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Abstract

In this work we show that the framework put forward by Lucchesi, Silhavy and
Zani [8] to study the equilibrium configurations of panels made of no-tension
material can be easily extended to the case of a no-tension material with a
reinforcing tensile resistant unidimensional material. This kind of bodies could
be used to describe reinforced concrete structures. By solving the equilibrium
equations we find a family of solutions each of which is characterized by a
singular curve where the stress in the no-tension material concentrates. We
show that among these, the curve that minimizes the maximum stress resembles
the line tension found experimentally on reinforced concrete beams.
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1. Introduction

In this work we show that the framework put forward by Lucchesi, Silhavy
and Zani [8] to study the equilibrium configurations of panels made of no-tension
material, [5, 6, 7], can be easily extended to the case of a no-tension material
with a reinforcing tensile resistant unidimensional material. This kind of bodies
could be used to describe reinforced concrete structures.

In [8, 10] Lucchesi, Silhavy and Zani look for stress fields that equilibrate the
applied loads and are negative semi-definite, so to accomodate the incapability
of the material to withstand traction. To simplify the problem they use tensor
valued measures to describe the stress field; more precisely, they consider stresses
that are tensor valued measures with a divergence which is also a measure, see
also [4]. Within this framework the stress field may be singular on some curve,
Cu, to be determined from the equilibrium equations; highly localized stress
distributions have been experimentally observed in [2, 3]. The theory for these
generalized stresses has been developed by Lucchesi et al. in [8, 9, 10, 11, 12];
see also [1]. In particular, the balance of forces is postulated only in a weak
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form that allows to take into account the singularities of the stress in a simple
and direct way.

To model a no-tension body with a unidimensional reinforcement we pre-
scribe, in the reference configuration, a fixed curve Cr representing the region
occupied by the reinforcement. On this curve the stress field will be allowed
to be singular and to be positive definite in order to model the fact that the
reinforcement could support traction forces.

While in the reinforcement the only unknown is the stress, since Cr is a priori
given, in the singular curve within the no-tension material the unknowns are the
stress and the curve Cu itself. Besides these, also the density with respect to
the Lebesgue measure of the stress field in the no-tension material is unknown.

More precisely, we deal with a body occupying a region U that is divided
by a singular “curve” C = Cu ∪ Cr and the stress T is a measure that is the
sum of an absolutely continuous part w.r.t. the Lebesgue measure on U \ C,
with density Ta, and a measure concentrated on C. Denoting by Tr and Tu

the density of the measures concentrated on Cr and Cu, respectively, we require
that Ta and Tu are negative semi-definite, since they represents the stress in
the no-tension material while Tr could be positive. Therefore, the unknowns of
the problem are Ta, Tr, Tu and Cu.

In Section 2, after recalling one of the main results of [8], we derive the
equilibrium equations from the balance equations in the weak form for the case
of a rectangular panel with a straight horizontal reinforcement. The choice of
this configuration is motivated by the fact that it describes the geometry of
reinforced concrete beams. In Section 3 we study the equilibrium problem for
the structure subjected to a uniform load on the top of the panel and clamped
on two intervals at its basis. Since we are considering only the equilibrium
equations, we find that the solution is not unique. In fact, we find a family of
solutions each of which is characterized by a singular curve Cu. We show that
the curve that minimizes the maximum stress in the no-tension material, which
we call optimal singular curve, resembles the line tension found experimentally
on reinforced concrete beams.

2. Equilibrated tensor fields and balance equations

In this section we briefly recall the basic notion of equilibrated tensor field
and the corresponding balance equations using the notation of [8], see also [10,
14]. To the same paper, and to the references therein, we refer for a complete
and detailed presentation.

Let U be an open subset of Rn and ∂U its topological boundary. Let V
be a finite-dimensional real inner product space. We denote by M(U, V ) and
M(∂U, V ) the set of V -valued Borel measures supported on U and ∂U , respec-
tively. By Lin we denote the space of all linear transformations (tensors) from
Rn into Rn with the Euclidean inner product.

