{!,prev,next})⇥U , then d0 2 dUe;
• if d 2 Q⇥U and d (state(d),symb(d)) /2 Q⇥A⇥{!}, then d0 2 dUe;
• if d0 2U or d0 2 (Q⇥{ ,prev,next})⇥U , then d 2U ;
• if d0 2 Q⇥U and d (state(d),symb(d)) /2 Q⇥A⇥{ }, then d 2U ;
• for q0 2 Q, d 2 Q⇥U and d (state(d),symb(d)) 2 {q0}⇥A⇥{!} iff d0 2 {(q0,!)}⇥U ;
• for q0 2 Q, d0 2 Q⇥U and d (state(d),symb(d)) 2 {q0}⇥A⇥{ } iff d 2 {(q0, )}⇥U .

By definition of H (independently of the form of V and M), we deduce the following:

Claim 1: let f be a tiling of I and row be the content of any row of f . Then, either row 2 I⇤ or
row= row0 � ` for some ` 2 [1,n] and row0 satisfies one of the following:

• row0 = w · (q,a) · dw0e such that w,w0 2 A⇤, and d (q,a) /2 Q⇥A⇥{ ,!};
• row0 = w ·d · dw0e such that w,w0 2 A⇤, and d 2 (Q⇥{prev,next})⇥A;
• row0 = w such that w 2 A⇤;
• row0 = dwe such that w 2 A⇤;
• row0 = w ·d ·((q0,!),a0) ·dw0e such that w,w0 2 A⇤, d 2Q⇥A, and d (state(d),symb(d))2 {q0}⇥

A⇥{!};
• row0 = w ·((q0, ),a0) ·d ·dw0e such that w,w0 2 A⇤, d 2Q⇥A, and d (state(d),symb(d))2 {q0}⇥

A⇥{ };
Moreover, if for some i, state(row(i)) = q0, then i = 0, row(0) 2 {q0}⇥U , and tape(row(0)) = 1.

Now, let us define the vertical matching relation V . V is the set of pairs (d,d0) 2D⇥D satisfying the
following constraints:

• if d 2 I then d0 2 ({q0}⇥U)[U [dUe[ (Q⇥{!})⇥U and symb(d) = symb(d0);
• if d 2 D\ I, then d0 2 D\ I and tape(d) = tape(d0);
• if d 2U [dUe, then d0 2U [dUe[ ((Q⇥{prev,next})⇥U) and symb(d) = symb(d0);
• if d 2 (Q⇥{ ,!,prev,next})⇥U , then d0 = (state(d),symb(d), tape(d));
• if d 2 Q⇥U , then state(d) 6= qacc and one of the following holds:

– d (state(d),symb(d)) 2 Q⇥{symb(d0)}⇥{ ,!} and d0 2U [dUe;
– d (state(d),symb(d)) 2 Q⇥{prev,next}, d0 2U , and symb(d0) = symb(d).

Finally, we define the multi-tiling matching relation M. M is the set of pairs (d,d0)2D⇥D satisfying
the following constraints:
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• d 2 I iff d0 2 I;
• if d 2 D\ I, then d0 2 D\ I and tape(d0) = tape(d)+1;
• state(d) 6= qacc and state(d0) 6= q0;
• for each q 2 Q, d 2 Q⇥U and d (state(d),symb(d)) = (q,next) iff d0 2 {(q,next)}⇥U ;
• for each q 2 Q, d0 2 Q⇥U and d (state(d),symb(d)) = (q,prev) iff d 2 {(q,prev)}⇥U ;
• if d 2 (Q⇥{next})⇥U , then tape(d)> 1;
• if d0 2 (Q⇥{prev})⇥U , then tape(d0)< n.

By Claim 1 and the definitions of the matching relations V and M, one can prove that if F is a multi-
tiling of I with initial conditions (w1, . . . ,wn)2 I2n ⇥ . . .⇥ I2n , then F encodes an accepting computation
of M over the n-ary input (w1, . . . ,wn) 2 I2n ⇥ . . .⇥ I2n . Vice versa, by Remark 27, if M (w1, . . . ,wn),
then it easily follows that there exists a multi-tiling encoding the accepting computation of M over
(w1, . . . ,wn).

C.2 Proof of Proposition 23

Proposition 23. One can build, in time polynomial in the size of I , n+1 BE formulas jIMT,j1, . . . ,jn
such that °(jIMT) = °(j1) = . . .= °(jn) = 0, and fulfilling the following conditions.

