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Abstract

Planning is one of the most studied problems in computer science. In this pa-
per, we consider the timeline-based approach, where the planning domain is
modeled by a set of independent, but interacting, components, each one repre-
sented by a number of state variables, whose behavior over time (timelines) is
governed by a set of temporal constraints (synchronization rules). Whereas the
temporal domain is usually assumed to be discrete, here we address decidabil-
ity and complexity issues for timeline-based planning (TP) over dense temporal
domains.

First, dense TP is proved to be undecidable in the general case; then we
show that decidability can be recovered by admitting synchronization rules
with a suitable future semantics. More “tractable” results can be obtained
by additionally constraining the form of intervals used in rules: EXPSPACE-
completeness is obtained by avoiding singular intervals, PSPACE-completeness
by admitting only intervals having the forms [0, a] and [b,+1[. Additionally,
NP-completeness can be proved for TP with only purely existential rules.

Finally, we show how systems can be described by timelines, and then model
checked against property specifications given by formulas of Metric Interval
Temporal Logic (MITL), a well-known timed extension of LTL.

Keywords: Planning, Timelines, Metric Temporal Logic, Timed Automata,
Computational Complexity
2010 MSC: 03B70, 68Q60

Timeline-based planning (TP for short) represents an alternative to the clas-
sic action-based planning: the latter aims at determining a sequence of actions
that, given the initial state of the world and a goal, transforms, step by step,
the state of the world until we reach a state satisfying the goal. Conversely, TP
can be considered as a more declarative approach, in that it focuses on what
has to happen in order to satisfy the goal instead of what an agent has to do. In
TP, the planning domain is modeled as a set of independent (but interacting)

?This paper is an extended and revised version of [6, 5, 7].
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components, each one consisting of a number of state variables. The evolution of
the values of state variables over time is described by means of a set of timelines
(in turn these are sequences of time intervals called tokens), and it is governed
by a set of transition functions, one for each state variable, and a number of
synchronization rules, that constrain the temporal relations among (values of)
state variables.

TP has been successfully exploited in a number of application domains,
for instance, in space missions, constraint solving, activity scheduling,. . . (see,
e.g., [4, 9, 10, 13, 17, 22]), but a systematic study of its expressiveness and
complexity has been undertaken only very recently. The temporal domain is
commonly assumed to be discrete. In [14], Gigante et al. showed that TP with
bounded temporal relations and token durations, and no temporal horizon, is
EXPSPACE-complete and expressive enough to capture action-based tempo-
ral planning. Later, in [15], they proved that EXPSPACE-completeness still
holds for TP with unbounded interval relations, and that the problem becomes
NEXPTIME-complete if an upper bound to the temporal horizon is added.

In the following sections we will study TP over a dense temporal domain,
without having recourse to any form of discretization, which is quite a com-
mon trick. The reason why we assume this di↵erent version of time domain is,
basically, to increase expressiveness: in this way one can abstract from unnec-
essary (or even “forced”) details, often artificially added due to the necessity of
discretizing time, and can suitably represent actions with duration, accomplish-
ments and temporally extended goals.

We will study suitable restrictions on the TP problem that allow us to recover
its decidability: as a matter of fact, the first result we establish is a negative
one, namely, that TP over dense time, in its general formulation, is undecidable.
Then we will also show how to obtain better computational complexities, which
are appropriate to the practical exploitation of TP, by constraining the logical
structure of synchronization rules. In the general case, a synchronization rule
allows a universal quantification over the tokens of a timeline (such a quantifi-
cation is called trigger). When a token is “selected” by a trigger, the rule allows
us to compare tokens of the timelines both preceeding (past) and following (fu-
ture) the trigger token. The first restriction we consider consists in limiting the
comparison to tokens in the future with respect to the trigger (future semantics
of trigger rules). The second imposes that the name of a non-trigger token ap-
pears exactly once in the constraints set by the rule (simple trigger rules): this
syntactical restriction avoids comparisons of multiple token time-events with a
non-trigger reference time-event. Better complexity results can be obtained by
restricting also the type of intervals used in rules in order to compare tokens.

Table 1 summarizes all the decidability and complexity results described in
the following: we will consider mixes of restrictions on TP involving trigger rules
with future semantics, simple trigger rules, and intervals in atoms (of trigger
rules) which are non-singular1, or unbounded/left-closed with left endpoint 0

1An interval of the form [a, a], for a 2 N, is called singular.
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Table 1: Decidability and complexity of restrictions of the TP problem.

TP problem Future TP problem
Unrestricted Undecidable (Decidable?) Non-primitive recursive-hard

Simple trigger rules Undecidable Decidable (non-primitive recursive)
Simple trigger rules,

? EXPSPACE-complete
non-singular intervals
Simple trigger rules,

? PSPACE-complete
intervals in Intv (0,1)

Trigger-less rules only NP-complete //

(the latter intervals are denoted by Intv (0,1)).
We now describe the organization of this paper.

Organization of the paper.

• In Section 1 we start by introducing the TP framework, providing some
background knowledge on it.

• In Section 2 we prove that TP is undecidable in the general case, by a
reduction from the halting problem for Minsky 2-counter machines. The
section is concluded commenting on non-primitive recursive-hardness of
TP under the future semantics of trigger rules (this is formally proved
in Appendix B).

• In Section 3, we establish that future TP with simple trigger rules is
decidable (in non-primitive recursive time), and then we show membership
in EXPSPACE (respectively, PSPACE) under the restriction to non-
singular intervals (respectively, intervals in Intv (0,1)).

• Matching complexity lower bounds for the last two restrictions are given
in Section 4.

• In Section 5 we outline an NP planning algorithm for TP with trigger-less
rules only (which disallow the universal quantification/trigger and have a
purely existential form) stemming from the results of the previous sections.
With a trivial hardness proof, we also show TP with trigger-less rules to
be NP-complete.

• In Section 6, we tackle a di↵erent problem, namely, model checking (MC)
for systems described by timelines, where property specifications are given
in terms of formulas of Metric Interval Temporal Logic (MITL), a timed
logic which extends LTL. In this respect TP can be regarded as a sort
of necessary condition for MC, the former playing the role of a “feasibil-
ity check” of the system description, which is not immediately feasible
by definition—as opposed, for example, to Kripke structures—given the
presence of synchronization rules that constrain the legal system compu-
tations.
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1. The TP Problem

Let N be the set of natural numbers and R+ be the set of non-negative real
numbers; moreover, Intv denotes the set of intervals of R+ whose endpoints are
in N [ {1}, and Intv (0,1) is the set of non-singular intervals I 2 Intv such
that either I is unbounded, or I is left-closed with left endpoint 0. The latter
intervals I can be represented by expressions of the form ⇠ n, for some n 2 N
and ⇠2 {<,, >,�}.

We now introduce notation and basic notions of the TP framework as pre-
sented in [11, 14]. In TP, domain knowledge is encoded by a set of state variables,
whose behaviour over time is described by transition functions and synchroniza-
tion rules.

Definition 1 (State variable). A state variable x is a triple

x = (Vx, Tx, Dx),

where

• Vx is the finite domain of the state variable x,

• Tx : Vx ! 2Vx is the value transition function, which maps each v 2 Vx to
the (possibly empty) set of successor values, and

• Dx : Vx ! Intv is the constraint (or duration) function that maps each
v 2 Vx to an interval of Intv .

A token for a state variable x is a pair (v, d) consisting of a value v 2 Vx and
a duration d 2 R+ such that d 2 Dx(v). Intuitively, a token for x represents an
interval of time where the state variable x takes value v. In order to clarify the
variable to which a token refers, we shall often denote (v, d) as (x, v, d).

The behavior of the state variable x is specified by means of a timeline, which
is a non-empty sequence of tokens ⇡ = (v0, d0) · · · (vn, dn) consistent with the
value transition function Tx, namely, such that vi+1 2 Tx(vi) for all 0  i < n.
The start time s(⇡, i) and the end time e(⇡, i) of the i-th token of the timeline
⇡ are defined respectively as follows:

s(⇡, i) = 0 if i = 0, s(⇡, i) =
i�1X

h=0

dh otherwise,

and

e(⇡, i) =
iX

h=0

dh.

See Figure 1 for an example.
Given a finite set SV of state variables, a multi-timeline of SV is a mapping

⇧ assigning to each state variable x 2 SV a timeline for x.
Multi-timelines of SV can be constrained by a set of synchronization rules,

which relate tokens, possibly belonging to di↵erent timelines, through temporal
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x
t=0 t=7 t=10 t=13.9

x = a x = b x = c x = b

Figure 1: An example of timeline (a, 7)(b, 3)(c, 3.9) · · · for the state variable x = (Vx, Tx, Dx),
where Vx = {a, b, c, . . .}, b 2 Tx(a), c 2 Tx(b), b 2 Tx(c). . . and Dx(a) = [5, 8], Dx(b) = [1, 4],
Dx(c) = [2,1[. . .

constraints on the start/end times of tokens (time-point constraints) and on
the di↵erence between start/end times of tokens (interval constraints). The
synchronization rules make use of an alphabet ⌃ = {o, o0, o1, o2, . . .} of token
names to refer to the tokens along a multi-timeline, and are based on the notions
of atom and existential statement.

Definition 2 (Atom). An atom ⇢ is either a clause of the form o1 
e1,e2

I
o2

(interval atom), or of the forms o1 
e1
I

n or n e1
I

o1 (time-point atom), where
o1, o2 2 ⌃, I 2 Intv , n 2 N, and e1, e2 2 {s, e}.

An atom ⇢ is evaluated with respect to a ⌃-assignment �⇧ for a given multi-
timeline ⇧, which is a mapping assigning to each token name o 2 ⌃ a pair
�⇧(o) = (⇡, i) such that ⇡ is a timeline of ⇧ and 0  i < |⇡| is a position along
⇡ (intuitively, (⇡, i) represents the token of ⇧ referenced by the name o).

An interval atom o1 
e1,e2

I
o2 is satisfied by �⇧ if e2(�⇧(o2))�e1(�⇧(o1)) 2 I.

A point atom o e

I
n (respectively, n e

I
o) is satisfied by �⇧ if n� e(�⇧(o)) 2 I

(respectively, e(�⇧(o))� n 2 I).

Definition 3 (Existential statement). An existential statement E for a finite
set SV of state variables is a statement of the form

E = 9o1[x1 = v1] · · · 9on[xn = vn].C,

where C is a conjunction of atoms, oi 2 ⌃, xi 2 SV and vi 2 Vxi , for 1  i  n.
The elements oi[xi = vi] are called quantifiers. A token name used in C, but

not occurring in any quantifier, is said to be free.

Given a ⌃-assignment �⇧ for a multi-timeline ⇧ of SV , we say that �⇧ is
consistent with the existential statement E if, for each quantifier oi[xi = vi], we
have �⇧(oi) = (⇡, h), where ⇡ = ⇧(xi) and the h-th token of ⇡ has value vi.
A multi-timeline ⇧ of SV satisfies E if there exists a ⌃-assignment �⇧ for ⇧
consistent with E such that each atom in C is satisfied by �⇧.

We can now introduce synchronization rules, which constrain tokens, possi-
bly belonging to di↵erent timelines.

Definition 4 (Synchronization rule). A synchronization rule R for a finite set
SV of state variables is a rule of one of the forms

o0[x0 = v0]! E1 _ E2 _ . . . _ Ek, > ! E1 _ E2 _ . . . _ Ek,

where o0 2 ⌃, x0 2 SV , v0 2 Vx0 , and E1, . . . , Ek are existential statements. In
rules of the first form (which are called trigger rules), the quantifier o0[x0 = v0]
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is called trigger ; we require that only o0 may appear free in Ei, for all 1  i  n.
In rules of the second form (trigger-less rules), we require that no token name
appears free.
A trigger rule R is simple if, for each existential statement E of R and each
token name o distinct from the trigger, there is at most one interval atom of E
where o occurs.

Intuitively, the trigger o0[x0 = v0] acts as a universal quantifier, which states
that for all the tokens of the timeline for x0, where x0 takes the value v0, at
least one of the existential statements Ei must be satisfied. As an example,

o0[x0 = v0]! 9o1[x1 = v1].o0 
e,s
[2,1[ o1

states that after every token for x0 with value v0 there exists a token for x1 with
value v1 starting at least 2 time instants after the end of the former. Trigger-less
rules simply assert the satisfaction of some existential statement. The intuitive
meaning of simple trigger rules is that they disallow simultaneous comparisons
of multiple time-events (start/end times of tokens) with a non-trigger reference
time-event.

The semantics of synchronization rules is formally defined as follows.

Definition 5 (Semantics of synchronization rules). Let ⇧ be a multi-timeline
of a set SV of state variables.

Given a trigger-less rule R of SV , ⇧ satisfies R if ⇧ satisfies some existential
statement of R.

Given a trigger rule R of SV with trigger o0[x0 = v0], ⇧ satisfies R if, for
every position i of the timeline ⇡ = ⇧(x0) for x0 such that ⇡(i) = (v0, d), there
exists an existential statement E of R and a ⌃-assignment �⇧ for ⇧ consistent
with E such that �⇧(o0) = (⇡, i) and �⇧ satisfies all the atoms of E .

In the paper, we shall also focus on a stronger notion of satisfaction of trigger
rules, called satisfaction under the future semantics : it requires that all non-
trigger tokens selected by some quantifier do not start strictly before the start
time of the trigger token.

Definition 6 (Future semantics of trigger rules). A multi-timeline ⇧ of SV
satisfies a trigger rule

R = o0[x0 = v0]! E1 _ E2 _ . . . _ Ek

under the future semantics if ⇧ satisfies the trigger rule obtained from R by
replacing each existential statement

Ei = 9o1[x1 = v1] · · · 9on[xn = vn].C

by

E
0

i
= 9o1[x1 = v1] · · · 9on[xn = vn].

⇣
C ^

n^

i=1

o0 
s,s
[0,+1[ oi

⌘
.
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Finally, a TP domain P = (SV,R) is specified by a finite set SV of state
variables and a finite set R of synchronization rules for SV modeling their
admissible behaviors. Trigger-less rules can be used to express initial, as well
as intermediate conditions and the goals of the problem, while trigger rules are
much more powerful and useful, for instance, to specify invariants and response
requirements.

A plan for P = (SV,R) is a multi-timeline of SV satisfying all the rules in
R. A future plan for P is defined in a similar way, but we require satisfaction
under the future semantics of all trigger rules.

In the next sections we will study the following decision problems:

• TP problem: given a TP domain P = (SV,R), is there a plan for P?

• Future TP problem: given a TP domain P = (SV,R), is there a future
plan for P?

We refer again to Table 1 for the decidability and complexity results proved
in the following about the mentioned problems.

2. TP over dense temporal domains is an undecidable problem

In this section, we start by settling an important negative result, namely,
we show that the TP problem, in its full generality, is undecidable over dense
temporal domains, even when a single state variable is involved. Undecidability
is proved via a reduction from the halting problem for Minsky 2-counter ma-
chines [21]. The proof somehow resembles the one for the satisfiability problem
of Metric Temporal Logic (which will be formally introduced later, in Section 3)
with both past and future temporal modalities, interpreted on dense time [3].