Definition 1. A tensor-valued measure T ∈ M(U,Lin) is said to be an equili-
brated tensor field if there exist measures (actually unique) b0 ∈ M(U,Rn) and
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t0 ∈ M(∂U,Rn) such that

�

U
∇ϕ · dT =

�

U
ϕ · db0 +

�

∂U
ϕ · dt0 (1)

for each ϕ ∈ C∞
c (Rn;Rn). The pair (b0, t0) is called the load corresponding to

T .

It follows that, the distributional divergence of an equilibrated tensor field
T is a vector measure divT ∈ M(U ;Rn). By using (1) we can see that the map

�N(T ), ϕ� :=
�

U
∇ϕ · dT +

�

U
ϕ · ddivT, ϕ ∈ C∞

c (Rn,Rn) (2)

is a measure concentrated on ∂U , which is called the normal trace of T at the
boundary; hence

�N(T ), ϕ� =
�

∂U
ϕ · dN(T )

and the following Green’s formula
�

U
∇ϕ · dT = −

�

U
ϕ · ddivT +

�

∂U
ϕ · dN(T ) (3)

holds for every ϕ ∈ C∞
c (Rn,Rn).

By comparing (1) and (3) we obtain that any equilibrated tensor field satisfies
the balance equations �

−divT = b0,

N(T ) = t0.
(4)

Actually, this is the set of equilibrium equations for a continuous body under
the action of a body force given by a prescribed measure b0 ∈ M(U,Rn) and a
boundary traction given by a prescribed measure t0 ∈ M(∂U,Rn). In particular,
if b0 is absolutely continuous with respect to the Lebesgue measure then divT
must be absolutely continuous as well.

2.1. A reinforced panel

In [8], Lucchesi, Šilavý and Zani, after having developed the theory of equi-
librated stress fields for no-tension bodies, have studied several two dimensional
equilibrium problems for multi-rectangular panels.

Inspired by their work, we study the statics of a two dimensional rectangular
panel made of no-tension material and reinforced by means of a straight uni-
dimensional continuum capable to resist also to traction forces. This system
models, for instance, a reinforced concrete beam.

We denote by U the rectangular region occupied by the panel in its reference
configuration and by Cr ⊂ U the uni-dimensional straight line occupied by the
reinforcing material. We assume Cr to be parallel to the basis of U . Since
the panel is made of no-tension material, the stress in U \ Cr is assumed to be
symmetric and negative semidefinite.
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Figure 1: a concrete panel reinforced by a straight unidimensional continuum made of tensile
resistant material

In the next section we consider an equilibrium problem under prescribed
loads and constraints and look for solutions among equilibrated tensor fields T,
which are actually solutions to the equilibrium equations (4).

Following the ideas of [8], in this paper we are going to search only special
solutions of (4) by restricting the set of admissible stress tensor fields to those
T whose singularities concentrate on Cr and along a simple piecewise smooth
curve Cu (like for instance in Figure 2 where Cu = C1∪C2∪C3) with endpoints
h1 and h2 on the boundary of U and disjoint from the endpoints e1 and e2 of
Cr.

C

U

r

C3C1

C2

h1
h2

e2e1

Figure 2: we allow T to be singular on Cr and along an unknown simple piecewise smooth
curve Cu = C1 ∪ C2 ∪ C3

This means that the stress field T is assumed to be the sum of a measure
absolutely continuous with respect to the Lebesgue’s measure with a smooth
density Ta in U \ (Cu ∪Cr) which has a continuous extension, again denoted by
Ta, with L 2-integrable derivative, to the closure of any connected component
of U \ (Cu ∪Cr) (hence, in particular, H 1-integrable on ∂U) and two measures
concentrated on Cr and Cu whose densities are piecewise smooth superficial
tensor fields Tr and Tu, respectively, that is

Tr = σr(s)tr(s)⊗ tr(s), Tu = σu(s)tu(s)⊗ tu(s), (5)

where σr and σu are piecewise smooth scalar fields, respectively, on Cr and Cu

(that is they are allowed to jump only on the intersection points of the two
curves with finite right and left limits in such points and have H 1-integrable
derivative), s is the arclength and tr(s), tu(s) denote the respective tangent
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unit vectors. Summarizing, the unknowns of the problem are the curve Cu, the
tensor field Ta and the scalar fields σr and σu.