• For all finite words r over AP of the form r = r

0 ·? ·wn · . . . ·? ·w1 · end such that r

0 6= e and
? ·wn · . . . ·? ·w1 ·end is a multi-initialization code, KI ,r |= jIMT if and only if r is an initialized
multi-tiling code.

• For all ` 2 [1,n] and words r of the form r = r

0 ·? ·w`�1 · . . . ·? ·w1 · end such that r

0 6= e and
w j 2 (AP \{?})⇤ for all j 2 [1,`�1], KI ,r |= j` if and only if r

0 is of the form r

0 =? ·w`, where
w` is an initialization code.

Proof. Since each state of the Kripke structure KI is labeled by exactly one proposition in AP , in the
proof, we exploit standard regular expressions where atomic formulas are single letters in AP . Evidently,
a standard regular expression can be converted into a propositional-based regular expression where each
letter p 2 AP is replaced with the propositional formula p^

V
p02AP\{p} ¬p0. Now, we prove Proposi-

tion 23. We focus on the construction of the BE formula jIMT (the construction of formulas j1, . . . ,jn
being simpler). First, we define a BE formula jMT ensuring the following:

• For all finite words r over AP of the form r = r

0 ·? ·wn · . . . ·? ·w1 · end such that r

0 6= e and
? ·wn · . . . ·? ·w1 · end is a multi-initialization code, KI ,r |= jMT if and only if r

0 = ? ·w for
some multi-tiling code w.

In order to construct the BE formula jMT, we need some auxiliary formulas.
• A regular expression rmc capturing the multi-cell codes:

rmc := Dn · ({r}⇥{0,1})n · ({c}⇥{0,1})n

• A B formula ycomp requiring that for each word C ·? ·C1 · . . . ·CN ·? such that C,C1, . . . ,CN are
multi-cell codes, there is i 2 [1,N] such that C and Ci have the same row number and column
number.

ycomp := hBi
⇣
(rmc ·? · (rmc)+) ^
^

i2[1,n]

_

b2{0,1}
(AP n+i�1 · (r,b) ·AP+ · (r,b) ·AP 2n�i) ^

^

i2[1,n]

_

b2{0,1}
(AP 2n+i�1 · (c,b) ·AP+ · (c,b) ·AP n�i)

⌘
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• A propositional formula y= requiring that for each word having a proper prefix of the form C ·C0

such that C and C0 are multi-cell codes, then C and C0 have the same row number and column
number.

y= :=
^

i2[1,n]

_

b2{0,1}
(AP n+i�1 · (r,b) ·AP 3n�1 · (r,b) ·AP+) ^

^

i2[1,n]

_

b2{0,1}
(AP 2n+i�1 · (c,b) ·AP 3n�1 · (c,b) ·AP+)

• A propositional formula yr,inc (resp., yc,inc) requiring that for each word having a proper prefix
of the form C ·C0 such that C and C0 are multi-cell codes, then C and C0 have the same column
number (resp., the same row number) and there is h 2 [0,2n � 2] such that C and C0 have row
numbers (resp., column numbers) h and h+ 1, respectively. We consider the formula yr,inc (the
definition of yc,inc being similar).

yr,inc :=
^

i2[1,n]

_

b2{0,1}
(AP 2n+i�1 · (c,b) ·AP 3n�1 · (c,b) ·AP+) ^

_

i2[1,n]

⇣ ^

j2[1,i�1]

(AP n+ j�1 · (r,1) ·AP 3n�1 · (r,0) ·AP+) ^

(AP n+i�1 · (r,0) ·AP 3n�1 · (r,1) ·AP+) ^
^

j2[i+1,n]

_

b2{0,1}
(AP n+ j�1 · (r,b) ·AP 3n�1 · (r,b) ·AP+)

⌘

• A B formula ydouble requiring that for each word C ·C0 ·? ·C1 · . . . ·CN ·? such that C,C0,C1, . . . ,CN
are multi-cell codes, there are i, j 2 [1,N] such that C =Ci and C0 =Cj. ydouble is the conjunction
of two B formulas q and q

0, where q (resp., q

0) requires that there is i 2 [1,N] such that Ci = C
(resp., Ci =C0). We consider formula q

0 (the definition of q being similar).

q

0 := hBi
⇣
(rmc · rmc ·? · (rmc)+) ^
^

i2[1,n]

_

d2D
(AP 3n+i�1 ·d ·AP+ ·d ·AP 3n�i) ^

^

i2[1,n]

_

b2{0,1}
(AP 4n+i�1 · (r,b) ·AP+ · (r,b) ·AP 2n�i) ^

^

i2[1,n]

_

b2{0,1}
(AP 5n+i�1 · (c,b) ·AP+ · (c,b) ·AP n�i)

⌘

• A B formula ynot unique requiring that for each word C ·C0 ·?·C1 · . . .·CN ·? such that C,C0,C1, . . . ,CN
are multi-cell codes, the following holds:

– C and C0 have the same row number and column number but different content;
– there are i, j 2 [1,N] such that C =Ci and C0 =Cj.