As a preliminary step, we give a short account of Minsky 2-counter machines.
A Minsky 2-counter machine (or just counter machine for short) is a tuple
M = (Inst, `init, `halt) consisting of a finite set Inst of labeled instructions ` : ı,
where ` is a label and ı is an instruction for either

• increment of counter h: ch := ch + 1; goto `r, or

• decrement of counter h: if ch > 0 then ch := ch � 1; goto `s else goto
`t,

where h 2 {1, 2}, `s 6= `t, and `r (respectively, `s, `t) is either a label of an
instruction in Inst or the halting label `halt. Moreover, `init 2 Inst is the label of
a designated (“initial”) instruction.

An M -configuration is a triple of the form C = (`, n1, n2), where ` is the
label of an instruction (intuitively, which is the one to be executed next), and
n1, n2 2 N are the current values of the two counters c1 and c2, respectively.

M induces a transition relation
M
�! over pairs of M -configurations:

• for an instruction with label ` incrementing c1, we have (`, n1, n2)
M
�!

(`r, n1 + 1, n2), and
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• for an instruction decrementing c1, we have (`, n1, n2)
M
�! (`s, n1 � 1, n2)

if n1 > 0, and (`, 0, n2)
M
�! (`t, 0, n2) otherwise.

The analogous for instructions changing the value of c2.
An M -computation is a finite sequence C1, . . . , Ck of M -configurations such

that Ci

M
�! Ci+1 for all 1  i < k. M halts if there exists an M -computation

starting at (`init, 0, 0) and leading to (`halt, n1, n2), for some n1, n2 2 N. Given
a counter machine M , the halting problem for M is to decide whether M halts,
and it was proved to be undecidable by Minsky [21].

The rest of the section is devoted to showing the following result.

Theorem 7. The TP problem over dense temporal domains is undecidable (even
when a single state variable is involved).

Proof. We prove the thesis by a reduction from the halting problem for Minsky
2-counter machines. Let us introduce the following notational conventions:

• for increment instructions ` : ch := ch + 1; goto `r, we define c(`) = ch
and succ(`) = `r;

• for decrement instructions ` : if ch > 0 then ch := ch � 1; goto `r else
goto `s, we define c(`) = ch, dec(`) = `r, and zero(`) = `s.

Moreover, let InstLab be the set of instruction labels, including `halt, and let Inc
(resp., Dec) be the set of labels for increment (resp., decrement) instructions.
We consider a counter machine M = (Inst, `init, `halt) assuming without loss of
generality that no instruction of M leads to `init, and that `init is the label of
an increment instruction. To prove the thesis, we build in polynomial time a
state variable xM = (V, T,D) and a finite set RM of synchronization rules over
xM such that M halts if and only if there is a timeline for xM which satisfies
all the rules in RM , that is, a plan for P = ({xM}, RM ).

Encoding of M -computations.. First, we define a suitable encoding of a compu-
tation of M as a timeline for xM . For such an encoding we exploit the finite set
of symbols V = Vmain [ Vcheck corresponding to the finite domain of the state
variable xM . The sets of main values Vmain and check values Vcheck are defined
as

Vmain =
[

`2Inc[{`halt}

[

h2{1,2}

⇣
{`} [ {(`, ch)}

⌘
[

[

`2Dec

[

`02{zero(`),dec(`)}

[

h2{1,2}

⇣
{(`, `0)} [ {(`, `0, ch)} [ {(`, `0, (ch,#))}

⌘

and

Vcheck =
[

`2InstLab

[

i,h2{1,2}

[

opi2{inci,deci,zeroi}

⇣
{(`,opi)}[{(`,opi, ch)}[{(`,opi, (ch,#))}

⌘

8



For each h 2 {1, 2}, we denote by Vch the set of V -values v having the form
v = (`, c), v = (`, `0, c), or v = (`, op, c), where c 2 {ch, (ch,#)}: if c = ch,
we say that v is an unmarked Vch -value; otherwise (c = (ch,#)), v is a marked
Vch -value.

An M -configuration is encoded by a finite word over V consisting of the
concatenation of a check-code and a main-code. The main-code wmain for a
M -configuration (`, n1, n2), where the instruction label ` 2 Inc[{`halt}, n1 � 0,
and n2 � 0, has the form:

wmain = ` · (`, c1) · · · (`, c1)| {z }
n1 times

· (`, c2) · · · (`, c2)| {z }
n2 times

.

In the case of a decrement instruction label ` 2 Dec such that c(`) = c1, the
main-code w0

main has one of the following two forms, depending on whether the
value of c1 in the encoded configuration is equal to, or greater than zero.

(`, zero(`)) · (`, zero(`), c2) · · · (`, zero(`), c2)| {z }
n2 times

,

(`, dec(`)) · (`, dec(`), (c1,#))·

(`, dec(`), c1) · · · (`, dec(`), c1)| {z }
n1 times

· (`, dec(`), c2) · · · (`, dec(`), c2)| {z }
n2 times

.

In the first case, w0

main encodes the configuration (`, 0, n2) and in the second case
the configuration (`, n1 + 1, n2). Note that, in the second case, there is exactly
one occurrence of a marked Vc1 -value which intuitively “marks” the unit of the
counter which will be removed by the decrement. Analogously, the main-code
for a decrement instruction label ` with c(`) = c2 has two forms symmetric with
respect to the previous cases.

The check-code is used to trace both an M -configuration C and the type of
instruction associated with the configuration Cp preceding C in the considered
computation. The type of instruction is given by the symbols inci, deci, and
zeroi, with i 2 {1, 2}: inci (resp., deci, zeroi) means that Cp is associated with an
instruction incrementing the counter ci (resp., decrementing ci with ci greater
than 0 in Cp, decrementing ci with ci equal to 0 in Cp).

The check-code for an instruction label ` 2 InstLab and an inc1-operation
has the following form

(`, inc1) · (`, inc1, (c1,#)) · (`, inc1, c1) · · · (`, inc1, c1)| {z }
n1 times

· (`, inc1, c2) · · · (`, inc1, c2)| {z }
n2 times

,

and encodes the configuration (`, n1 + 1, n2). Note that there is exactly one
occurrence of a marked Vc1 -value which intuitively represents the unit added to
the counter by the increment operation.

9



`i c01 c01 c02 c02
`i+1,
inc1

gc1# c̃1 c̃1 c̃2 c̃2 `i+1 c001 c001 c001 c002 c002 · · ·· · ·

· · ·
=1

=1
=1

=1

=1
=1

=1
=1

=1

t=k + 1

type(`i) = inc1xM

t=k t=k + 2· · ·

wcheck

wmain

Figure 2: A fragment of a computation code with a configuration code for an instruction
`i+1. Main-codes are highlighted in yellow and check-codes in cyan. Each square can also
be seen as a token of a timeline for xM (tokens are decorated with their start time and their

temporal constraints). In the figure, for h 2 {1, 2}, the symbols c0h, c̃h,
gch#, and c00h, stand

respectively for (`i, ch), (`i+1, inc1, ch), (`i+1, inc1, (ch,#)), and (`i+1, ch).

The check-code for an instruction label ` 2 InstLab and an operation op1 2
{dec1, zero1} for the counter c1 has the form

(`, op1) · (`, op1, c1) · · · (`, op1, c1)| {z }
n1 times

· (`, op1, c2) · · · (`, op1, c2)| {z }
n2 times

,

where we require that n1 = 0 if op1 = zero1. The check-code for a label ` 2
InstLab and an operation associated with the counter c2 is defined in a similar
way.

A configuration-code is a word w = wcheck · wmain such that wcheck is a
check-code, wmain is a main-code, and wcheck and wmain are associated with
the same instruction label. The configuration code is well-formed if wcheck and
wmain encode the same configuration.

Figure 2 depicts the encoding of a configuration-code for the instruction `i+1.
The check-code for the instruction `i+1 is associated with an increment of the
counter c1 (the type of instruction `i).

A computation-code is a sequence of configuration-codes ⇡ = w1
check·w

1
main· · ·

wn

check ·w
n

main such that, for all 1  j < n, the following holds (we assume `i to
be the instruction label associated with the configuration code wi

check · w
i

main):

• `j 6= `halt;

• if `j 2 Inc with c(`j) = ch, then `j+1 = succ(`j) and wj+1
check is associated

with the operation inch;

• if `j 2 Dec with c(`j) = ch, and the first symbol of wj

main is (`j , zero(`j))
(resp., (`j , dec(`j))), then `j+1 = zero(`j) (resp., `j+1 = dec(`j)) and

wj+1
check is associated with the operation zeroh (resp., dech).

The computation-code ⇡ is well-formed if, additionally, each configuration-code
in ⇡ is well-formed and, for all 1  j < n, the following holds (we assume
(`i, ni

1, n
i
2) to be the configuration encoded by wi

check · w
i

main):

• if `j 2 Inc, with c(`j) = ch, then nj+1
h

= nj

h
+ 1 and nj+1

3�h
= nj

3�h
;
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• if `j 2 Dec, with c(`j) = ch, then nj+1
3�h

= nj

3�h
. Moreover, if wj+1

check is

associated with dech, then nj+1
h

= nj

h
� 1.

Clearly, a well-formed computation code ⇡ encodes a computation of the Minsky
2-counter machine.

A computation-code ⇡ is initial if it starts with the prefix (`init, zero1) · `init,
and it is halting if it leads to a configuration-code associated with the halting
label `halt. The counter machine M halts if and only if there is an initial and
halting well-formed computation-code.

Definition of xM and RM .. Let us show now how to reduce the problem of
checking the existence of an initial and halting well-formed computation-code
to a TP problem for the state variable xM .

The idea is to define a timeline where the sequence of values of its tokens is
a well-formed computation-code. The durations of tokens are suitably exploited
to guarantee well-formedness of computation-codes. We refer the reader again
to Figure 2 for an intuition. Each symbol of the computation-code is associated
with a token having a positive duration. The overall duration of the sequence
of tokens corresponding to a check-code or a main-code amounts exactly to
one time unit. To allow for the encoding of arbitrarily large values of counters
in one time unit, the duration of such tokens is not fixed (taking advantage
of the dense temporal domain). In two adjacent check/main-codes, the time
elapsed between the start times of corresponding elements in the representation
of the value of a counter (see elements in Figure 2 connected by horizontal lines)
amounts exactly to one time unit. Such a constraint allows us to compare the
values of counters in adjacent codes, either checking for equality, or simulating
(by using marked symbols) increment and decrement operations. Note that
there is a single marked token c1 in the check-code—that represents the unit
added to c1 by the instruction `i—which does not correspond to any of the c1’s
of the preceding main-code.

We now formally define a state variable xM and a set RM of synchronization
rules for xM such that the untimed part of any timeline (i.e., neglecting tokens’
durations) for xM satisfying the rules in RM is (represents) an initial and halting
well-formed computation-code. Thus, M halts if and only if there exists a
timeline for xM satisfying the rules in RM .

As for xM , we let xM = (V, T,D) where, for each v 2 V , D(v) = ]0, 1]. This
sets the strict time monotonicity constraint, namely, the duration of a token
along a timeline is always greater than zero and less than or equal to 1.

The value transition function T of xM ensures the following requirement.

Claim 8. The untimed part of any timeline for xM whose first token has value
(`init, zero1) is a prefix of some initial computation-code. Moreover (`init, zero1) /2
T (v) for all v 2 V .

It is a straightforward task to define T in such a way that the previous
requirement is fulfilled (for details, see Appendix A).

Finally, the synchronization rules in RM ensure the following requirements.
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• Initialization: every timeline starts with two tokens, the first one having
value (`init, zero1), and the second having value `init. By Claim 8 and the
fact that no instruction of M leads to `init, it su�ces to require that a
timeline has a token with value (`init, zero1) and a token with value `init.
This is ensured by the following two trigger-less rules:

> ! 9 o[xM = (`init, zero1)]. >

and
> ! 9 o[xM = `init]. > .

• Halting: every timeline leads to a configuration-code associated with the
halting label. By the rules for initialization and Claim 8, it su�ces to
require that a timeline has a token with value `halt. This is ensured by
the following trigger-less rule:

> ! 9 o[xM = `halt]. > .

• 1-Time distance between consecutive control values: a control V -value cor-
responds to the first symbol of a main-code or a check-code, i.e., it is an
element in V \ (Vc1 [ Vc2). We require that the di↵erence of the start
times of two consecutive tokens along a timeline having a control V -value
is exactly 1. Formally, for each pair tk and tk0 of tokens along a time-
line such that tk and tk0 have a control V -value, tk precedes tk0, and
there is no token between tk and tk0 having a control V -value, it holds
that s(tk0)� s(tk) = 1 (we write this with a little abuse of notation). By
Claim 8, strict time monotonicity, and the halting requirement, it su�ces
to ensure that each token tk having a control V -value distinct from `halt
is eventually followed by a token tk0 such that tk0 has a control V -value
and s(tk0)� s(tk) = 1. To this aim, for each v 2 Vcon \ {`halt}, being Vcon

the set of control V -values, we write the following trigger rule:

o[xM = v]!
_

u2Vcon

9 o0[xM = u]. o s,s
[1,1] o

0.

• Well-formedness of configuration-codes: we need to guarantee that for
each configuration-code wcheck ·wmain occurring along a timeline and each
counter ch, the value of ch along the main-code wmain and the check-code
wcheck coincide. By Claim 8, strict time monotonicity, initialization, and
1-Time distance between consecutive control values, it su�ces to ensure
that (i) each token tk with a Vch -value in Vcheck is eventually followed by
a token tk0 with a Vch -value such that s(tk0) � s(tk) = 1, and vice versa
(ii) each token tk with a Vch -value in Vmain is eventually preceded by a
token tk0 with a Vch -value such that s(tk)� s(tk0) = 1. As for the former
requirement, for each v 2 Vch \ Vcheck, we write the rule:

o[xM = v]!
_

u2Vch

9 o0[xM = u]. o s,s
[1,1] o

0.
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For the latter, for each v 2 Vch \ Vmain, we have the rule:

o[xM = v]!
_

u2Vch

9 o0[xM = u]. o0 s,s
[1,1] o.

• Increment and decrement: we need to guarantee that the increment and
decrement instructions are correctly simulated. By Claim 8 and the previ-
ously defined synchronization rules, we can assume that the untimed part
⇡ of a timeline is an initial and halting computation-code such that all
configuration-codes occurring in ⇡ are well-formed.

Let wmain · wcheck be a subword occurring in ⇡ such that wmain (resp.,
wcheck) is a main-code (resp., check-code). Let `main (resp., `check) be
the instruction label associated with wmain (resp., wcheck) and for i =
1, 2, let nmain

i
(resp., ncheck

i
) be the value of counter ci encoded by wmain

(resp., wcheck). Let ch = c(`main). By construction `main 6= `halt, end
either `main 2 Inc and `check = succ(`main), or `main 2 Dec and `check 2
{zero(`main), dec(`main)}. Moreover if `main2Dec and `check=zero(`main),
then ncheck

h
= nmain

h
= 0. Thus, it remains to ensure the following two

requirements:

(*) if `main 2 Inc, then ncheck
h

= nmain
h

+ 1 and ncheck
3�h

= nmain
3�h

;

(**) if `main2Dec, then ncheck
3�h

= nmain
3�h

, and whenever `check = dec(`main),
then ncheck

h
= nmain

h
� 1.