The admissible stress tensor fields are then of the form

T := TaL
2�U + TrH

1�Cr + TuH
1�Cu (6)

and, as shown in [8, Proposition 1], they are equilibrated. Therefore, once
having defined the applied loads, the equilibrium equations are given by (4). To
make them more explicit we compute divT and N(T). It will be shown that

divT = divTaL
2�U

+
�

d
ds (σrtr)− [Ta]nr

�
H 1�Cr

+
�

d
ds (σutu)− [Ta]nu

�
H 1�Cu

+
�p

j=1[σr]trδcj +
�p

j=1[σutu]δcj

(7)

and
N(T) = TamH

1�∂U + σrtr(δe2 − δe1) + σutu(δh2 − δh1) (8)

where (tr, nr) and (tu, nu) are unit tangent and normal vectors to Cr and Cu, m
is the outer normal to ∂U and cj (j = 1, ..., p) are the intersection points between
the two curves. Moreover, [Ta] denotes the jump of Ta across the curves, while
[σrtr](P ) and [σutu](P ) are the jumps of σr and σu at the point P along Cr

and Cu. The jumps are evaluated according to the orientation defined, either
by the normal or the tangent vectors. Hence, for instance, [σutu]δc1 simply
means [σutu](c1) := σu(s(c1)+)tu(s(c1)+)− σu(s(c1)−)tu(s(c1)−), where + and
− denote the right and left limits referred to the chosen parametrization s.

To simplify the computations, we confine ourselves to the case p = 2; that
is Cr ∩ Cu = {c1, c2} ⊂ U . In this case there are two possible situations: one
in which the two endpoints of Cu are both below Cr as in Figure 2, and the
other in which they are both above. To fix ideas we suppose to be in the first
situation.

The domain U turns out to be divided in 5 parts called Ui, i = 1, 2, 3, 4, 5,
according to Figure 3.

C

U

r

C3C1

C2

h1
h2

e2e1
U3

U2

U1

U4

U5

Figure 3: the five regions Ui, i = 1, 2, 3, 4, 5

5



Recalling the expression (6) of T, for any ϕ ∈ Cc(R2;R2) we have

�

U
∇ϕ · dT =

�

U
∇ϕ · TadL

2 +

�

Cr

∇ϕ · TrdH
1

+

�

Cu

∇ϕ · TudH
1.

(9)

After denoting by Ti
a the trace of Ta on ∂Ui and ni the corresponding outer

normal, the first term on the right-hand side of (9) becomes

�

U
∇ϕ · TadL

2 =

= −
5�

i=1

�

Ui

ϕ · divTadx+
5�

i=1

�

∂Ui

ϕ · Ti
an

ids

= −
�

U
ϕ · divTadx+

�

∂U
ϕ · Tam ds

+
5�

i,j=1, i<j

�

∂Ui∩∂Uj

ϕ · (Ti
a − Tj

a)n
ids

= −
�

U
ϕ · divTadx+

�

∂U
ϕ · Tam ds

+

�

Cr

ϕ · [Ta]nrds+

�

Cu

ϕ · [Ta]nuds,

where

[Ta]nr =






(T1
a − T2

a)n
1 on ∂U1 ∩ ∂U2,

(T2
a − T3

a)n
2 on ∂U2 ∩ ∂U3,

(T4
a − T5

a)n
4 on ∂U4 ∩ ∂U5,

and

[Ta]nu =






(T1
a − T5

a)n
1 on ∂U1 ∩ ∂U5 = C1,

(T2
a − T4

a)n
2 on ∂U2 ∩ ∂U4 = C2,

(T3
a − T5

a)n
3 on ∂U3 ∩ ∂U5 = C3.

