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Abstract

In this paper we report the second part of our results concerning the
rigorous derivation of a hierarchy of one-dimensional models for thin-
walled beams with rectangular cross-section. Denoting by h and δh � h
the length of the sides of the cross-section of the beam, we analyse the
limit behaviour of a non-linear elastic energy which scales as ε2h when
εh/δh → 0.
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1 Introduction

The purpose of this paper is to continue the rigorous derivation started in [8] of
a hierarchy of one-dimensional models for thin-walled beams. As explained in
Part I, geometrically, a thin-walled beam is a slender structural element whose
length is much larger than the diameter of the cross-section which, on its hand,
is larger than the thickness of the thin wall. To model it, we consider a beam
of length � with a rectangular cross-section of sides h and δh with

h → 0 and
δh
h

h→0−→ 0.

After rescaling the domain the elastic energy rewrites as

Ih(y) =

�

Ω
W (∇hy(x)) dx, with ∇hy =

�
y,1 ,

y,2
h

,
y,3
δh

�
,
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where W denotes the elastic energy density of the material, while y and ∇hy
denote, respectively, the deformation and the rescaled deformation gradient.

We let (yh) be a sequence of deformations for which the energy scales as ε2h,
where (εh) is a sequence of positive numbers; more precisely, we assume that

Ih(yh) ≤ Cε2h (1)

and we study the Γ-limit of the sequence of functionals Ih/ε2h. The expression
of the Γ-limit depends on the behaviour of εh with respect to the intrinsic scale
δh. More precisely, we identify three main regimes:

• subcritical:
δh
εh

h→0−→ 0;

• critical:
δh
εh

h→0−→ 1;

• supercritical:
δh
εh

h→0−→ +∞.

The subcritical and the critical regimes have been studied in [8]. In this
paper we focus on the supercritical case.

Assuming εh/δh → 0, we first show that, if a sequence of deformations (yh)
satisfies (1), then the rescaled gradients ∇hyh must converge, as h → 0, to
a constant rotation (Lemma 3.1), which can be assumed to coincide with the
identity, up to an orthonormal change of coordinates. Therefore, we expect to
have linearization effects in the limiting energy. For this reason we introduce
the sequence of displacements (uh) and of twist functions (ϑh) associated with
(yh) and study their compactness properties (see Lemma 3.7). This part of the
proof deeply relies on the rigidity estimate obtained by Friesecke, James, and
Müller [9].

We then show that the Γ-limit of Ih/ε2h, as h → 0, can be expressed in terms
of the limit displacement u and of the limit twist function ϑ, and depends on
the existence and on the value of the following limit:

r := lim
h→0

εh
δ2h

.

We distinguish the three regimes r = 0, r = +∞, and r ∼ 1. By a rescaling of
the cross-section, the last one can be reduced to the case r = 1. If r ∈ {0, 1},
we first prove that the limit displacement u must belong to the set ABN of
Bernoulli-Navier displacements (see Definition 3.6). Moreover, in Theorems 3.11
and 3.14 we show that for these values of r the Γ-limit of Ih/ε2h is the functional
Ir : ABN ×W 1,2(0, �) → [0,+∞) defined by

Ir(u,ϑ) := 1
24

� �

0
Q2(ξ

��
3 ,ϑ

�) dx1+
1
2

� �

0
E
�
ξ�1+

r
2 (ξ

�
3)

2
�2

dx1+
1
24

� �

0
E
�
ξ��2
�2

dx1

for every (u,ϑ) ∈ ABN ×W 1,2(0, �). Here the functions ξ1 ∈ W 1,2(0, �), ξ2, ξ3 ∈
W 2,2(0, �) are such that

u1(x) = ξ1(x1)− x2ξ
�
2(x1)− x3ξ

�
3(x1), u2(x) = ξ2(x1), u3(x) = ξ3(x1)
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for a.e. x ∈ Ω. The density function Q2 is a positive definite quadratic form,
while E is a positive constant, and they both can be easily computed from the
knowledge of W (see (6) and (7)). If the beam is made of an isotropic material,
the constant E coincides with the Young modulus of the material.

If, instead, r = +∞, we prove that the limit displacement u must have the
following structure: for a.e. x ∈ Ω

u1(x) = ξ1(x1), u2(x) = 0, u3(x) = ξ3(x1),

with ξ1, ξ3 ∈ W 2,2(0, �) satisfying

ξ�1 = −1

2
(ξ�3)

2.