First we observe that, if `main 2 Inc, our encoding ensures that all Vc3�h -
values in wmain and in wcheck are unmarked, all Vch -values in wmain are
unmarked, and there is exactly one marked Vch -value in wcheck. If instead
`main 2 Dec, our encoding ensures that all Vc3�h -values in wmain and
in wcheck are unmarked, all Vch -values in wcheck are unmarked, and in
case `check = dec(`main), then there is exactly one marked Vch -value in
wmain. Thus, by strict time monotonicity and 1-Time distance between
consecutive control values, it follows that requirements (*) and (**) are
captured by the following rules, where Uci denotes the set of unmarked Vci -
values, for i = 1, 2, and Vinit (resp., Vhalt) is the set of V -values associated
with the label `init (resp., `halt). For each v 2 (Uci \ Vmain) \ Vhalt, we
have the rule:

o[xM = v]!
_

u2Uci

9 o0[xM = u]. o s,s
[1,1] o

0.

For each v 2 (Uci \ Vcheck) \ Vinit, we have the rule:

o[xM = v]!
_

u2Uci

9 o0[xM = u]. o0 s,s
[1,1] o.

This concludes the proof of the theorem.
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It is worth observing that all the above trigger rules are simple, hence un-
decidability of the TP problem holds also under the restriction to simple trigger
rules.

In order to ensure the well-formedness of configuration-codes and the incre-
ment/decrement requirements, a one-to-one correspondence between (suitable)
pairs of tokens in main- and check-codes is enforced thanks to the above trig-
ger rules. Whereas most of such rules are (already) satisfied under the future
semantics (as the extra conjoined atoms added by Definition 6 would be “sub-
sumed” by already-existing ones), some rules are not (the second ones of the
well-formedness and increment/decrement requirements are unsatisfiable under
the future semantics). As a result, intuitively, having only rules under the fu-
ture semantics, we can only force the presence, for every token with value ch (for
h = 1, 2), of another token with value ch starting exactly one time instant later,
in the following main-/check-code. However, we cannot prevent extra “spurious”
tokens to appear moving from a code to the following one. This is the reason
why, with only rules under the future semantics, we lose the ability of encoding
computations of (exact) Minsky machines. Only gainy counter machines [12]—
a variant of Minsky machines whose counters may “erroneously” increase—can
be captured, thus proving, as a consequence, non-primitive recursive-hardness
of the future TP problem (the halting problem for gainy counter machines is
known to be non-primitive recursive [12]).

Theorem 9. The future TP problem, even with one state variable, is non-
primitive recursive-hard also under one of the following two assumptions: either
(1) the trigger rules are simple, or (2) the intervals are in Intv (0,1)

2.

Since this result is just an adaptation of the previous one (apart from some
technicalities), we report its proof in Appendix B.

In the next section, we will show that future TP with simple trigger rules is
indeed decidable in non-primitive recursive time.

3. Decidability of future TP with simple trigger rules

In this section, we show that the decidability of the TP problem can be
recovered assuming that the trigger rules are simple and interpreted under the
future semantics. Moreover, under the additional assumption that intervals in
trigger rules are non-singular (respectively, are in Intv (0,1)), the problem is in
EXPSPACE (respectively, in PSPACE). The decidability status of future
TP with arbitrary trigger rules remains an open problem.

The rest of this section is organized as follows: in Subection 3.1, we recall the
framework of Timed Automata (TA) [1] and Metric Temporal logic (MTL) [19].
In Subection 3.2, we reduce the future TP problem with simple trigger rules to
the existential MC problem for TAs against MTL over finite timed words. The
latter problem is known to be decidable [23].

2We refer to intervals in rules’ atoms and in the constraint functions of state variables.
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3.1. Timed automata and the logic MTL

We start by recalling the notion of timed automaton (TA) [1] and the logic
MTL [19].

Let ⌃ be a finite alphabet. A timed word w over ⌃ is a finite word w =
(a0, ⌧0) · · · (an, ⌧n) over ⌃ ⇥ R+ (⌧i is called a timestamp, and intuitively rep-
resents the time at which the “event” ai occurs) such that ⌧i  ⌧i+1 for all
0  i < n (monotonicity requirement). The timed word w is also denoted by
(�, ⌧), where � is the finite (untimed) word a0 · · · an and ⌧ is the sequence of
timestamps ⌧0, . . . , ⌧n. A timed language over ⌃ is a set of timed words over ⌃.

Timed Automata (TA).. Let C be a finite set of clocks. A clock valuation
val : C ! R+ for C is a function assigning a non-negative real value to each
clock in C. Given a value t 2 R+ and a set Res ✓ C (that we call reset
set), (val + t) and val [Res] denote the valuations for C defined respectively as
follows: for all c 2 C, (val + t)(c) = val(c) + t, and val [Res](c) = 0 if c 2 Res
and val [Res](c) = val(c) otherwise.

A clock constraint ✓ over C is a Boolean combination of atomic formulas
of the form c 2 I or c � c0 2 I, where c, c0 2 C and I 2 Intv . Given a clock
valuation val and a clock constraint ✓, val is said to satisfy ✓, written val |= ✓, if
✓ evaluates to true after replacing each occurrence of a clock c in ✓ by val(c), and
interpreting Boolean connectives and membership to intervals in the standard
way. We denote by �(C) the set of all possible clock constraints over C.

Definition 10 (Timed automaton TA). A TA over ⌃ is a tuple A = (⌃, Q, q0, C,
�, F ), where Q is a finite set of (control) states, q0 2 Q is the initial state,
C is a finite set of clocks, F ✓ Q is the set of accepting states, and � ✓
Q⇥ ⌃⇥ �(C)⇥ 2C ⇥Q is the transition relation.

The maximal constant of A is the greatest integer occurring as an endpoint
of some interval in the clock constraints of the transitions of A.

Intuitively, in a TA A, while transitions are instantaneous, time can elapse
in a control state. The clocks progress at the same speed and can be reset
independently of each other when a transition is executed, in such a way that
each clock keeps track of the time elapsed since the last reset. Moreover, clock
constraints are used as guards of transitions to restrict the behavior of the
automaton.

A configuration of A is a pair (q, val), where q 2 Q and val is a clock
valuation for C. A run r of A on a timed word w = (a0, ⌧0) · · · (an, ⌧n) over
⌃ is a sequence of configurations r = (q0, val0) · · · (qn+1, valn+1) starting at
the initial configuration (q0, val0), where val0(c) = 0 for all c 2 C (initiation
requirement), and

• for 0  i  n we have (consecution requirement): (i) (qi, ai, ✓,Res, qi+1)2�
for some ✓ 2 �(C) and reset set Res, (ii) (val i + ⌧i � ⌧i�1) |= ✓ and
(iii) val i+1 = (val i + ⌧i � ⌧i�1)[Res] (we let ⌧�1 = 0).

The intuitive behavior of the TA A is the following. Assume that A is on
state q 2 Q after reading the symbol (a0, ⌧i) at time ⌧i and, at that time, the
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clock valuation is val . On reading (a, ⌧i+1), A chooses a transition of the form
� = (q, a, ✓,Res, q0) 2 � such that the constraint ✓ is fulfilled by (val + t), with
t = ⌧i+1 � ⌧i. The control then changes from q to q0 and val is updated in such
a way as to record the amount of time elapsed t in the clock valuation, and to
reset the clocks in Res, namely, val is updated to (val + t)[Res].

A run r is accepting if qn+1 2 F . The timed language LT (A) of A is the set
of timed words w over ⌃ such that there is an accepting run of A on w.

As shown in [1], given two TAs A1, with s1 states and k1 clocks, and A2, with
s2 states and k2 clocks, the union (resp., intersection) automaton A_ (resp., A^)
such that LT (A_) = LT (A1) [ LT (A2) (resp., LT (A^) = LT (A1) \ LT (A2))
can be e↵ectively calculated, and has s1 + s2 states (resp., s1 · s2 states) and
k1 + k2 clocks (resp., k1 + k2 clocks).

The logic MTL.. Let us now recall the framework of Metric Temporal Logic
(MTL) [19], a well-known timed linear-time temporal logic which extends stan-
dard LTL with time constraints on the until modality.

Given a finite set AP of proposition letters, the set of MTL formulas ' over
AP is defined by the following grammar:

' ::= > | p | ' _ ' | ¬' | 'UI',

where p 2 AP , I 2 Intv , and UI is the strict timed until MTL modality.
MTL formulas over AP are interpreted over timed words over 2AP . Given an

MTL formula ', a timed word w = (�, ⌧) over 2AP , and a position 0  i < |w|,
the satisfaction relation (w, i) |= '—meaning that ' holds at position i of w—is
defined as follows (we omit the clauses for Boolean connectives):

• (w, i) |= p () p 2 �(i),

• (w, i) |= '1UI'2 () there exists j > i such that (w, j) |= '2, ⌧j�⌧i 2 I,
and (w, k) |= '1 for all i < k < j.

A model of ' is a timed word w over 2AP such that (w, 0) |= '. The timed
language LT (') of ' is the set of models of '.

The existential MC problem for TAs against MTL is the problem of checking,
for a given TA A over 2AP and an MTL formula ' over AP , whether LT (A) \
LT (') 6= ;.

In MTL, we use standard shortcuts such as: FI' for ' _ (>UI') (timed
eventually or timed future), and GI' for ¬FI¬' (timed always or timed globally).

We also consider two fragments of MTL, namely, MITL (Metric Interval
Temporal Logic) and MITL(0,1) [2]: MITL is obtained by allowing only non-
singular intervals of Intv at the subscript of U, while MITL(0,1) is the fragment
of MITL obtained by allowing only intervals in Intv (0,1).

The maximal constant of an MTL formula ' is the greatest integer occurring
as an endpoint of some interval of (the occurrences of) the UI modality in '.
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3.2. Reduction to existential MC for TAs against MTL

We now solve the future TP problem with simple trigger rules by means of
an exponential-time reduction to the existential MC problem for TAs against
MTL.

In the following, we fix an instance P = (SV,R) of the problem where the
trigger rules in R are simple. The maximal constant of P , denoted by KP , is the
greatest integer occurring in the atoms of the rules in R and in the constraint
functions of the state variables in SV .

The proposed reduction consists of three steps:

1. first, we define an encoding of the multi-timelines of SV by means of timed
words over 2AP for a suitable finite set AP of proposition letters, and show
how to construct a TA ASV over 2AP accepting such encodings;

2. next, we build an MTL formula '8 over AP such that for each multi-
timeline ⇧ of SV and encoding w⇧ of ⇧, w⇧ is a model of '8 if and only
if ⇧ satisfies all the trigger rules in R under the future semantics;

3. finally, we construct a TA A9 over 2AP such that for each multi-timeline
⇧ of SV and encoding w⇧ of ⇧, w⇧ is accepted by A9 if and only if ⇧
satisfies all the trigger-less rules in R.

Hence, there exists a future plan for P = (SV,R) if and only if LT (ASV ) \
LT (A9) \ LT ('8) 6= ;.

For each x 2 SV , we let x = (Vx, Tx, Dx). Given an interval I 2 Intv and
a natural number n 2 N, let n + I (respectively, n � I) denote the set of non-
negative real numbers ⌧ 2 R+ such that ⌧ � n 2 I (respectively, n � ⌧ 2 I).
Note that n+I (respectively, n�I) is a (possibly empty) interval in Intv whose
endpoints can be trivially calculated.

For an atom ⇢ in R involving a time constant (time-point atom), let I(⇢) be
the interval in Intv defined as follows:

• if ⇢ has the form o e

I
n (resp., n e

I
o), then I(⇢) = n � I (resp.,

I(⇢) = n+ I).

We finally define IntvR as the set of intervals J 2 Intv such that J = I(⇢) for
some time-point atom ⇢ occurring in a trigger rule of R.

Encodings of multi-timelines of SV .. We assume that for distinct state variables
x and x0, the sets Vx and Vx0 are disjoint. We exploit the following set AP of
proposition letters to encode multi-timelines of SV :

AP =
[

x2SV

Mainx [Deriv ,

Mainx = (({begx} [ Vx)⇥ Vx) [ (Vx ⇥ {endx}),

Deriv = IntvR [ {p>} [
[

x2SV

[

v2Vx

{past s
v
, paste

v
}.
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x

y

z

t=0 t=4 t=7 t=10.2 t=13 t=17.1 t=20.9

x = a11 x = a21 x = a31

y = a12 y = a22 y = a32 y = a22

z = a13z = a13 z = a23

x = a41

Figure 3: An example of multi-timeline of SV = {x, y, z}, where in particular
Vx = {ai1 | 1  i  4}, Vy = {ai2 | 1  i  3} and Vz = {ai3 |
1  i  2}. The encoding of the timeline for x depicted in the figure (we show
only values in Mainx) is

�
{(begx, a11)}, 0

��
{(a11, a21)}, 7

��
{(a21, a31)}, 13

��
{(a31, a41)}, 20.9

�
· · ·

The encoding of the multi-timeline of SV depicted in the figure (we show only val-
ues in Mainx [ Mainy [ Mainz) is

�
{(begx, a11), (begy , a12), (begz , a13)}, 0

��
{(a12, a22)}, 4

�
�
{(a11, a21), (a22, a32)}, 7

��
{(a13, a13)}, 10.2

��
{(a21, a31), (a13, a23)}, 13

��
{(a32, a22)}, 17.1

�
· · ·

Intuitively, we use the propositions in Mainx to encode a token along a timeline
for x. The propositions in Deriv , as explained below, represent enrichments of
the encoding, used for translating simple trigger rules in MTL formulas under
the future semantics. The tags begx and endx in Mainx are used to mark the
start and the end of a timeline for x.

A token tk with value v along a timeline for x is encoded by two events: the
start-event (occurring at the start time of tk) and the end-event (occurring at
the end time of tk). The start-event of tk is specified by a main proposition of
the form (vp, v), where either vp = begx (tk is the first token of the timeline) or
vp is the value of the token for x preceding tk. The end-event of tk is instead
specified by a main proposition of the form (v, vs), where either vs = endx (tk
is the last token of the timeline) or vs is the value of the token for x following
tk. See Figure 3 for an example.

Now we explain the meaning of the proposition letters in Deriv . The el-
ements in IntvR reflect the semantics of the time-point atoms in the trigger
rules of R: for each I 2 IntvR, I holds at the current position if the current
timestamp ⌧ satisfies ⌧ 2 I. The tag p> keeps track of whether the current
timestamp is strictly greater than the previous one. Finally, the propositions inS

x2SV

S
v2Vx

{past s
v
, paste

v
} keep track of past token events occurring at times-

tamps coinciding with the current timestamp.
We start by defining the encoding of timelines for x 2 SV . An encoding of

a timeline for x is a timed word w over 2Mainx[Deriv of the form

w = ({(begx, v0)} [ S0, ⌧0)({(v0, v1)} [ S1, ⌧1) · · · ({(vn, endx)} [ Sn+1, ⌧n+1)

where, for all 0  i  n+ 1, Si ✓ Deriv , and

• vi+1 2 Tx(vi) for i < n;

• ⌧0 = 0 and ⌧i+1 � ⌧i 2 Dx(vi) for i  n;
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• Si \ IntvR is the set of intervals I 2 IntvR such that ⌧i 2 I;

• p> 2 Si i↵ either i = 0 or ⌧i > ⌧i�1;

• for all v 2 Vx, past sv 2 Si (resp., paste
v
2 Si) i↵ there is 0  h < i such

that ⌧h = ⌧i and v = vh (resp., ⌧h = ⌧i, v = vh�1 and h > 0).