(10)

To make the computation of the second term on the right-hand side of (9) easier,
we introduce a positive orientation on the curve Cr in which e1 is the initial
endpoint (hence e2 is the final endpoint). By using the fact that (tr ⊗ tr) ·
∇(ϕ ◦ γr) = tr · d

ds (ϕ ◦ γr) where γr(s) is any regular parametrization of Cr and
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recalling the expression (5) of Tr, we have

�

Cr

∇ϕ · Tr dH
1 =

=

�

∂U1∩∂U2

σr(tr ⊗ tr) · ∇ϕds+

�

∂U2∩∂U3

σr(tr ⊗ tr) · ∇ϕds

+

�

∂U4∩∂U5

σr(tr ⊗ tr) · ∇ϕds

= −
�

Cr

d

ds
(σrtr) · ϕds

+σr(c
−
1 )tr(c1) · ϕ(c1)− σr(e1)tr(e1) · ϕ(e1)

+σr(c
−
2 )tr(c2) · ϕ(c2)− σr(c

+
1 )tr(c1) · ϕ(c1)

+σr(e2)tr(e2) · ϕ(e2)− σr(c
+
2 )tr(c2) · ϕ(c2)

= −
�

Cr

d

ds
(σrtr) · ϕds−

�
[σr]tr · ϕd(δc1 + δc2)

+

�
σrtr · ϕd(δe2 − δe1).

(11)

Analogously, having fixed on Cu a positive orientation which goes from h1 to
h2, we have

�

Cu

∇ϕ · Tu dH
1 =

= −
�

Cu

d

ds
(σutu) · ϕds−

�
[σutu] · ϕd(δc1 + δc2)

+

�
σutu · ϕd(δh2 − δh1).

(12)

By putting all togheter we find
�

U
∇ϕ · dT = −

�

U
ϕ · divTadx+

�

∂U
ϕ · Tam dH 1

+

�

Cr

�
[Ta]nr −

d

ds
(σrtr)

�
· ϕdH 1

+

�

Cu

�
[Ta]nu − d

ds
(σutu)

�
· ϕdH 1

−
� �

[σr]tr + [σutu]
�
· ϕd(δc1 + δc2)

+ σrtr · ϕd(δe2 − δe1)

+

�
σutu · ϕd(δh2 − δh1).

The claimed expression for divT is then obtained by taking test functions ϕ ∈
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C∞
c (U ;R2) and using the fact that, within this choice,

�

U
ϕ · ddivT = −

�

U
∇ϕ · dT.

After that, N(T) is easily computed by means of (2).

3. The equilibrium problem

In this section we assume the panel to be subjected to boundary loads only
and to be clamped on two regions V1 and V2 of width d contained in the lower
basis.

It is useful to introduce an orthogonal coordinate system (x, y) with the
origin in the middle point of the lower side of the panel, with the x axis point-
ing right and the y axis pointing upward (see Figure 4); let (ē1, ē2) be the
associated canonical basis. In this reference we take U = (−b/2, b/2) × (0, h),
V1 = (−b/2,−b/2 + d) × {0}, V2 = (b/2 − d, b/2) × {0} with b, h > 0 and
d ∈ (0, b/2).

We assume that the system is subjected to a vertical load, −p0ē2, distributed
on its upper side, y = h. The couple of measures describing the loads is then
given by

b0 = 0, t0 = −p0ē2�Γ + Φ�V1 ∪ V2

where Γ = (−b/2, b/2)×{h} is the upper side of the panel and V1 and V2 are the
subsets of the lateral boundary of U in which the body is clamped and Φ�V1∪V2

is a vector valued measure representing the reaction of the constraint and which
is a-priori unknown.

Thanks to (7) and (8), the equilibrium equations (4) rewrite






divTaL
2�U +

�
d
ds (σrtr)− [Ta]nr

�
H 1�Cr+

+
�

d
ds (σutu)− [Ta]nu

�
H 1�Cu

+
�2

j=1[σr]trδcj +
�2

j=1[σutu]δcj = 0,

TamH 1�∂U + σrtr(δe2 − δe1) + σutu(δh2 − δh1) =

= −p0ē2�Γ + Φ�V1 ∪ V2,
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that is





divTa = 0 L 2 − a.e. in U,

d
ds (σrtr)− [Ta]nr = 0 H 1 − a.e. on Cr,

d
ds (σutu)− [Ta]nu = 0 H 1 − a.e. on Cu,

[σr]tr + [σutu] = 0 in c1, c2,

Tam = −p0ē2 H 1 − a.e. on Γ,

Tam = 0 H 1 − a.e. on ∂U \ (Γ ∪ V1 ∪ V2),

σrtr(e2) = σrtr(e1) = 0,

TamH 1�V1 ∪ V2 + σutu(δh2 − δh1) = Φ�V1 ∪ V2.