We denote by A∞ the set of all displacements in W 2,2(Ω;R3) satisfying these
conditions. Assuming in addition that

lim
h→0

h2εh
δ2h

= 0, (2)

in Theorems 3.11 and 3.12 we show that, for r = +∞, the Γ-limit of Ih/ε2h is
given by the functional

I∞(u,ϑ) := 1
24

� �

0
Q2(u

��
3 ,ϑ

�) dx1

for every (u,ϑ) ∈ A∞ ×W 1,2(0, �).
Assumption (2) is crucial in the construction of the recovery sequence.

Heuristically, it allows us to stretch the mid-plane, i.e., the x1x2-plane, by defor-
mations of order εh/(δh/h)2. When limh→0 εh/(δh/h)2 �= 0 the mid-plane must
undergo a deformation which is very close to an infinitesimal isometry. For this
reason we conjecture that, in this range, the Γ-limit should coincide with the
Γ-limit of the geometrically linear Kirchhoff functional for a rectangular plate
(see [10]), representing the mid-plane of the beam, when the length of one of
the two sides approaches zero.

Γ-convergence results for thin-walled beams were obtained within the theory
of linear elasticity in [5, 6, 7], while Γ-convergence results for beams within the
nonlinear framework were deduced in [1, 12, 13, 14, 15].

The paper is organized as follows. In Section 2 we recall the setting of the
problem and some preliminary results. Section 3 is devoted to the discussion
of the supercritical case. Finally, in Section 4 we introduce applied loads and
prove convergence of minimizers.

The notation is the same adopted in Part I of the present paper, to which
we refer for details.
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2 Setting of the problem and preliminaries

Let
Ωh := (0, �)× ωh ⊂ R3,

where
ωh := {(z2, z3) : |z2| < h/2, |z3| < δh/2} ⊂ R2

with h > 0, δ1 := 1 and
lim
h→0

δh/h = 0.

Henceforth we shall refer to Ωh as the reference configuration of the body
and denote the elastic energy associated with a deformation v : Ωh → R3 by

Eh(v) :=

�

Ωh

W (∇v(z)) dz.

We assume that the stored energy density W : R3×3 → [0,+∞] satisfies the
following assumptions:

1. W ∈ C0(R3×3), W is of class C2 in a neighborhood of SO(3);

2. W is frame indifferent, i.e., W (F ) = W (RF ) for every F ∈ R3×3 and
R ∈ SO(3);

3. W (F ) ≥ C dist2(F, SO(3)), C > 0; W (F ) = 0 if F ∈ SO(3).

A key role will be played by the following quadratic form:

Q3(F ) :=
∂2W

∂F 2
(I)(F, F ) =

3�

i,j,k,l=1

∂2W

∂Fij∂Fkl
(I)FijFkl, F ∈ R3×3. (3)

In view of 3 this form is positive semi-definite and hence convex. Moreover, by
1 and 2 we have that (see, e.g., [11, Section 29])

Q3(F ) = Q3

�F + FT

2

�
. (4)

In the special case when the energy density W is isotropic, that is, W (RFQ) =
W (F ) for all F ∈ R3×3 and R,Q ∈ SO(3), then it turns out that

Q3(F ) = 2µ|e|2 + λ(tr e)2, e =
F + FT

2
(5)

for some λ, µ ∈ R.
The limit problems will be stated in terms of the density function

Q2(α,β) := min{Q3(A) : A ∈ R3×3, AT = A, A11 = α, A12 = β}, (6)

and of the constant

E := min{Q2(1,β) : β ∈ R} = min{Q3(A) : A ∈ R3×3, AT = A, A11 = 1}.
(7)

4



Let us remark that Q2 is a positive definite quadratic form and E > 0. More-
over, in the isotropic case where Q3 takes the form (5), a simple computation
shows that

Q2(α,β) = 4µβ2 + Eα2,

and E = µ 2µ+3λ
µ+λ is the Young modulus of the material.