Note that the length of w is at least 2. The timed word w encodes the timeline
for x of length n + 1 given by ⇡ = (v0, ⌧1)(v1, ⌧2 � ⌧1) · · · (vn, ⌧n+1 � ⌧n). Note
that in the encoding, ⌧i and ⌧i+1 represent the start time and the end time of
the i-th token of the timeline ⇡ (0  i  n). See the caption of Figure 3 for an
example of encoding.

Next, we define the encoding of a multi-timeline of SV . For a set P ✓ AP
and x 2 SV , let P [x] = P \

S
y2SV \{x}

Mainy. An encoding of a multi-timeline

of SV is a timed word w over 2AP of the form w = (P0, ⌧0) · · · (Pn, ⌧n) such that
the following conditions hold:

• for all x 2 SV , the timed word obtained from (P0[x], ⌧0) · · · (Pn[x], ⌧n) by
removing the pairs (Pi[x], ⌧i) such that Pi[x] \Mainx = ; is an encoding
of a timeline for x;

• P0[x] \Mainx 6= ; for all x 2 SV (initialization).

See again Figure 3 for an example of encoding of a multi-timeline.
We now construct a TA ASV over 2AP accepting the encodings of the multi-

timelines of SV , as shown in the proof of the next proposition.

Proposition 11. One can construct in exponential time a TA ASV over 2AP ,
with 2O(

P
x2SV |Vx|) states, |SV |+ 2 clocks, and maximal constant O(KP ), such

that LT (ASV ) is the set of encodings of the multi-timelines of SV .

Proof. Let us fix an ordering SV = {x1, . . . , xN} of the state variables. Let
H = Deriv \ (IntvR [ {p>}) and V 0

i
= Vxi [ {begxi

, endxi} for all 1  i  N .
The TA ASV = (2AP , Q, q0, C,�, F ) is defined as follows.

• The set of states is given by Q = V 0

1 ⇥ . . . ⇥ V 0

N
⇥ 2H. Intuitively, for a

state (v1, . . . , vN , H), the i-th component vi keeps track of the value of
the last (start-event for a) token for xi read so far if vi /2 {begxi

, endxi}.
If vi = begxi

(resp., vi = endxi), then no start-event for a token for xi

has been read so far (resp., no start-event for a token for xi can be read).
Moreover, the last component H of the state keeps track of past token
events occurring at a timestamp coinciding with the last timestamp.

• The initial state q0 is (begx1
, . . . , begxN

, ;).

• The set F of accepting states is the set of all states (endx1 , . . . , endxN , H)
for any H ✓ H.
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• The set of clocks C is given by C = {c1, . . . , cN , c>, cglob}. We have a clock
ci for each state variable xi, which is used to check that the duration of
a token for xi with value v is in Dxi(v). Moreover, c> is a clock which is
always reset and is used to capture the meaning of proposition p>, whereas
cglob is a clock that measures the current (global) time and is never reset.

• The relation � consists of the transitions

((v1, . . . , vN , H), P, ✓1 ^ . . . ^ ✓N ^ ✓> ^ ✓glob, Res, (v
0

1, . . . , v
0

N
, H 0))

such that:

– if (v1, . . . , vN , H) = q0, then P \ Mainx 6= ; for all x 2 SV (this
ensures initialization);

– for all 1  i  N , the following holds:

⇤ either P \Mainxi = ;, v
0

i
= vi, ✓i = >, and ci /2 Res (intuitively,

no event associated with xi occurs in this case),

⇤ or P \Mainxi = (vi, v0i) (hence, vi 6= endxi), v
0

i
2 Txi(vi) if both

vi 2 Vxi and v0
i
2 Vxi ; ci 2 Res and ✓i = ci 2 Dxi(vi) (resp.,

✓i = ci 2 [0, 0]) if vi 6= begxi
(resp., if vi = begxi

);

– cglob /2 Res and

✓glob =
^

I2P\IntvR

cglob 2 I ^
^

I2IntvR\P

(cglob 2
�!
I _ cglob 2

 �
I ),

where, for each I 2 IntvR\P ,
�!
I and

 �
I are (possibly empty) maximal

intervals in R+ disjoint from I (e.g., if I = [3, 5[, then
 �
I = [0, 3[

and
�!
I = [5,+1[ ). Note that

�!
I ,
 �
I 2 Intv . Recall that, for each

I 2 IntvR, I must be in P if and only if the current time (given by
cglob) is in I;

– c> 2 Res; moreover, if (v1, . . . , vN , H) = q0, then p> 2 P and ✓> =
>, otherwise, either p> 2 P and ✓> = c> 2 ]0,+1[, or p> /2 P and
✓> = c> 2 [0, 0];

– P \H = ; if p> 2 P ; otherwise P \H = H;

– for all x 2 SV and v 2 Vx, past sv 2 H 0 i↵ either P \Mainxi is of the
form (v0, v), or p> /2 P and past s

v
2 H;

– for all x 2 SV and v 2 Vx, pastev 2 H 0 i↵ either P \Mainxi is of the
form (v, v0), or p> /2 P and paste

v
2 H.

This concludes the proof.

Encodings of simple trigger rules by MTL formulas.. We now construct an MTL

formula '8 over AP capturing the simple trigger rules in R, under the future
semantics.
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Proposition 12. One can construct in linear time an MTL formula '8, with
maximal constant O(KP ), such that for each multi-timeline ⇧ of SV and en-
coding w⇧ of ⇧, w⇧ is a model of '8 i↵ ⇧ satisfies all the simple trigger rules
in R under the future semantics.

The formula '8 is an MITL formula (resp., MITL(0,1) formula) if the inter-
vals in the trigger rules are non-singular (resp., belong to Intv (0,1)).

The formula '8 has O(|R| · NA · NE ·
�
|IntvR|+ (

P
x2SV

|Vx|)2
�
) distinct

subformulas, with NA the maximum number of atoms in a trigger rule of R,
and NE the maximum number of existential statements in a trigger rule of R.

Proof. We first introduce some auxiliary propositional (Boolean) formulas over
AP . Let x 2 SV and v 2 Vx. We denote by  (s, v) and  (e, v) the two
propositional formulas over Mainx defined as follows:

 (s, v) = (begx, v) _
_

u2Vx

(u, v),

 (e, v) = (v, endx) _
_

u2Vx

(v, u).

Intuitively,  (s, v) (resp.,  (e, v)) states that a start-event (resp., end-event) for
a token for x with value v occurs at the current time. We also use the formula

 ¬x = ¬

_

m2Mainx

m

asserting that no event for a token for x occurs at the current time. Additionally,
given an MTL formula ✓, we define the MTL formula

EqTime(✓) = ✓ _ [¬p>U�0(¬p> ^ ✓)]

which is satisfied by an encoding of a multi-timeline of SV at the current time
if ✓ eventually holds at a position whose timestamp coincides with the current
timestamp.

The MTL formula '8 has a conjunct 'R for each trigger rule R 2 R. Let R
be a trigger rule of the form ot[xt = vt]! E1 _ E2 _ . . . _ Ek. Then 'R is given
by

'R = G�0

�
 (s, vt)!

k_

i=1

�Ei

�
,

where �Ei , with 1  i  k, ensures the fulfillment of the existential statement
Ei of R under the future semantics.

Let E 2 {E1, . . . , Ek}, O be the set of token names existentially quantified in
E , A be the set of interval atoms in E and, for each o 2 O, val(o) be the value
of the token referenced by o in the associated quantifier. In the construction of
�E , we crucially exploit the assumption that R is simple: for each token name
o 2 O, there is at most one atom in A where o occurs.
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For each token name o 2 {ot}[O, we denote by Intv s
o
(resp., Intv e

o
) the set of

intervals J 2 Intv such that J = I(⇢) for some time-point atom ⇢ occurring in E ,
which imposes a time constraint on the start time (resp., end time) of the token
referenced by o. Note that Intv s

o
, Intv e

o
✓ AP , and we exploit the propositional

formulas ⇠s
o
=

V
I2Intv s

o
I and ⇠e

o
=

V
I2Intv e

o
I to ensure the fulfillment of the

time constraints imposed by the time-point atoms associated with the token o.
The MTL formula �E is thus given by:

�E = ⇠s
ot
^ [ ¬xtU�0( (e, vt) ^ ⇠

e
ot
)] ^

^

⇢2A

�⇢,

where, for each atom ⇢ 2 A, the formula �⇢ captures the future semantics of ⇢.
The construction of �⇢ depends on the form of ⇢. We distinguishes four

cases.

1. ⇢ = o e1,e2

I
ot and o 6= ot. We assume 0 2 I (the other case being

simpler). First, assume that e2 = s. Under the future semantics, ⇢ holds
i↵ the start time of the trigger token ot coincides with the e1-time of token
o. Hence, in this case (e2 = s), �⇢ is given by:

�⇢ = ⇠e1
o
^
�
paste1

val(o) _ EqTime( (e1, val(o)))
�
.

If instead e2 = e, then �⇢ is defined as follows:

�⇢ =
⇥
 ¬xtU�0{⇠

e1
o
^  (e1, val(o)) ^  ¬xt ^ ( ¬xtUI (e, vt))}

⇤
_

⇥
( (e1, val(o)) _ paste1

val(o)) ^ ⇠
e1
o
^

�
EqTime( (e, vt)) _ ( ¬xt ^ ( ¬xtUI (e, vt)))

�⇤
_

⇥
 ¬xtU�0{ (e, vt) ^ EqTime( (e1, val(o)) ^ ⇠

e1
o
)}
⇤
.

The first disjunct (in square brackets) considers the case where the e1-
event of token o occurs strictly between the start-event and the end-event
of the trigger token ot (along the encoding of a multi-timeline of SV ).
The second considers the case where the e1-event of token o precedes the
start-event of the trigger token: thus, under the future semantics, it holds
that the e1-time of token o coincides with the start time of the trigger
token. Finally, the third disjunct considers the case where the e1-event of
token o follows the end-event of the trigger (hence, the related timestamps
must coincide).

2. ⇢ = ot 
e1,e2

I
o and o 6= ot. We assume e1 = e and 0 2 I (the other cases

being simpler). Then,

�⇢ =
⇥
 ¬xtU�0( (e, ut) ^ FI( (e2, val(o)) ^ ⇠

e2
o
))
⇤
_

⇥
 ¬xtU�0( (e, ut) ^ paste2

val(o) ^ ⇠
e2
o
)
⇤
,

where the second disjunct captures the situation where the e2-time of o
coincides with the end time of the trigger token ot, but the e2-event of o
occurs before the end-event of the trigger token.
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3. ⇢ = ot 
e1,e2

I
ot. This case is straightforward and we omit the details.

4. ⇢ = o1 
e1,e2

I
o2, with o1 6= ot and o2 6= ot. We assume o1 6= o2 and 0 2 I

(the other cases are simpler). Then,

�⇢ =
⇥
paste1

val(o1)
^ ⇠e1

o
^ FI( (e2, val(o2)) ^ ⇠

e2
o
)
⇤
_

⇥
F�0{ (e1, val(o1)) ^ ⇠

e1
o
^ FI( (e2, val(o2)) ^ ⇠

e2
o
)}
⇤
_

⇥
paste1

val(o1)
^ ⇠e1

o
^ paste2

val(o2)
^ ⇠e2

o

⇤
_

⇥
paste2

val(o2)
^ ⇠e2

o
^ EqTime( (e1, val(o1)) ^ ⇠

e1
o
)
⇤
_

⇥
F�0{ (e2, val(o2)) ^ ⇠

e2
o
^ EqTime( (e1, val(o1)) ^ ⇠

e1
o
)}
⇤
.

The first two disjuncts handle the cases where (under the future semantics)
the e1-event of token o1 precedes the e2-event of token o2, while the last
three disjuncts consider the dual situation. In the latter three cases, the
e1-time of token o1 and the e2-time of token o2 are equal.

Note that the MTL formula '8 is an MITL formula (resp., MITL(0,1) formula) if
the intervals in the trigger rules are non-singular (resp., belong to Intv (0,1)).

Encoding of trigger-less rules by a TA.. We now deal with trigger-less rules. We
start by noting that an existential statement E in a trigger-less rule requires the
existence of an a priori bounded number of temporal events satisfying mutual
temporal relations (namely, in the worst case, the start time and end time of all
tokens associated with some quantifier of E). Thus we can construct a TA for E
which guesses such a chain of events and then checks the temporal relations by
means of suitable clock constraints and clock resets. Finally, by the closure of
TAs under language union [1], we can build a TA for the whole trigger-less rule.
Additionally, exploiting also the closure of TAs under intersection, we construct
a TA accepting (encodings of) multi-timelines satisfying all trigger-less rules.

Proposition 13. One can construct in exponential time a TA A9 over 2AP such
that, for each multi-timeline ⇧ of SV and encoding w⇧ of ⇧, w⇧ is accepted by
A9 i↵ ⇧ satisfies all the trigger-less rules in R.

A9 has 2O(Nq) states, O(Nq) clocks and maximal constant O(KP ), where Nq

is the overall number of quantifiers in the trigger-less rules of R.

We recall that, in the encoding of multi-timelines of SV , we assume that,
for distinct state variables x, x0

2 SV , the domains Vx and Vx0 are disjoint.

Proof. Let E be an existential statement for SV such that no token name ap-
pears free in E . We first show how to construct a TA AE over 2AP such that
for each multi-timeline ⇧ of SV and encoding w⇧ of ⇧, w⇧ is accepted by AE

i↵ ⇧ satisfies E . Then, we exploit the well-known e↵ective closure of TA under
language union and language intersection to prove the proposition.

Let O be the set of token names existentially quantified in the existential
statement E and, for each o 2 O, let val(o) be the value of the token referenced
by o in the associated quantifier. For each token name o 2 O, we denote by
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Intv s
o
(resp., Intv e

o
) the set of intervals J 2 Intv such that J = I(⇢) for some

time-point atom ⇢ occurring in E which imposes a time constraint on the start
time (resp., end time) of the token referenced by o.

We first outline the construction of AE . We associate two clocks with each
token name o 2 O, namely cs

o
and ce

o
which, intuitively, are reset when the

token chosen for o starts and ends, respectively. The clocks cs
o
and ce

o
are non-

deterministically reset when a start-event for val(o) and the related end-event
occur along an encoding of a multi-timeline. The automaton AE ensures that
the clocks cs

o
and ce

o
are reset exactly once. AE moves to an accepting state only

if all the clocks cs
o
and ce

o
for each o 2 O have been reset and the time constraints

that encode the interval atoms in E are fulfilled. To deal with time-point atoms,
we also exploit, like in the previous proofs, a global clock cglob which measures
the current time and is never reset: whenever the clock cs

o
(resp., ce

o
) is reset,

we require that the clock constraint
V

I2Intv s
o
cglob 2 I (resp.,

V
I2Intv e

o
cglob 2 I)

is fulfilled.
The TA AE = (2AP , Q, q0, C,�, F ) is formally defined as follows.