(13)

Let us remark that the last equation is satisfied if the constraint is able to
produce a reaction Φ�V1∪V2 as prescribed by the left-hand side and we assume,
from now on, that this is true whenever h1, h2 ∈ V1 ∪ V2. If, on the contrary,
hi �∈ V1 ∪ V2, i = 1, 2, then the equation is satisfied only if σu(hi) = 0.

Since the geometry of the domain and the applied loads are symmetric with
rispect to the axis x = 0, we look for solutions with the same kind of symmetry.
In particular, this implies that if h1 ∈ V1 then h2 ∈ V2. Moreover, the unknown
curve Cu must be union of three smooth curves C1, C2 and C3 connecting the
points h1, c1, c2 and h2 as in Figure 4 , C2 must be symmetric with respect to
the axis x = 0 and C3 must be obtained by reflecting C1 through to the axis y.

Denoting by a ∈ (0, h) the distance between the reinforcing line Cr and the
bottom of U , and by µ ∈ [0, b/2) the distance of the points c1 and c2 from the
axis y, we have that c1 = (−µ, a) and c2 = (µ, a).

Cr

U

C3C1

C2

V1 V2

e2e1

U3

U2

U1

U4

U5

x

h c1 c2
µ

n1

n2

h1 h2
λ

p0
y

dd
b

η

a

Figure 4: the loaded system

For computational convenience we look for solutions Ci that are graphics
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with parametric representations

C1 = {(w1(y), y) : y ∈ [0, a]} , w1 ∈ C1 ([0, a]) ,

C2 = {(x,w2(x)) : x ∈ [−µ, µ]} , w2 ∈ C1 ([−µ, µ]) ,

C3 = {(−w1(y), y) : y ∈ [0, a]} .
(14)

Of course Cr = {(x, a) : x ∈ [−b/2, b/2]}.
With Ji :=

�
1 + |w�

i|2, the tangent unit vectors to C1, C2 and Cr are,
respectively, t1 = J−1

1 (w�
1ē1 + ē2), t2 = J−1

2 (ē1 + w�
2ē2), and tr = (1, 0). Then

we have n1 = J−1
1 (ē1 − w�

1ē2) and n2 = J−1
2 (w�

2ē1 − ē2).
Following the ideas of [8], we observe that the first, the fifth and the sixth

equations in (13) are satisfied if Ta is given by

Ta :=

�
−p0ē2 ⊗ ē2 in U1 ∪ U2 ∪ U3,

0 in U4 ∪ U5.
(15)

We now study the remaining equations in (13).
Second and seventh equation. Since [Ta] = 0 H 1-a.e. across Cr and since tr

is a constant vector, then the second equation is equivalent to

σr = locally constant on Cr \ {c1, c2}.

Using the boundary conditions prescribed by the seventh equation σrtr(e2) =
σrtr(e1) = 0 then we conclude that

Proposition 1. σr is zero on the segments e1c1 and c2e2 and is equal to a

constant σ̄r on the segment c1c2.

Third equation. On the curves C1 and C2, by (10), the third equation writes

�
d
ds (σ1t1)− (T1

a − T5
a)n

1 = 0 on C1,
d
ds (σ2t2)− (T2

a − T4
a)n

2 = 0 on C2,

where σα = σu�Cα. From (15) and the explicit form of the normals, we find

(T1
a − T5

a)n
1 = J−1

1 p0w
�
1ē2, (T2

a − T4
a)n

2 = J−1
2 p0ē2,

and
d

ds
(σαt

α) = J−1
α

d

dx
(σαt

α).

Setting

βα :=
σα

Jα
, α = 1, 2, (16)
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the third equation rewrites as






(β1w�
1)

� = 0,

β�
1 − p0w�

1 = 0,

β�
2 = 0,

(β2w�
2)

� − p0 = 0,

σ1 = β1

�
1 + |w�

1|2,
σ2 = β2

�
1 + |w�

2|2.