To state our results it is convenient to stretch the domain Ωh along the
transverse directions z2 and z3 in a way that the transformed domain does not
depend on h. Let us therefore set ω := ω1, Ω := Ω1, and let

ph : Ω → Ωh

be defined by
ph(x) = ph(x1, x2, x3) = (x1, hx2, δhx3). (8)

Let us consider the following 3× 3 matrix

∇hy :=

�
y,1 ,

y,2
h

,
y,3
δh

�
, (9)

where y,i denotes the column vector of the partial derivatives of y with respect
to xi, i = 1, 2, 3. Then we can consider the rescaled energy Ih : W 1,2(Ω;R3) →
[0,+∞] defined by Ih(y) := 1

hδh
Eh(y ◦ p−1

h ), i.e.,

Ih(y) =

�

Ω
W (∇hy(x)) dx

for every y ∈ W 1,2(Ω;R3).
Throughout the rest of the paper (εh) will denote a sequence of strictly

positive real numbers. We conclude the section by recalling a result proven
in [8, Theorem 3.2 and Lemma 3.3] and concerning some general compactness
properties for sequences of deformations with equibounded energy.

Lemma 2.1 Let (yh) be a sequence in W 1,2(Ω;R3) such that

��

Ω
dist2(∇hy

h, SO(3)) dx

� 1
2

≤ Cεh (10)

for every h > 0. Then, there exist two sequences Rh : (0, �) × (−1/2, 1/2) →
SO(3) and

R̃h ∈ C∞((0, �)× (− 1
2 ,

1
2 );R

3×3)

such that

1. �R̃h −Rh�L2 ≤ Cεh, �R̃h −Rh�L∞ ≤ Ch1/2εh/δh,

2. �∇hyh − R̃h�L2 ≤ Cεh,

3. �R̃h
,1�L2 ≤ Cεh/δh, �R̃h

,2�L2 ≤ Chεh/δh,

where the constant C may change from line to line. Moreover, if in addition

h1/2εh/δh → 0, then we can take

4. R̃h(x1, x2) ∈ SO(3) for every (x1, x2) ∈ (0, �) × (−1/2, 1/2) and every

h > 0.
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3 The supercritical case

This section is devoted to the study of the asymptotic behaviour of a sequence
of deformations (yh) ⊂ W 1,2(Ω;R3) satisfying

Ih(yh) =

�

Ω
W (∇hy

h) dx ≤ Cε2h (11)

for every h > 0, where

lim
h→0

εh
δh

= 0. (12)

Under these assumptions, properties 3 and 4 of Lemma 2.1 imply that the
sequence R̃h converges weakly in W 1,2 to a constant rotation R. In the next
lemma we introduce suitable rotations and translations of the coordinate system
in such a way to deal with a limit rotation equal to the identity.

Lemma 3.1 Let (yh) be a sequence in W 1,2(Ω;R3) satisfying (10) and let (R̃h)
be the sequence constructed in Lemma 2.1. Then, there exists a sequence of

constant rotations Qh ∈ SO(3) such that, setting R̄h = QhT R̃h
and ȳh =

QhT yh − ch, where ch is any constant, we have

1. �∇hȳh − R̄h�L2 ≤ Cεh,

2. �R̄h
,1�L2 ≤ C

εh
δh

, �R̄h
,2�L2 ≤ Ch

εh
δh

,

3. �R̄h − I�L2 ≤ C
εh
δh

,

where the constant C may change from line to line. Moreover, if in addition

(12) holds, then for every h small enough we can take

4. R̄h(x1, x2) ∈ SO(3) for every (x1, x2) ∈ (0, �)× (−1/2, 1/2)

and �

Ω
(∇hȳ

h −∇hȳ
hT ) dx = 0. (13)

Proof. By Sobolev-Poincaré inequality there exist some constant matrices
Q̃h ∈ R3×3 such that

�R̃h − Q̃h�L2 ≤ C�∇R̃h�L2 ≤ C
εh
δh

, (14)

where the last inequality follows from property 3 of Lemma 2.1. Let Rh be
the sequence of approximating rotations constructed in Lemma 2.1. The first
inequality in 1 of that lemma and (14) yield

�Rh − Q̃h�L2 ≤ C
εh
δh

,
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and since Rh ∈ SO(3), this implies that

dist(Q̃h, SO(3)) ≤ C
εh
δh

.

Thus, there exists Q̂h ∈ SO(3) such that

|Q̂h − Q̃h| ≤ C
εh
δh

.

Setting R̂h := Q̂hT
R̃h and using (14), we obtain

�R̂h − I�L2 = �R̃h − Q̂h�L2 ≤ �R̃h − Q̃h�L2 + �Q̃h − Q̂h�L2 ≤ C
εh
δh

,

that is, property 3 of the statement for the sequence R̂h. Moreover, setting
ŷh := Q̂hT

yh − ĉh, where ĉh is any constant, we deduce properties 1 and 2 of
the statement for (ŷh) and (R̂h) from properties 2 and 3 of Lemma 2.1.