• The set C of clocks is {cglob} [
S

o2O
{cs

o
, ce

o
}.

• The set of states is 2C\{cglob}. Intuitively, a state keeps track of the clocks
in C \ {cglob} which have been reset so far.

• The initial state q0 is ;.

• The set of final states F is given by the singleton {C \ {cglob}}. In such a
state all clocks di↵erent from cglob have been reset.

• The transition relation� consists of the transitions (C1,P, ✓^✓glob,Res, C2)
such that either (i) C1 = C\{cglob}, C2 = C1, Res = ;, ✓ = >, and ✓glob =
> (intuitively AE loops unconditionally in its final state), or (ii) C1 ⇢

C \ {cglob}, C2 ◆ C1 (AE has not reached its final state yet), and the
following conditions hold:

– for each cs
o
2 C2 \ C1, there is a main proposition in P of the form

(v0, val(o)) for some v0.

– for each o 2 O, ce
o
2 C2\C1 if and only if cs

o
2 C1 and (val(o), v0) 2 P

for some v0.

– if C2 ⇢ C \ {cglob} (in this case AE is not transitioning to its final
state), then ✓ = >.
Conversely, if C2 = C \ {cglob} (here AE moves to the final state),
then ✓ =

V
⇢2A code(⇢), where A is the set of interval atoms of E

and for each interval atom ⇢ 2 A of the form o1 
e1,e2

I
o2, the clock

constraint code(⇢) is defined as follows:

⇤ if ce2
o2

/2 C1 and ce1
o1

/2 C1, then code(⇢) = ce2
o2
� ce1

o1
2 I (in this

case, both ce2
o2

and ce1
o1

are reset simultaneously by the transition
to the final state C2, meaning that o2’s e2-event and o1’s e1-event
have the same timestamp; hence it must be that ce2

o2
�ce1

o1
= 0 2 I

for the atom to be satisfied);
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⇤ if ce2
o2
2 C1 and ce1

o1
2 C1, then code(⇢) = ce1

o1
� ce2

o2
2 I;

⇤ if ce2
o2
2 C1 and ce1

o1
/2 C1, then code(⇢) = ce2

o2
2 [0, 0] ^ ce2

o2
2 I

(o2’s e2-event and o1’s e1-event must have the same timestamp;
as before, it must be that 0 2 I);

⇤ if ce2
o2

/2 C1 and ce1
o1
2 C1, then code(⇢) = ce1

o1
2 I.

– ✓glob =
^

ceo2C2\C1

^

I2Intve
o

cglob 2 I.

– Res = C2 \ C1.

Note that AE has 2O(m) states, O(m) clocks and maximal constant O(K), where
m is the number of quantifiers in E and K is the maximal constant in E .

Given a trigger-less rule R = > ! E1 _ E2 _ . . . _ Ek, we construct the TA

AR resulting from the union of the automata AE1 , . . . ,AEk . Then the TA A9

is obtained as intersection of the automata AR, for all R 2 R being trigger-
less rules. By [1], A9 has 2O(Nq) states, O(Nq) clocks, and maximal constant
O(KP ), where Nq is the overall number of quantifiers in the trigger-less rules of
R.

Conclusion of the construction.. By applying Proposition 11, 12, 13 and well-
known results about TAs and MTL over finite timed words [1, 23], we obtain
the main result of this section.

Theorem 14. The future TP problem with simple trigger rules is decidable
(with non-primitive recursive complexity). Moreover, if the intervals in the
atoms of the trigger rules are non-singular (resp., belong to Intv (0,1)), then
the problem is in EXPSPACE (resp., in PSPACE).

Proof. Let us consider an instance P = (SV,R) of the problem with maximal
constant KP . Let Nv =

P
x2SV

|Vx|, Nq be the overall number of quantifiers in
the trigger-less rules of R, NA the maximum number of atoms in a trigger rule
of R, and NE the maximum number of existential statements in a trigger rule
of R.

By Proposition 11, 12, 13 and the e↵ective closure of TAs under language
intersection [1], we can build:

• a TA AP—namely, the intersection of ASV from Proposition 11 and A9

from Proposition 13—having 2O(Nq+Nv) states, O(Nq + |SV |) clocks, and
maximal constant O(KP ),

• and an MTL formula '8 with O(|R| · NA · NE · (|IntvR| + N2
v
)) distinct

subformulas and maximal constant O(KP ),

such that there exists a future plan for P if and only if LT (AP ) \ LT ('8) 6= ;.
By [23], checking non-emptiness of LT (AP ) \ LT ('8) is decidable. Thus the
first part of the theorem holds.

As for the second part, let us assume that the intervals in the trigger rules
are non-singular (resp., belong to Intv (0,1)). By Proposition 12, '8 is an MITL
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(resp., MITL(0,1)) formula. By [2], one can build a TA A8 accepting LT ('8)
having

• 2O(KP ·|R|·NA·NE ·(|IntvR|+N
2
v )) states, O(KP · |R| ·NA ·NE · (|IntvR|+N2

v
))

clocks

• (resp., 2O(|R|·NA·NE ·(|IntvR|+N
2
v )) states, O(|R| · NA · NE · (|IntvR| + N2

v
))

clocks),

and maximal constant O(KP ).
Non-emptiness of a TA A can be solved by an NPSPACE = PSPACE

search algorithm over the region automaton of A,3 which uses work space loga-
rithmic in the number of control states of A and polynomial in the number of
clocks and in the length of the encoding of the maximal constant of A [1]. Thus,
since AP , A8, and the intersection A^ of AP and A8 can be constructed on the
fly—that is, by looking at their transition relations �, one can determine, given
a state q, a successor q0 and the connecting transition, along with the associated
constraints and clocks to reset—and the search in the region automaton of A^

can be done without explicitly constructing A^, the result follows.

In the next section, we consider future TP with simple trigger rules and non-
singular intervals in the atoms of trigger rules (resp., intervals in Intv (0,1)), and
prove a matching complexity lower bound : EXPSPACE-completeness (resp.,
PSPACE-completeness) of the problem follows.

4. Future TP with simple trigger rules and non-singular intervals:
hardness

In this section, we first consider the future TP problem with simple trigger
rules and non-singular intervals, and prove that it is EXPSPACE-hard by a
polynomial-time reduction from the domino-tiling problem for grids with rows
of single exponential length, which is known to be EXPSPACE-complete [16].
Since the reduction is standard, we refer the reader to Appendix C for the
details of the construction.

Theorem 15. The future TP problem, even with one state variable, with
simple trigger rules and non-singular intervals is EXPSPACE-hard (under
polynomial-time reductions).

By putting together Theorem 14, EXPSPACE-completeness follows.
We now focus on the case with intervals in Intv (0,1), proving that the prob-

lem is PSPACE-hard (and thus PSPACE-complete by Theorem 14) by re-
ducing periodic SAT to it in polynomial time.

3The region automaton of A features states of the form (q, r), where q is a state of A and r
a region: every region specifies, for each clock c of A, whether its value is integer or not (and,
if it is, its value up to Kc, the maximum constant to which c is compared), and the ordering
of the fractional parts of the clocks.
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The problem periodic SAT is defined as follows [24]. We are given a Boolean
formula ' in conjunctive normal form, defined over two sets of variables, � =
{x1, . . . , xn} and �+1 = {x+1

1 , . . . , x+1
n

}, namely,

' =
m^

t=1

⇣ _

x2(�[�+1)\L
+
t

x _
_

x2(�[�+1)\L
�
t

¬x
⌘
,

where m is the number of conjuncts of ' and, for 1  t  m, L+
t
(resp., L�

t
) is

the set of variables occurring non-negated (resp., negated) in the t-th conjunct
of '. Moreover, the formula 'j , for j 2 N \ {0}, is defined as ' in which we
replace each variable xi 2 � by a fresh one xj

i
, and x+1

i
2 �+1 by xj+1

i
. Periodic

SAT is then the problem of deciding the satisfiability of the (infinite-length)
formula

� =
^

j2N\{0}
'j ,

that is, deciding the existence of a truth assignment of (infinitely many) variables
xj

i
, for i = 1, . . . , n, j 2 N \ {0}, satisfying �.
Periodic SAT is PSPACE-complete [24]; in particular membership to such

a class is proved by showing that one can equivalently check the satisfiability

of the (finite-length) formula �f =
V22n+1

j=1 'j . Intuitively, 22n is the number of

possible truth assignments to variables of � [ �+1, thus, after 22n + 1 copies of
', we can find a repeated assignment: from that point, we can just loop through
the previous assignments.

We now reduce periodic SAT to our problem. Hardness also holds when only
a single state variable is involved, and also restricting to intervals of the form
[0, a].

Theorem 16. The future TP problem, even with one state variable, with sim-
ple trigger rules and intervals [0, a], a 2 N \ {0}, is PSPACE-hard (under
polynomial-time reductions).

Proof. Let us define the state variable y = (V, T,D), where

• V = {$, $̃, stop} [ {x>

i
, x?

i
, x̃i

>, x̃i
?
| i = 1, . . . , n},

• T ($) = {x>

1 , x
?

1 }, T ($̃) = {x̃1
>, x̃1

?
} and T (stop) = {stop},

• for i = 1, . . . , n� 1, T (x>

i
) = T (x?

i
) = {x>

i+1, x
?

i+1},

• for i = 1, . . . , n� 1, T (x̃i
>) = T (x̃i

?) = { ˜xi+1
>, ˜xi+1

?
},

• T (x>

n
) = T (x?

n
) = {$̃, stop},

• T (x̃n
>) = T (x̃n

?) = {$, stop}, and

• for all v 2 V , D(v) = [2,+1[.
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$ $̃x>1 x>2 x?3 x>4 x̃1
> x̃2

? x̃3
> x̃4

? $. . . . . .

| {z }

'j

$̃x?1 x>2 x?3 x>4
| {z }

'j+1

Figure 4: Let the formula ' be defined over two sets of variables, � = {x1, x2, x3, x4} and
�+1 = {x+1

1 , x+1
2 , x+1

3 , x+1
4 }. The j-th copy (we assume j is odd) of ', i.e., 'j , is satisfied

by the assignment xj
1 7! >, xj

2 7! >, xj
3 7! ?, xj

4 7! >, xj+1
1 7! >, xj+1

2 7! ?, xj+1
3 7! >,

xj+1
4 7! ?. The analogous for 'j+1.

Intuitively, we represent an assignment of variables xj

i
by means of a timeline for

y: after every occurrence of the symbol $, n tokens are present, one for each xi,
and the value x>

i
(resp., x?

i
) represents a positive (resp., negative) assignment

of xj

i
, for some odd j � 1. Then, there is an occurrence of $̃, after which n more

tokens occur, again one for each xi, and the value x̃i
> (resp., x̃i

?) represents a
positive (resp., negative) assignment of xj

i
, for some even j � 2. See Figure 4

for an example.
We start with the next simple trigger rules, one for each v 2 V :

o[y = v]! o s,e
[0,2] o.

Paired with the constraint function D, they enforce all tokens’ durations to be
exactly 2: intuitively, since we exclude singular intervals, requiring, for instance,
that a token o0 starts t instants of time after the end of o, with t 2 [`, ` + 1]
and even ` 2 N, boils down to o0 starting exactly ` instants after the end of o.
We also observe that, given the constant token duration, the density of the time
domain does not play any role in this proof.

We now add the next rules:

• > ! 9o[y = $].o �s
[0,1] 0;

• > ! 9o[y = $̃].o �s
[0,1] (2

2n + 1) · 2(n+ 1);

• > ! 9o[y = stop].o �s
[0,1] (2

2n + 2) · 2(n+ 1).

They respectively impose that (i) a token with value $ starts exactly at t = 0
(recall that the duration of every token is 2); (ii) there exists a token with

value $̃ starting at t = (22n+1) · 2(n+1); (iii) a token with value stop starts at
t = (22n+2)·2(n+1). We are forcing the timeline to encode truth assignments for

variables x1
1, . . . , x

1
n
, . . . , x22n+2

1 , . . . , x22n+2
n

: as a matter of fact, we will decide

satisfiability of the finite formula �f =
V22n+1

j=1 'j , which is equivalent to �.

We now consider the next rules, that enforce the satisfaction of each 'j or,
equivalently, of ' over the assignments of (xj

1, . . . , x
j
n
, xj+1

1 , . . . , xj+1
n

).
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For the t-th conjunct of ', we define the future simple rule:

o[y = $̃]!
⇣_

xi2�\L
+
t

9o0[y = x̃i
>].o e,s

[0,4n] o
0

⌘
_

⇣_

x
+1
i 2�+1\L

+
t

9o0[y = x>

i
].o e,s

[0,4n] o
0

⌘
_

⇣_

xi2�\L
�
t

9o0[y = x̃i
?].o e,s

[0,4n] o
0

⌘
_

⇣_

x
+1
i 2�+1\L

�
t

9o0[y = x?

i
].o e,s

[0,4n] o
0

⌘
_

9o00[y = stop].o e,s
[0,2n] o

00.

Basically, this rule (the rule where the trigger has value $ being analogous) states

that, after every occurrence of $̃, a token o0, making true at least a (positive
or negative) literal in the conjunct, must occur by 4n time instants (i.e., before

the following occurrence of $̃). The disjunct 9o00[y = stop].o e,s
[0,2n] o

00 is present

just to avoid evaluating ' on the n tokens before (the first occurrence of) stop.
The variable y and all synchronization rules can be generated in time poly-

nomial in |'| (in particular, all interval bounds and time constants of time-point
atoms have a value, encoded in binary, in O(22n)).

By Theorem 14 and Theorem 16, PSPACE-completeness of future TP with
simple trigger rules and intervals in Intv (0,1) follows.

In the next section we focus on a di↵erent restriction of the TP problem,
which will allow us to devise a NP planning algorithm for it.

5. TP with trigger-less rules only is NP-complete

In this section we describe a TP algorithm, for planning domains where
only trigger-less rules are allowed, which requires a polynomial number of (non-
deterministic) computation steps. We recall that trigger-less rules are useful,
for instance, to express initial, intermediate conditions and reachability goals.

We want to start with the following example, with which we highlight that
there is no polynomial-size plan for some problem instances/domains. Thus,
an explicit enumeration of all tokens of a multi-timeline does not represent a
suitable polynomial-size certificate.

Example 17. Let us consider the following planning domain. We denote by
p(i) the i-th prime number, assuming p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5,. . . .
We define, for i = 1, . . . , n, the state variables xi = ({vi}, {(vi, vi)}, Dxi) with
Dxi(vi) = [p(i), p(i)]. The following rule

> ! 9o1[x1 = v1] · · · 9on[xn = vn].
n�1̂

i=1

oi 
e,e
[0,0] oi+1

is asking for the existence of a “synchronization point”, where n tokens (one
for each variable) have their ends aligned. Due to the allowed token durations,
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the first such time point is
Q

n

i=1 p(i) � 2n�1. Hence, in any plan, the timeline
for x1 features at least 2n�1 tokens: no explicit polynomial-time enumeration
of such tokens is possible.