(17)

Fourth equation. The fourth equation in the point c1 is

[σr]tr(c1) + [σutu](c1) = 0.

By Proposition 1 the above equation rewrites

σr(c
+
1 )ē1 + σu(c

+
1 )tu(c

+
1 )− σu(c

−
1 )tu(c

−
1 ) = 0,

that is
σ̄r ē1 + σ2(0)t

2(0)− σ1(a)t
1(a) = 0.

With the explicit expressions for t2(0) and t1(a) we obtain that the fourth
equation becomes

�
σ̄r + β2(−µ)− σ1(a)w�

1(a) = 0,

β2(−µ)w�
2(−µ)− β1(a) = 0.

(18)

To the set of differential equations (17) and boundary conditions (18) we can
add the additional boundary condition

w2(−µ) = a. (19)

It is also useful to set
w2(0) =: λ > a (20)

and remark that

w1(0) = −η, w1(a) = −µ, w�
2(0) = 0 (21)

since w2 is a smooth even function. Above η denotes the distance of the points
h1 and h2 from the origin.

We now solve for C2 and σ2.
From (17)3 we obtain that β2 is constant; moreover β2 �= 0 since otherwise

(17)4 would imply p0 = 0. Integrating equation (17)4 and using (21)3 we get

β2w
�
2(x) = p0x.

Integrating again and using (20) we obtain

w2(x) = λ+
p0
2β2

x2,
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and the boundary condition (19) gives

β2 = − µ2p0
2(λ− a)

. (22)

Therefore

w2(x) = λ− λ− a

µ2
x2, x ∈ [−µ, µ]

and (17)6 gives

σ2(x) = −p0

�
µ4

4(λ− a)2
+ x2, x ∈ [−µ, µ]. (23)

We now solve for C1 and σ1.
Integrating (17)2 we get

β1 − p0w1 = c,

with c constant. Using (18)2 and (21)2 and the expressions of w2 and σ2 com-
puted before we find

c = β1(a)− p0w1(a) = β2w
�
2(−µ) + p0µ = 0,

hence
β1 = p0w1. (24)

With (24), from equation (17)1 we obtain

p0
2
w1(y)

2 = ky + d,

where k and d are constants determined by the boundary conditions. In fact,
by using (21)1 and (21)2 we find

k =
p0
2a

(µ2 − η2), d =
p0
2
η2,

and therefore

w1(y)
2 =

µ2 − η2

a
y + η2. (25)

Since w1 must be negative, we get

w1(y) = −
�

µ2 − η2

a
y + η2, y ∈ [0, a],

and

σ1(y) = −p0

�
µ2 − η2

a
y + η2 +

(µ2 − η2)2

4a2
, y ∈ [0, a]. (26)
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Remark 1. Since w��
1 > 0 then w1 is convex.

Remark 2. Since σ1(0) < 0 we have that h1 ∈ V1 (hence h2 ∈ V2), otherwise,
as already remarked after (13), the last equation in (17) cannot be satisfied.

Finally, by (18)1 we have

σ̄r = σ1(a)w�
1(a)− β2

=
p0
2

�µ2 − η2

2a2µ2

�
4a2(µ2 + η2) + (µ2 − η2)2 +

µ2

λ− a

�
.

The previous analysis delivers a family of curves depending on three param-
eters µ, λ and η. Some curves of this family for a fixed µ are depicted in Figure
5.

U

V1 V2

e2e1

x

h c1 c2
µ

p0
y

dd
b

a

Figure 5: some singular curves for fixed µ

We notice that the curves C1 and C3 can be either convex or concave. In
Figure 6 are depicted the line tensions in the bulk material in both cases. Ac-
cording to (15), in Case 1 we have a tension −p0 also in the region delimited
by the points a, b and c; even if the solution we found is equilibrated, from a
physical point of view in such a region it would be more natural to take Ta = 0.
This assumption, though, does not fit with our requirement that Ta is smooth
in U \ (Cu ∪Cr). We therefore believe that, physically, the solution depicted in
Case 2 should be preferred.