The construction of ynot unique is based on the formulas ydouble and y=:

ynot unique := ydouble ^ y= ^
_

i2[1,n]

_

d,d02D:d 6=d0
(AP i�1 ·d ·AP 3n�1 ·d0 ·AP+)

• A B formula yrow (resp., ycol) requiring that for each word C ·C0 ·? ·C1 · . . . ·CN ·? such that
C,C0,C1, . . . ,CN are multi-cell codes, the following condition holds.
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– Let us denote by d1 . . .dn the content of C and by d0
1 . . .d

0
n the content of C0. Whenever (1)

there are i, j 2 [1,N] such that C = Ci and C0 = Cj, and (2) C and C0 have the same row
number and column numbers h and h+1, respectively (resp., C and C0 have the same column
number and row numbers h and h+1, respectively) for some h 2 [0,2n�2], then it holds that
(d`,d0

`) 2 H (resp., (d`,d0
`) 2V ) for all ` 2 [1,N].

We focus on the formula yrow (the definition of ycol being similar) whose construction is based on
the formulas ydouble and yc,inc:

yrow := (ydouble ^ yc,inc) �!
^

i2[1,n]

_

(d,d0)2H

(AP i�1 ·d ·AP 3n�1 ·d0 ·AP+)

The BE formula jMT is then defined as follows:

¬(AP ⇤ ·? ·AP ⇤)n+2 ^ hBi
⇣
(? · (rmc)

+ ·?) ^ ¬
_

(d,d0)2D2\M

(AP+ ·d ·d0 ·AP+)

| {z }
concatenation of well-formed multi-cell codes

^

[E]((rmc ·? · (rmc)
+ ·?)�! ycomp)| {z }

Completeness requirement of Definition 20

^ [E]((rmc · rmc ·? · (rmc)
+ ·?)�! ¬ynot unique)| {z }

Uniqueness requirement of Definition 20

^

[E]((rmc · rmc ·? · (rmc)
+ ·?)�! (yrow ^ycol))| {z }

Row-adjacency and column-adjacency requirements of Definition 20

^
_

dacc2Dacc

(AP+ ·dacc · (r,1)n ·AP+)

| {z }
Acceptance requirement of Definition 20

⌘

Finally, the BE formula jIMT is given by
jMT ^jcoh

where jcoh is a BE formula ensuring the initialization coherence requirement of Definition 22. In order
to define jcoh, we need some auxiliary formulas:

• A regular expression ric capturing the initial cell codes:

ric := D0 · ({c}⇥{0,1})n

• A B formula ysingle requiring that for each word C ·? ·C1 · . . . ·CN ·? such that C,C1, . . . ,CN are
multi-cell codes, there is i 2 [1,N] such that C =Ci and the row number of C is 0. The definition
of ysingle is similar to the definition of the B formula ydouble.

• A B formula ycoh requiring that for each word C ·? ·C1 · . . . ·CN ·? ·wn · . . . ·? ·w1 · end such
that C,C1, . . . ,CN are multi-cell codes and ? ·wn · . . . ·? ·w1 · end is a multi-initialization code, the
following holds: whenever there is i 2 [1,N] such that C = Ci, the row number of C is 0 and the
content of C is d1 . . .dn, then for all ` 2 [1,n], there is an initial code in w` having the same column
number as C and whose content is d`.

ycoh :=
�
hBi([(AP \{?})+ ·? · (AP \{?})+ ·?]^ysingle)

�
�!

^

`2[1,n]
y`

y` := hBi
⇣ ⇥

(AP \{?})+ · (? · (AP \{?})+)n�`+1 ·? · r+ic
⇤
^

^

i2[1,n]

_

b2{0,1}
(AP 2n+i�1 · (c,b) ·AP+ · (c,b) ·AP n�i) ^

_

d2D
(AP `�1 ·d ·AP+ ·d ·AP n)

⌘



30 Complexity of Model Checking for Maximal Fragments of HS with Regular Expressions

The BE formula jcoh is then defined as follows:

jcoh := [E]
�
[rmc · (? · (AP \{?})+)n+1]! ycoh

�

This concludes the proof of Proposition 23.
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