As a consequence, there exists no trivial guess-and-check NP algorithm.
Conversely, one can easily prove the following result.

Theorem 18. The TP problem with trigger-less rules only is NP-hard, even
with one state variable (under polynomial-time reductions).

Proof. There is a trivial reduction from the problem of the existence of a Hamil-
tonian path in a directed graph.

Given a directed graph G = (V,E), with |V | = n, we define the state
variable x = (V,E,Dx), where Dx(v) = [1, 1] for each v 2 V . We add the
following trigger-less rules, one for each v 2 V :

> ! 9o[x = v].o �s
[0,n�1] 0.

The rule for v 2 V requires that there is a token (x, v, 1) along the timeline
for x, which starts no later than n � 1. It is easy to check that G contains
a Hamiltonian path if and only if there exists a plan for the defined planning
domain.

We now present the aforementioned non-deterministic polynomial-time al-
gorithm, proving that timeline-based planning with trigger-less rules is in NP.

We preliminarily have to derive a finite horizon (namely, the end time of
the last token) for the plans of a (any) instance of TP with trigger-less rules.
That is, if an instance P = (SV,R) admits a plan, then P also has a plan whose
horizon is no greater than a given bound. Analogously, we have to calculate
a bound to the maximum number of tokens in a plan. Both can be obtained
from the constructions of the TAs described in the proof of Theorem 14: since
only trigger-less rules are now allowed, we disregard the construction of the
MTL formula '8, and restrict our attention to the TA AP (i.e., the intersection
between ASV for the state variables in SV from Proposition 11 and A9 for the
trigger-less rules in R from Proposition 13), which has ↵s = 2O(Nq+

P
x2SV |Vx|)

states, ↵c = O(Nq + |SV |) clocks and maximum constant ↵K = O(Kp), where
Nq is the overall number of quantifiers in the trigger-less rules of R, and accepts
all and only the encodings w⇧ of multi-timelines ⇧ of SV satisfying all the
trigger-less rules in R.

The language emptiness checking algorithm for TAs executed over AP visits
the (untimed) region automaton for AP [1], which features ↵ = ↵s ·O(↵c! · 2↵c ·

22N
2
q · (2↵K +2)↵c) states4, trying to find a path, from the initial state to a final

state, whose length can clearly be bounded by the number of states. We observe
that each edge/transition of the region automaton in such a path corresponds,

4The factor 22N
2
q is present due to diagonal clock constraints in AP .
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in the worst case, to the start point of a token for each timeline for the variables
in SV (i.e., assuming that all these tokens start simultaneously). This yields a
bound on the number of tokens, which is ↵ · |SV |. We can also derive a bound
on the horizon of the plan, which is ↵ · |SV | · (↵K +1), as every transition taken
in AP may let at most ↵K +1 time units pass, as ↵K accounts in particular for
the maximum constant to which a (any) clock is compared.5

Having this pair of bounds, we are now ready to describe the two main
phases of the algorithm, corresponding to the following pair of observations.
On the one hand, (i) each trigger-less rule requires, as we said, the existence
of an a priori bounded number of temporal events satisfying mutual temporal
relations (namely, in the worst case, the start time and end time of all tokens
associated with the quantifiers of one of its existential statements). On the
other hand, (ii) timelines for di↵erent state variables evolve independently of
each other. In order to deal with (i), we non-deterministically position such
temporal events along timelines; as for (ii), we enforce a correct evolution of
each timeline between pairs of “positioned” events, completely independently of
the other timelines.

Non-deterministic token positioning. The algorithm starts by non-determin-
istically selecting, for every trigger-less rule in R, a disjunct—and deleting all
the others. Then, for every (left) quantifier oi[xi = vi], it generates the integer
part of both the start and the end time of the token for xi to which oi is mapped.
We call such time instants, respectively, sint(oi) and eint(oi).6 We observe that
all start/end time sint(oi) and eint(oi), being less or equal to ↵ · |SV | · (↵K +1)
(the finite horizon bound), have an integer part that can be encoded with poly-
nomially many bits (and thus can be generated in polynomial time).

Let us now consider the fractional parts of the start/end time of the tokens
associated with quantifiers. We denote them by sfrac(oi) and efrac(oi). The
algorithm non-deterministically generates an order of all such fractional parts.
In particular we have to specify, for every token start/end time, whether it is
integer (sfrac(oi) = 0, efrac(oi) = 0) or not (sfrac(oi) > 0, efrac(oi) > 0). Every
such possibility can be generated in polynomial time.

Some trivial tests should now be performed, namely that, for all oi, sint(oi) 
eint(oi), each token is assigned an end time equal or greater than its start time,
and no two tokens for the same variable are overlapping.

It is routine to check that, if we change the start/end time of (some of the)
tokens associated with quantifiers, but we leave unchanged (i) all the integer
parts, (ii) zeroness/non-zeroness of fractional parts, and (iii) the fractional
parts’ order, then the satisfaction of the (atoms in the) trigger-less rules does

5Clearly, and unbounded quantity of time units may pass, but after ↵K +1 the last region
of the region automaton will certainly have been reached.

6We can assume w.l.o.g. that all quantifiers refer to distinct tokens. As a matter of fact, the
algorithm can non-deterministically choose to make two (or more) quantifiers oi[xi = vi] and
oj [xi = vi] over the same variable and value “collapse” to the same token just by rewriting
all occurrences of oj as oi in the atoms of the rules.
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not change. This is due to all the constants being integers.7 Therefore we can
now check whether all rules are satisfied.

Enforcing legal token durations and timeline evolutions. We now continue by
checking that: (i) all tokens associated with a quantifier have a legal duration,
and that (ii) there exists a legal timeline evolution between pairs of adjacent
such tokens over the same variable (here adjacent means that there is no other
token associated with a quantifier in between). We will enforce all these require-
ments as constraints of a linear problem, which can be solved in deterministic
polynomial time (e.g., using the ellipsoid algorithm). When needed, we use
strict inequalities, which are not allowed in linear programs. We shall show
later how to convert these into non-strict ones.

We start by associating non-negative variables ↵oi,s,↵oi,e with the fractional
parts of the start/end times sfrac(oi), efrac(oi) of every token for a quantifier
oi[xi = vi]. First, we add the linear constraints

0  ↵oi,s < 1, 0  ↵oi,e < 1.

Then, we also need to enforce that the values of ↵oi,s,↵oi,e respect the decided
order of the fractional parts: for example,

0 = ↵oi,s = ↵oj ,s < ↵ok,s < . . . < ↵oj ,e < ↵oi,e = ↵ok,e < . . .

To enforce requirement (i), we set, for all oi[xi = vi],

a  (eint(oi) + ↵oi,e)� (sint(oi) + ↵oi,s)  b

where Dxi(vi) = [a, b]. Clearly, strict (<) inequalities must be used for a
left/right open interval.

To enforce requirement (ii), namely that there exists a legal timeline evo-
lution between each pair of adjacent tokens for the same state variable, say
oi[xi = vi] and oj [xi = vj ], we proceed as follows (for a correct evolution be-
tween t = 0 and the first token, analogous considerations can be made).

Let us consider each state variable xi = (Vi, Ti, Di) as a directed graph
G = (Vi, Ti) where Di is a function associating with each vertex v 2 Vi a
duration range. We have to decide whether or not there exist

• a path in G, possibly with repeated vertices and edges, v0 · v1 · · · vn�1 ·

vn, where v0 2 Ti(vi) and vn with vj 2 Ti(vn) are non-deterministically
generated, and

• a list of non-negative real values d0, . . . , dn, such that

nX

t=0

dt = (sint(oj) + ↵oj ,s)� (eint(oi) + ↵oi,e),

and for all s = 0, . . . , n, ds 2 Di(vs).

7We may observe that, by leaving unchanged all the integer parts and the fractional parts’
order, the region of the region graph of the timed automaton does not change.
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We guess a set of integers {↵0

u,v
| (u, v) 2 Ti}. Intuitively, ↵0

u,v
is the number

of times the solution path traverses (u, v). Since every time an edge is traversed
a new token starts, each ↵0

u,v
is bounded by the number of tokens, i.e., by

↵ · |SV |. Hence the binary encoding of ↵0

u,v
can be generated in polynomial

time.
We then perform the following deterministic steps.

1. We consider the subset E0 of edges of G, E0 = {(u, v) 2 Ti | ↵0

u,v
> 0}.

We check whether E0 induces a strongly (undirected) connected subgraph
of G.

2. We check whether

•
P

(u,v)2E0 ↵0

u,v
=

P
(v,w)2E0 ↵0

v,w
, for all v 2 Vi \ {v0, vn};

•
P

(u,v0)2E0 ↵0

u,v0
=

P
(v0,w)2E0 ↵0

v0,w
� 1;

•
P

(u,vn)2E0 ↵0

u,vn
=

P
(vn,w)2E0 ↵0

vn,w
+ 1.

3. For all v 2 Vi \ {v0}, we define yv =
P

(u,v)2E0 ↵0

u,v
(yv is the number of

times the solution path gets into v). Moreover, yv0 =
P

(v0,u)2E0 ↵0

v0,u
.

4. We define the real non-negative variables zv, for every v 2 Vi (zv is the
total waiting time of the path on the node v), subject to the following
constraints:

a · yv  zv  b · yv,

where Di(v) = [a, b] (an analogous constraint should be written for open
intervals). Finally we set:

X

v2Vi

zv = (sint(oj) + ↵oj ,s)� (eint(oi) + ↵oi,e).

Steps (1.) and (2.) together check that the values ↵0

u,v
for the arcs specify

a directed Eulerian path from v0 to vn in a multigraph. Indeed, the following
theorem holds.

Theorem 19. [18] Let G0 = (V 0, E0) be a directed multigraph (E0 is a multiset).
G0 has a (directed) Eulerian path from v0 to vn if and only if:

• the undirected version of G0 is connected, and

• |{(u, v) 2 E0
}| = |{(v, w) 2 E0

}|, for all v 2 V 0
\ {v0, vn};

• |{(u, v0) 2 E0
}| = |{(v0, w) 2 E0

}|� 1;

• |{(u, vn) 2 E0
}| = |{(vn, w) 2 E0

}|+ 1.

Steps (3.) and (4.) evaluate the waiting times of the path in some vertex
v with duration interval [a, b]. If the solution path visits the vertex yv times,
then every single visit must take at least a and at most b units of time. Hence
the overall visitation time is in between a · yv and b · yv. Vice versa, if the total
visitation time is in between a ·yv and b ·yv, then it can be slit into yv intervals,
each one falling into [a, b].
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The algorithm concludes by solving the linear program given by the variables
↵oi,s and ↵oi,e for each quantifier oi[xi = vi], and for each pair of adjacent tokens
in the same timeline for xi, for each v 2 Vi, the variables zv subject to their
constraints.

Finally, in order to conform to linear programming, we have to replace all
strict inequalities with non-strict ones. It is straightforward to observe that all
constraints involving strict inequalities we have written so far are of (or can
easily be converted into) the following forms: ⇠s < ⌘q+ k or ⇠s > ⌘q+ k, where
s and q are variables, and ⇠, ⌘, k are constants. We replace them, respectively,
by ⇠s� ⌘q� k+�t  0 and ⇠s� ⌘q� k��t � 0, where �t is an additional fresh
non-negative variable, which is local to a single constraint. We observe that the
original inequality and the new one are equivalent if and only if �t is a small
enough positive number. Moreover, we add another non-negative variable, say
r, which is subject to a constraint r  �t, for each of the introduced variables
�t (i.e., r is less than or equal to the minimum of all �t’s). Finally, we maximize
the value of r when solving the linear program. We have that max r > 0 if and
only if there is an admissible solution where the values of all �t’s are positive
(and thus the original strict inequalities hold true).

This ends the description of the planning algorithm. We can thus conclude
the section with the main result.

Theorem 20. The TP problem with trigger-less rules only is NP-complete.

In the next section, using the results on the variants of TP, we move to
a di↵erent problem, namely, we shall study MC for MITL specifications over
timelines.

6. MC for MITL over timelines

In this section we show how it is possible to model check systems specified
in terms of timelines. More precisely, a system is described as a set of state
variables along with a set of synchronization rules over them (a TP domain)
P = (SV,R). The property specification language we will be assuming is the
logic MITL.

We first recall the encoding of multi-timelines already adopted in Section 3.2,
over which we interpret MITL, that exploits the set AP of proposition letters

AP =
[

x2SV

Mainx [Deriv ,

where in particular

Mainx = (({begx} [ Vx)⇥ Vx) [ (Vx ⇥ {endx}).

The tags begx and endx mark the beginning and the end of a timeline for x,
and a pair (v, v0) 2 Mainx represents a transition of the value taken by x from
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v to v0 (a token for x with value v0 follows a token with value v). The already
introduced formula

 (s, v) = (begx, v) _
_

u2Vx

(u, v),

states that a start-event for a token for x with value v occurs at the current time.
Finally, EqTime(✓) = ✓ _ [¬p>U�0(¬p> ^ ✓)], where p> 2 Deriv , is satisfied by
an encoding of a multi-timeline at the current time if ✓ eventually holds at a
position whose timestamp coincides with the current one.

Before formalizing the MC problem for MITL formulas over timelines, we
want to start with an easy example of a system whose components are described
by timelines, over which we check some properties encoded by MITL formulas.

Example 21. Let us consider the following system, consisting of a temper-
ature sensor, a processing unit, and a data transmission unit. These com-
ponents are modelled by three state variables, xtemp = (Vtemp, Ttemp, Dtemp),
xproc = (Vproc, Tproc, Dproc) and xtransm = (Vtransm, Ttransm, Dtransm), where

• Vtemp = {ready, not ready},
Ttemp(ready) = {not ready}, Ttemp(not ready) = {ready},
Dtemp(ready) = [1, 2], Dtemp(not ready) = [2, 3];

• Vproc = {reading1, reading2, read0, read1, read2},
Tproc(reading1) = {read0, read1}, Tproc(reading2) = {read1, read2},
Tproc(read0) = {reading1}, Tproc(read1) = {reading2}, Tproc(read2) =
{read2},
Dproc(reading1)=Dproc(reading2)= [1, 2], Dproc(read0)=Dproc(read1)=
Dproc(read2)=[2, 3];

• Vtransm = {send},
Ttransm(send) = {send},
Dtransm(send) = [2, 5].

The temperature sensor alternates between the states ready and not ready.
In the former, it senses the temperature of the environment and possibly sends
the temperature value to the processing unit. The purpose of the processing unit
is receiving two temperature samples from the sensor, and sending the average
value to the data transmission unit. While in state readi, for i = 0, 1, 2, it has
read i samples. While in reading

j
, for j = 1, 2, it is attempting to read the

j-th sample. A reading is possible only if the sensor and the processing unit
are synchronized: a time interval (token) with value reading

j
has to contain a

token ready. Analogously, the processing unit can send data to the transmitter
only if a token with value send contains one with value read2.