Hereafter, we call optimal singular curve the curve that minimizes the max-
imum stress in the no-tension material. According to (23) and (26), the maxi-
mum in the curve C2 is given by

maxσ2 = −p0

�
µ4

4(λ− a)2
+ µ2,
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p0

cb

a

p0

-p0 -p0

Case 1 Case 2

Figure 6: line tensions for different curves C1 and C3

while the maximum in the curve C1 is

maxσ1 =






−p0

�
µ2 − η2

a
a+ η2 +

(µ2 − η2)2

4a2
if µ > η,

−p0

�
η2 +

(µ2 − η2)2

4a2
if µ ≤ η.

Since to find the optimal singular curve we have to minimize the above maximum
stresses, it is convenient to take µ ≤ η and λ = h. Thus, the optimal singular
curve is defined for λ = h and for µ and η that minimize the function

f(µ, η) := max
�
f1(µ, η), f2(µ)

�

with

f1(µ, η) := −p0

�
η2 +

(µ2 − η2)2

4a2
,

f2(µ) := −p0

�
µ4

4(h− a)2
+ µ2,

on the set

D := {(µ, η) ∈ R2 : 0 ≤ µ ≤ η, b/2− d ≤ η ≤ b/2}.

To write f explicitly we study the sign of the function g(µ, η) := f1(µ, η)−
f2(µ). We find that g(µ, η) = 0 on a monotone increasing curve µ = h(η)
intersecting the segments (0, b/2−d)×{b/2−d} and (0, b/2)×{b/2} as depicted
in Figure 7. On the left of the curve µ = h(η) the function f is equal to f1 while
on the right it is equal to f2. A direct computation shows that the minimum
is achieved in the point denoted by A in Figure 7. The minimum is therefore
achieved for η = b/2− d and for µ strictly less than η.

Of course, as a approaches zero, µ approaches η.
The optimal singular curve, which is represented in Figure 8, resembles the

line tensions found experimentally on reinforced concrete beams, see Park and
Paulay [13, Figure 7.8].
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µ

η

b/2-d

b/2
f=f1 f=f2

A

Figure 7: the domain D

Figure 8: the optimal singular curve for a slender panel

4. Conclusions

A theory for panels of no-tension material with a reinforcing tensile resistant
unidimensional material has been put forward. Following the work by Lucchesi,
Silhavy and Zani [8], we have allowed the stresses to be singular, in that they
may concentrate on curves. The stress field in the no-tension material has been
assumed to be negative semi-definite, while on the reinforcement the stress
has been taken to be positive. In particular, the equilibrium equations for a
rectangular panel loaded on the top by a uniform vertical load and with an
horizontal reinforcement have been studied and solved. The family of solutions
that we have found can be parametrized by means of singular curves where the
stress in the no-tension material concentrates. Among these curves we determine
the curve that minimizes the maximum stress: this singular curve resembles the
line tensions found experimentally on reinforced concrete beams.

References

[1] M. Angelillo, E. Babilio, A. Fortunato, Singular stress fields for masonry-

like vaults. ContinuumMech. Thermodyn. DOI 10.1007/s00161-012-0270-9.

[2] D. Bigoni, G. Noselli, Localized stress percolation through dry masonry

walls. Part I - Experiments. European Journal of Mechanics, A/Solids 29
2010, n. 3, 291–298.

[3] D. Bigoni, G. Noselli, Localized stress percolation through dry masonry

walls. Part II - Modelling. European Journal of Mechanics, A/Solids 29
2010, n. 3, 299-307.

15



[4] M. Degiovanni, A. Marzocchi, A. Musesti, Cauchy fluxes associated with

tensor fields having divergence measure. Arch. Ration. Mech. Anal. 147
(1999), n. 3, 197–223.

[5] G. Del Piero, Constitutive equation and compatibility of the external loads

for linear elastic masonry-like materials. Meccanica 24 (1989), n. 3, 150–
162.

[6] G. Del Piero, Limit analysis and no-tension materials. Int. J. Plasticity 14
(1998), n. 1-3, 150–162.

[7] M. Giaquinta, E. Giusti, Researches on the equilibrium of masonry struc-

tures. Arch. Rational Mech. Anal., 88 (1985), n. 4, 359–392.
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