The sensor starts in state not ready. This is specified by the trigger-less
rule > ! 9o[xtemp = not ready].o s

[0,0] 0. The processing unit starts in state

reading1: > ! 9o[xproc = reading1].o 
s
[0,0] 0. (Recall that trigger-less rules

may also contain singular intervals at no extra computational cost.) The goal
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Figure 5: Example of computation for the defined system

36



of the system is encoded by the rule > ! 9o1[xproc = read2]9o2[xtransm =
send].(o2 

s,s
[0,+1[ o1 ^ o1 

e,e
[0,+1[ o2).

Let us now encode the fact that the sensor and the processing unit must
be synchronized for the latter to receive a temperature sample. We assume the
next simple trigger rule to be interpreted under the future semantics.

o[xproc = reading1]! (9o1[xproc = read0].o 
e,s
[0,1] o1)_

(9o2[xproc = read1]9o3[xtemp = ready].o e,s
[0,1] o2 ^ o3 

e,e
[0,+1[ o). (1)

Let us observe that, due to the future semantics, the token (referenced by the
name) o starts no later than o3. An analogous rule can be written for the second
temperature sample (where xproc = reading2).

In Figure 5 we show an example of plan/computation for the system de-
scribed by P = ({xtemp, xproc, xtransm}, R).

Let us now specify some properties in MITL (more precisely, MITL(0,1)) to
check on the system model. The idea is that such properties must hold true
over all possible computations (plans) of the described system, in order for the
MC problem to be satisfied.

• G<2 ¬ (s, ready). This property holds true in any system computation,
as the sensor does not ever get ready by 2 seconds;

• F8  (s, read1). This property is not true in all computations (but it is,
e.g., in the one of Figure 5), because the sensor and the processing unit
may synchronize for the first time after 8 seconds;

• F�0

�
 (s, ready) ^ (>U>0  (s, ready))

�
. This property holds true in any

system computation, since the system guarantees, after some time, to
eventually send the data via the transmitter. In order for this to happen,
the sensor must become ready (at least) twice.

• G�0

�
 (s, read1)! F3  (s, read2)

�
. This property is not true in all com-

putations as the processing unit, after reading the first sample, may not
be able to read the second one by 3 time units (e.g., when the transmitter
and the processing unit do not synchronize as soon as possible).

• G�0

�
 (s, reading1)^(EqTime( (s, ready))_past sready)!F2  (s, read1)

�
.

We recall that the proposition letter past sready is true at the time it is
interpreted if there is a past token for xtemp with value ready starting at
the same timestamp. The formula considers a situation where a token
with value reading1 starts together with a token ready. The property
expressed by the formula is not true in general, as either (i) the token
reading1 may not contain the token ready, hence xproc will not move to
the state read1 by 2 time units, or (ii) the token reading1 is followed
by a token read0. As for the latter case, the system description rule (1)
states that if there is a transition from state reading1 to read1, then
the processing unit and the sensors must have synchronized. However,

37



the converse implication need not hold: the two component may fail to
communicate anyway (the processing unit remaining in read0).

Let us now formally define the MC problem forMITL formulas over timelines.
As shown in the proof of Theorem 14, given a system model Psys = (SV,R),
it is possible to build a TA Asys that accepts all and only the encodings w⇧ of
multi-timelines ⇧ of SV satisfying all the rules in R.

Definition 22 (Model checking). Given a system model Psys = (SV,R) and a
MITL formula ' over AP , the MC problem for MITL formulas over timelines is
to decide whether or not LT (Asys) ✓ LT (').

We recall that [2] given a MITL (resp., MITL(0,1)) formula  , where N is
the number of distinct subformulas of  , and K the largest integer constant
appearing in  , we can build a TA A accepting the models of  , with O(2N ·K)
(resp., O(2N )) states, O(N · K) (resp., O(N)) clocks, and maximum constant
O(K). Deciding its emptiness requires space logarithmic in the number of states
of A and polynomial in the number of clocks and in the length of the encoding
of K, hence exponential (resp., polynomial) space.

In order to decide if LT (Asys) ✓ LT ('), we check whether LT (Asys) \
LT (A¬') = ; by making the intersection A^ of Asys and A¬', and check-
ing for emptiness of its timed language. The size of A^ is polynomial in those
of Asys and A¬'. Moreover Asys, A¬' and A^ can be built on the fly, and the
emptiness test can be done without explicitly constructing them as well. The
next result follows by these observations and by Theorem 14.

Theorem 23. The MC problem for MITL formulas over timelines, with simple
future trigger rules and non-singular intervals, is in EXPSPACE.

The MC problem for MITL(0,1) formulas over timelines, with simple future
trigger rules and intervals in Intv (0,1), is in PSPACE.

Clearly, EXPSPACE- and PSPACE-completeness of the above MC prob-
lems follow by the underlying future TP problems. This concludes the section.

7. Conclusions and future work

In this paper we have considered the timeline-based planning problem (TP)
over dense temporal domains. Timelines have been fruitfully used in temporal
planning for quite a long time to describe planning domains. Having recourse
to dense time is important for expressiveness: in this way one can avoid un-
necessary (or even “forced”) details and properly express properties such as
accomplishments, actions with duration and temporally extended goals. Since
TP turns out to be undecidable in its general form, we have identified and
studied “intermediate” decidable cases of the problem, which enforce forms of
synchronization rules having lower expressive power than that of general ones.
By restricting also the type of intervals used in trigger rules, better complexity
results (EXPSPACE or PSPACE) can be obtained. Finally, if we only allow
trigger-less rules, TP becomes NP-complete.
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At the end of the paper, we have shown how timelines can be employed as
system descriptions/models, which are checked against properties specified in
the logic MITL. TP is a sort of “necessary condition” for timeline-based MC:
TP boils down to a feasibility check of the system description; moreover MC can
easily be solved once TP has, as both timelines and the property specification
language MITL can be translated into timed automata [1], which have been
studied for a long time and are at the basis of well-known model checkers (e.g.,
Uppaal [20]).

As for future work, future TP with arbitrary trigger rules shall be investi-
gated, whose decidability remains an open problem. Moreover, we would like to
study timeline-based MC where property specifications are given by formulas
of Halpern and Shoham’s modal logic of time intervals (HS). A timed exten-
sion of HS over dense domains would be required by timelines; however, in the
literature, only metric extensions of HS have been proposed over the natural
numbers [8]. Defining such an extension, and linking it with known results re-
garding other timed logics and/or timed automata, is an interesting research
theme.
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Appendix A. Definition of the value transition function T in the
proof of Theorem 7

The value transition function T of xM is defined as follows.

• For each instruction label ` 2 Inc [ {`halt}, let P` = ; if ` = `halt, and
P` = {(succ(`), inch)} otherwise, where ch = c(`). Then, T (`), T ((`, ci)),
and T ((`, (ci,#)), for i = 1, 2, are defined as follows:

T (`) = {(`, c1), (`, c2)} [ P`

T ((`, c1)) = {(`, c1), (`, c2)} [ P`

T ((`, c2)) = {(`, c2)} [ P`

• For each instruction label ` 2 Dec and for each `0 2 {zero(`), dec(`)},
T ((`, `0)), T ((`, `0, ci)), and T ((`, `0, (ci,#)), for i = 1, 2, are defined as:

T ((`, `0)) =

8
>><

>>:

{(`, `0, c2), (`0, zero1)} if c(`) = c1, `0 = zero(`)
{(`, `0, c1), (`0, zero2)} if c(`) = c2, `0 = zero(`)
{(`, `0, (c1,#))} if c(`) = c1, `0 = dec(`)
{(`, `0, c1), (`, `0, (c2,#))} otherwise

T ((`, `0, c1)) =

8
>><

>>:

; if c(`) = c1, `0 = zero(`)
{(`, `0, c1), (`0, zero2)} if c(`) = c2, `0 = zero(`)
{(`, `0, c1), (`, `0, c2), (`0, dec1)} if c(`) = c1, `0 = dec(`)
{(`, `0, c1), (`, `0, (c2,#))} otherwise

T ((`, `0, c2)) =

8
>><

>>:

{(`, `0, c2), (`0, zero1)} if c(`) = c1, `0 = zero(`)
; if c(`) = c2, `0 = zero(`)
{(`, `0, c2), (`0, dec1)} if c(`) = c1, `0 = dec(`)
{(`, `0, c2), (`0, dec2)} otherwise

T ((`, `0, (c1,#))) =

⇢
{(`, `0, c1), (`, `0, c2), (`0, dec1)} if c(`) = c1, `0 = dec(`)
; otherwise

T ((`, `0, (c2,#))) =

⇢
{(`, `0, c2), (`0, dec2)} if c(`) = c2, `0 = dec(`)
; otherwise

• For each label ` 2 InstLab and operation op 2 {inc1, inc2, zero1, zero2, dec1,
dec2}, T ((`, op)), T ((`, op, ci)), and T ((`, op, (ci,#)), for i = 1, 2, are
defined as follows, where S` = {(`, zero(`)), (`, dec(`))} if ` 2 Dec, and
S` = {`} otherwise:

T ((`, op)) =

8
>>>>>>>><

>>>>>>>>:

{(`, op, c2)} [ S` if op = zero1, ` 6= `init
{(`, op, c1)} [ S` if op = zero2, ` 6= `init
{(`, op, c1), (`, op, c2)} [ S` if op 2 {dec1, dec2}, ` 6= `init
{(`, op, (c1,#))} if op = inc1, ` 6= `init
{(`, op, c1), (`, op, (c2,#))} if op = inc2, ` 6= `init
{`init} if op = zero1, ` = `init
; otherwise
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T ((`, op, c1)) =

8
>>>><

>>>>:

; if op = zero1 or ` = `init
{(`, op, c1)} [ S` if op = zero2, ` 6= `init
{(`, op, c1), (`, op, c2)} [ S` if op 2 {dec1, dec2, inc1},

` 6= `init
{(`, op, c1), (`, op, (c2,#))} if op = inc2, ` 6= `init

T ((`, op, c2)) =

⇢
; if op = zero2 or ` = `init
{(`, op, c2)} [ S` otherwise

T ((`, op, (c1,#))) =

⇢
; if op 6= inc1 or ` = `init
{(`, op, c1), (`, op, c2)} [ S` otherwise

T ((`, op, (c2,#))) =

⇢
; if op 6= inc2 or ` = `init
{(`, op, c2)} [ S` otherwise

This concludes the definition of T of xM .

Appendix B. Non-primitive recursive-hardness of future TP

In this section, we establish the following result.

Theorem (9). The future TP problem, even with one state variable, is non-
primitive recursive-hard also under one of the following two assumptions: either
(1) the trigger rules are simple, or (2) the intervals are in Intv (0,1).

Theorem 9 is proved by a polynomial-time reduction from the halting prob-
lem for gainy counter machines [12], a variant of standard Minsky machines,
whose counters may erroneously increase. Such a machine is a tuple M =
(Q, qinit, qhalt, n,�), where:

• Q is a finite set of (control) locations/states, qinit 2 Q is the initial loca-
tion, and qhalt 2 Q is the halting location,

• n 2 N \ {0} is the number of counters of M , and

• � ✓ Q⇥L⇥Q is a transition relation over the instruction set L = {inc, dec,
zero}⇥ {1, . . . , n}.

We adopt the following notational conventions. For an instruction op 2 L, let
c(op) 2 {1, . . . , n} be the counter associated with op. For a transition � 2 �
of the form � = (q, op, q0), we define from(�) = q, op(�) = op, c(�) = c(op),
and to(�) = q0. We denote by opinit the instruction (zero, 1). W.l.o.g., we make
these assumptions:

• for each transition � 2 �, from(�) 6= qhalt and to(�) 6= qinit, and

• there is exactly one transition in �, denoted �init, having as source the
initial location qinit.
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An M -configuration is a pair (q, ⌫) consisting of a location q 2 Q and a
counter valuation ⌫ : {1, . . . , n} ! N. Given two valuations ⌫ and ⌫0, we write
⌫ � ⌫0 if and only if ⌫(c) � ⌫0(c) for all c 2 {1, . . . , n}.

Under the exact semantics (with no errors), M induces a transition relation,
denoted by �!, over pairs of M -configurations and instructions, defined as
follows: for configurations (q, ⌫) and (q0, ⌫0), and instructions op 2 L, we have

(q, ⌫)
op
�! (q0, ⌫0) if the following holds, where c 2 {1, . . . , n} is the counter

associated with the instruction op:

• (q, op, q0) 2 � and ⌫0(c0) = ⌫(c0) for all c0 2 {1, . . . , n} \ {c};

• ⌫0(c) = ⌫(c) + 1 if op = (inc, c);

• ⌫0(c) = ⌫(c)� 1 if op = (dec, c) (in particular, it has to be v(c) > 0);

• ⌫0(c) = ⌫(c) = 0 if op = (zero, c).

The gainy semantics is obtained from the exact one by allowing increment
errors. Formally, M induces a transition relation, denoted by �!gainy, defined
as follows: for configurations (q, ⌫) and (q0, ⌫0), and instructions op 2 L, we have

(q, ⌫)
op
�!gainy (q0, ⌫0) if the following holds, where c = c(op) is the counter

associated with the instruction op: (q, ⌫)
op
�!gainy (q0, ⌫0) i↵ there are valuations

⌫+ and ⌫0+ such that ⌫+ � ⌫, (q, ⌫+)
op
�! (q0, ⌫0+), and ⌫

0
� ⌫0+. Equivalently,

(q, ⌫)
op
�!gainy (q0, ⌫0) i↵ the following conditions hold:

• (q, op, q0) 2 � and ⌫0(c0) � ⌫(c0) for all c0 2 {1, . . . , n} \ {c};

• ⌫0(c) � ⌫(c) + 1 if op = (inc, c);

• ⌫0(c) � ⌫(c)� 1 if op = (dec, c);

• ⌫(c) = 0 if op = (zero, c).

A (gainy) M -computation is a finite sequence of the form:

(q0, ⌫0)
op0
�!gainy (q1, ⌫1)

op1
�!gainy · · ·

opk�1
�!gainy (qk, ⌫k).

M halts if there exists an M -computation starting at the initial configuration
(qinit, ⌫init), where ⌫init(c) = 0 for all c 2 {1, . . . , n}, and leading to some halting
configuration (qhalt, ⌫). Given a gainy counter machine M , the halting problem
for M is to decide whether M halts, and it was shown to be decidable and
non-primitive recursive [12].

We now prove the following result, from which Theorem 9 directly follows.

Proposition 24. One can construct in polynomial time a TP domain P =
({xM}, RM ) where the trigger rules in RM are simple (resp., the intervals in P
are in Intv (0,1)) such that M halts i↵ there is a future plan for P .

Proof. We focus on the reduction where the intervals in P are in Intv (0,1). At
the end of the proof, we show how to adapt the construction for the case of
simple trigger rules with arbitrary intervals.
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Encoding of M -computations.. First, we define a suitable encoding of a compu-
tation of M as a timeline for xM . For this, we exploit the finite set of symbols
V = Vmain [ Vsec [ Vdummy corresponding to the finite domain of the state
variable xM . The set of main values Vmain is given by

Vmain = {(�, op) 2 �⇥ L | op 6= (inc, c) if op(�) = (zero, c)}.

Intuitively, in the encoding of an M -computation, a main value (�, op) keeps
track of the transition � used in the current step of the computation, while op
represents the instruction exploited in the previous computation step (if any).

The set of secondary values Vsec is defined as

Vsec = Vmain ⇥ {1, . . . , n}⇥ 2{#inc,#dec},

where #inc and #dec are two special symbols used as markers. Vsec is used for
encoding counter values, as shown later. Finally, the set of dummy values is
Vdummy = (Vmain [ Vsec)⇥ {dummy}; their use will be clear when we introduce
synchronization rules: they are used to specify punctual time constraints by
means of non-simple trigger rules over intervals in Intv (0,1).

Given a word w 2 V ⇤, we denote by ||w|| the length of the word obtained
from w by removing dummy symbols.

For c 2 {1, . . . , n} and vmain = (�, op) 2 Vmain, the set Tag(c, vmain) of
markers of counter c for the main value vmain is the subset of {#inc,#dec}

defined as follows:

• #inc 2 Tag(c, vmain) i↵ op = (inc, c);

• #dec 2 Tag(c, vmain) i↵ op(�) = (dec, c);

A c-code for the main value vmain = (�, op) is a finite word wc over V
such that either (i) wc is empty and #inc /2 Tag(c, vmain), or (ii) op(�) 6=
(zero, c) and wc = (vmain, c,Tag(c, vmain))(vmain, c, ;, dummy)h0 · (vmain, c, ;) ·
(vmain, c, ;, dummy)h1 · · · (vmain, c, ;) ·(vmain, c, ;, dummy)hn for some n � 0 and
h0, h1, . . . , hn � 0. The c-code wc encodes the value for the counter c given
by ||wc||. Intuitively, wc can be seen as an interleaving of secondary values
with dummy ones, the latter being present only for technical aspects, but not
encoding any counter value.

A configuration-code w for a main value vmain = (�, op) 2 Vmain is a finite
word over V of the form w = vmain ·(vmain, dummy)h ·w1 · · ·wn, where h � 0 and
for each counter c 2 {1, . . . , n}, wc is a c-code for the main value vmain. The
configuration-code w encodes the M -configuration (from(�), ⌫), where ⌫(c) =
||wc|| for all c 2 {1, . . . , n}. Note that if op(�) = (zero, c), then ⌫(c) = 0 and
op 6= (inc, c).

The marker #inc occurs in w i↵ op is an increment instruction, and in such
a case #inc marks the first symbol of the encoding wc(op) of counter c(op).
Intuitively, if the operation performed in the previous step of the computation
increments counter c, then the tag #inc “marks” the unit of the counter c in the
current configuration which has been added by the increment.
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The marker #dec occurs in w i↵ � is a decrement instruction and the value
of counter c(�) in w is non-zero; in such a case, #dec marks the first symbol of
the encoding wc(�) of counter c(�). Intuitively, if the operation to be performed
in the current step decrements counter c and the current value of c is non-zero,
then the tag #dec marks the unit of the counter c in the current configuration
which has to be removed by the decrement.

A computation-code is a sequence of configuration-codes ⇡ = w(�0,op0) · · ·

w(�k,opk), where, for all 0  i  k, w(�i,opi) is a configuration-code with main
value (�i, opi), and whenever i < k, it holds that to(�i) = from(�i+1) and
op(�i) = opi+1. Note that by our assumptions to(�i) 6= qhalt for all 0  i < k,
and �j 6= �init for all 0 < j  k. The computation-code ⇡ is initial if the first
configuration-code w(�0,op0) is (�init, opinit) (which encodes the initial configura-
tion), and it is halting if for the last configuration-code w(�k,opk) in ⇡, it holds
that to(�k) = qhalt. For all 0  i  k, let (qi, ⌫i) be the M -configuration encoded
by the configuration-code w(�i,opi) and ci = c(�i). The computation-code ⇡ is
well-formed if, additionally, for all 0  j  k� 1, the following conditions hold:

• ⌫j+1(c) � ⌫j(c) for all c 2 {1, . . . , n} \ {cj} (gainy monotonicity);

• ⌫j+1(cj) � ⌫j(cj) + 1 if op(�j) = (inc, cj) (increment requirement);

• ⌫j+1(cj) � ⌫j(cj)� 1 if op(�j) = (dec, cj) (decrement requirement).

Clearly, M halts i↵ there is an initial and halting well-formed computation-
code.

Definition of xM and RM .. We now define a state variable xM and a set RM of
synchronization rules for xM with intervals in Intv (0,1) such that the untimed
part of any future plan for P = ({xM}, RM ) is an initial and halting well-formed
computation-code. Thus, M halts if and only if there is a future plan of P .

Formally, the state variable xM is given by xM = (V, T,D) where, for each
v 2 V , D(v) = ]0,1[ if v /2 Vdummy, and D(v) = [0,1[ otherwise: we require
that the duration of a non-dummy token is always greater than zero (strict time
monotonicity).

The value transition function T of xM ensures the following requirement.

Claim 25. The untimed part of any timeline for xM whose first token has value
(�init, opinit) corresponds to a prefix of some initial computation-code. Moreover,
(�init, opinit) /2 T (v) for all v 2 V .

T can be built by adapting the construction of Appendix A.
Let Vhalt = {(�, op) 2 Vmain | to(�) = qhalt}. By Claim 25 and the assump-

tion that from(�) 6= qhalt for each transition � 2 �, to ensure the initialization
and halting requirements, it su�ces to enforce the timeline to feature a token
with value (�init, opinit) and a token with value in Vhalt. This is captured by the
trigger-less rules

> ! 9o[xM = (�init, opinit)].>
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and
> !

_

v2Vhalt

9o[xM = v].> .

The crucial well-formedness requirement is captured by the trigger rules in
RM which express the following punctual time constraints. Note that we take
advantage of the dense temporal domain to allow for the encoding of arbitrarily
large values of counters in two time units.

• 2-Time distance between consecutive main values: the overall duration
of the sequence of tokens corresponding to a configuration-code amounts
exactly to 2 time units. By Claim 25, strict time monotonicity, and the
halting requirement, it su�ces to ensure that each token tk having a main
value in Vmain \Vhalt is eventually followed by a token tk0 such that tk0 has
a main value and s(tk0)� s(tk) = 2. To this aim, for each v 2 Vmain \Vhalt,
we have the following non-simple trigger rule with intervals in Intv (0,1)

which uses a dummy token for capturing the punctual time constraint:

o[xM = v]!
_

u2Vmain

_

ud2Vdummy

9o0[xM = u]9od[xM = ud].o 
s,s
[1,+1[ od ^

od 
s,s
[1,+1[ o

0
^ o s,s

[0,2] o
0.

• For a counter c 2 {1, . . . , n}, let us denote as Vc ✓ Vsec the set of sec-
ondary values given by Vmain ⇥ {c} ⇥ 2{#inc,#dec}. We require that each
token tk with a Vc-value of the form ((�, op), c,Tag) such that c 6= c(�)
and to(�) 6= qhalt is eventually followed by a token tk0 with a Vc-value
such that s(tk0)� s(tk) = 2. Note that our encoding, Claim 25, strict time
monotonicity, and 2-Time distance between consecutive main values guar-
antee that the previous requirement captures gainy monotonicity. Thus,
for each counter c and v 2 Vc such that v is of the form ((�, op), c,Tag),
where c 6= c(�) and to(�) 6= qhalt, we have the following non-simple trigger
rule over Intv (0,1):

o[xM = v]!
_

u2Vc

_

ud2Vdummy

9o0[xM = u]9od[xM = ud].o 
s,s
[1,+1[ od ^

od 
s,s
[1,+1[ o

0
^ o s,s

[0,2] o
0.

• For capturing the increment and decrement requirements, by construction,
it su�ces to enforce that:

1. each token tk with a Vc-value of the form ((�, op), c,Tag) such that
to(�) 6= qhalt and � = (inc, c) is eventually followed by a token tk0 with
a Vc-value which is not marked by #inc such that s(tk0)� s(tk) = 2;

2. each token tk with a Vc-value of the form ((�, op), c,Tag) such that
to(�) 6= qhalt, � = (dec, c), and #dec /2 Tag is eventually followed by a
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Figure C.6: A (generic) instance of the domino-tiling problem, where dij denotes f(i, j).

token tk0 with a Vc-value such that s(tk0)� s(tk) = 2. These require-
ments can be expressed by non-simple trigger rules with intervals in
Intv (0,1) similar to the previous ones.

Finally, to prove Proposition 24 for the case of simple trigger rules with arbitrary
intervals, it su�ces to remove the dummy values and replace the conjunction
o s,s

[1,+1[ od ^ od 
s,s
[1,+1[ o

0
^ o s,s

[0,2] o
0 in the previous trigger rules with the

“punctual” atom o s,s
[2,2] o

0, whose interval at the subscript is singular.
This concludes the proof of Proposition 24.

Appendix C. Future TP with simple trigger rules and non-singular
intervals: EXPSPACE-hardness

We prove that the future TP problem with simple trigger rules and non-
singular intervals is EXPSPACE-hard. Hardness holds also when only a sin-
gle state variable is involved. The claim is proved by a polynomial-time reduc-
tion from the domino-tiling problem for grids with rows of single exponential
length [16]. We start by introducing such problem.

An instance I of a domino-tiling problem for grids with rows of single ex-
ponential length is a tuple I = (C,�, n, dinit, dfinal), where C is a finite set of
colors, � ✓ C4 is a set of tuples (cdown, cleft, cup, cright) of four colors, called
domino-types, n > 0 is a natural number encoded in unary, and dinit, dfinal 2 �
are two distinguished domino-types (respectively, the initial and final domino-
types). The size of I is defined as |C|+ |�|+ n.

Intuitively, a tiling of a grid is a color labelling of the edges of each cell (see
Figure C.6). Formally, a tiling of I is a mapping f : [0, k]⇥ [0, 2n � 1]! �, for
some k � 0, that satisfies the following constraints:

• two adjacent cells in a row have the same color on the shared edge, namely,
for all (i, j) 2 [0, k] ⇥ [0, 2n � 2], [f(i, j)]right = [f(i, j + 1)]left (horizontal
requirement);
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Figure C.7: A timeline encoding the ordered concatenation of the rows of a tiling. Red lines
represent the horizontal and vertical constraints among domino-types.

• two adjacent cells in a column have the same color on the shared edge,
namely, for all (i, j) 2 [0, k � 1]⇥ [0, 2n � 1], [f(i, j)]up = [f(i+ 1, j)]down

(vertical requirement);

• f(0, 0) = dinit (initialization requirement) and f(k, 2n � 1) = dfinal (ac-
ceptance requirement).

Checking the existence (respectively, non-existence) of a tiling of I is an
EXPSPACE-complete problem [16].

We can now prove the following.

Theorem (15). The future TP problem, even with one state variable, with
simple trigger rules and non-singular intervals is EXPSPACE-hard (under
polynomial-time reductions).

Proof. For the sake of the reduction, we define the state variable y = (V, T,D)
where:

• V = {$, $0} [� (with $, $0 /2 �),

• T ($) = � and T ($0) = {$0},

• for d 2 � \ {dfinal}, T (d) = {$} [ {d0 2 � | [d]right = [d0]left},

• T (dfinal) = {$, $0} [ {d0 2 � | [dfinal]right = [d0]left},

• for all v 2 V , D(v) = [2,+1[.

Basically, the domain of the state variable y contains all domino-types, as well
as two auxiliary symbols $ and $0. The idea is encoding a tiling by the concate-
nation of its rows, separated by an occurrence of $. The last row is terminated
by $0.

More precisely, each cell of the grid is encoded by (the value of) a token
having duration 2. A row of the grid is then represented by the sequence of
tokens of its cells, ordered by increasing column index. Finally, a full tiling
is just given by the timeline for y obtained by concatenating the sequences of
tokens of all rows, ordered by increasing row index. See Figure C.7 for an
example.

We observe that T guarantees the horizontal constraint among domino-types,
and that it allows only occurrences of $0 after the first $0.

We start with the next simple trigger rules, one for each v 2 V :

o[y = v]! o s,e
[0,2] o.
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These, paired with the constraint function D, enforce all tokens’ durations to be
exactly 2. This is done for technical convenience: intuitively, since we exclude
singular intervals, requiring, for instance, that a token o0 starts t instants of
time after the end of o, with t 2 [`, ` + 1] and even ` 2 N, boils down to o0

starting exactly ` instants after the end of o. We also observe that, given the
constant token duration, in this proof the density of the time domain does not
play any role.

We now define the following synchronization rules (of which all trigger ones
are simple and future). The next ones state (together) that the first occurrence
of (a token having value) $ starts exactly at 2 · 2n:

> ! 9o[y = $].o �s
[0,1] 2 · 2

n, (C.1)

and
o[y = $]! o �s

[0,+1[ 2 · 2
n. (C.2)

Thus, all tokens before such a first occurrence of $ have a value in �.
Every occurrence of $ must be followed, after exactly 2 · 2n instants of time

(namely, after 2n tokens), by another occurrence of $ or of $0.

o[y = $]!

(9o0[y = $].o e,s
[2·2n,2·2n+1] o

0) _ (9o00[y = $0].o e,s
[2·2n,2·2n+1] o

00). (C.3)

Now we force every token with value d 2 � either (i) to be followed, after
2 · 2n instants, by another token with value d0 2 �, in particular, satisfying the
vertical requirement, i.e., [d]up = [d0]down, or (ii) to be in the last row (which is
terminated by $0). For each d 2 �,

o[y = d]!
⇣_

d02�, [d]up=[d0]down

9o0[y = d0].o e,s
[2·2n,2·2n+1] o

0

⌘
_ (9o00[y = $0].o e,s

[0,2·2n�2] o
00). (C.4)

It is straightforward to check that rules (C.1), (C.2), (C.3), and (C.4), along
with the horizontal constraint guaranteed by the function T , enforce the follow-
ing property.

Proposition 26. There exists k0 2 N+ such that all tokens with value $ end at
all and only times k · 2(2n + 1), for 1  k < k0. Moreover the first token with
value $0 ends at time k0 · 2(2n + 1). Finally, all other tokens having end time
less than k0 · 2(2n + 1) have value in � and satisfy the horizontal and vertical
constraints.

Finally, we settle the initialization and acceptance requirements by means
of the following pair of trigger-less rules:

> ! 9o[y = dinit].o �
s
[0,1] 0,

> ! 9o[y = dfinal]9o
0[y = $0].o e,s

[0,1] o
0.

50



The former rule states that a token with value dinit must start at t = 0, the
latter that a token with value dfinal must occur just before the terminator of the
last row $0.

To conclude the proof, we observe that the state variable y = (V, T,D) as
well as all synchronization rules can be generated in polynomial time in the
size of the instance I of the domino-tiling problem (in particular, note that all
interval bounds and time constants of time-point atoms have a value, encoded
in binary, which is in O(2n)).
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