Assume now (12). Property 4 of the statement for (R̂h) follows immediately
from 4 of Lemma 2.1. In order to satisfy also (13) we need to modify the
constructed sequences. Let

Fh := −
�

Ω
∇hŷ

h dx.

Then, from properties 1 and 3 for the sequences with an over-hat, we have

|Fh − I| ≤ −
�

Ω
|∇hŷ

h − I| dx ≤ C�∇hŷ
h − I�L2

≤ C(�∇hŷ
h − R̂h�L2 + �R̂h − I�L2) ≤ C

εh
δh

. (15)

By (12) this implies, in particular, that det Fh > 0 for h sufficiently small. Thus,
by the polar decomposition theorem, there exist Ph ∈ SO(3) and a positive
symmetric matrix Uh such that Fh = PhUh. Since |Uh−I| = dist(Fh, SO(3)) ≤
|Fh − I|, we have

|Ph − I| ≤ |Ph − Fh|+ |Fh − I| = |Uh − I|+ |Fh − I| ≤ C
εh
δh

, (16)

where we have used (15). We claim that

Qh := Q̂hPh, R̄h := PhT R̂h, ȳh := PhT ŷh = QhT yh − ch

satisfy properties 1 –4 and (13) of the lemma. Indeed, conditions 1, 2, and 4 are
immediate, while 3 follows from (16), since we have

�R̄h − I�L2 ≤ �R̄h − R̂h�L2 + �R̂h − I�L2 = �Ph − I�L2 + �R̂h − I�L2 .
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Finally, since ∇hȳh = PhT∇hŷh, we have
�

Ω
(∇hȳ

h −∇hȳ
hT ) dx = |Ω|(PhTFh − (PhTFh)T )

= |Ω|(Uh − UhT ) = 0,

hence also (13) is satisfied. ✷

Remark 3.2 Since the energy density W is frame indifferent, the energy Ih on
a deformation y does not change if a rigid motion is superimposed to y; therefore,
a sequence of deformations (yh) satisfying (11) is not, in general, bounded in
any reasonable space. In Lemma 3.1 to obtain bounds we have superimposed

an appropriate rigid motion rh(x) := QhTx − ch to each deformation yh. The
motion rh is not uniquely determined; indeed, if we replace Qh by Qh exp( εhδhK),
then properties 1, 2, 3 are still satisfied and condition 4may be obtained arguing
as in the proof of the lemma. However, one can easily show that if (Qh) and
(Q̃h) are two sequences of constant rotations for which the lemma is true, then
|Qh − Q̃h| ≤ C εh

δh
.

In the next lemma we study the implications of the bounds obtained in
Lemma 3.1.

Lemma 3.3 Assume (12). Let (yh) be a sequence in W 1,2(Ω;R3) satisfying

(10) and let (R̄h) be the sequence constructed in Lemma 3.1. Then there exist

three tensor fields A ∈ W 1,2((0, �);R3×3), B ∈ L2((0, �) × (− 1
2 ,

1
2 );R

3×3), and
G ∈ L2(Ω;R3×3), with A and B skew-symmetric, such that, up to subsequences,

1. Ah :=
R̄h − I

εh/δh
� A in W 1,2((0, �)× (− 1

2 ,
1
2 );R

3×3),

2. sym
R̄h − I

(εh/δh)2
→ A2

2
in L2((0, �)× (− 1

2 ,
1
2 );R

3×3),

3. Bh :=
R̄h

,2

hεh/δh
� B in L2((0, �)× (− 1

2 ,
1
2 );R

3×3),

4. Gh :=
R̄hT∇hȳh − I

εh
� G in L2(Ω;R3×3).

Moreover, we have

5. A,1e2 = Be1, hence A12,1 = B12 = 0 and A23,1 = B13 a.e. in (0, �) ×
(− 1

2 ,
1
2 ),

6. G(x)e1 = x3A,1(x1)e3 + G̃(x1, x2)e1 for a.e. x ∈ Ω,

7. G(x)e2 = x3B(x1, x2)e3 + G̃(x1, x2)e2 for a.e. x ∈ Ω,
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for a suitable G̃ ∈ L2((0, �)× (− 1
2 ,

1
2 );R

3×3).

Proof. By 3 of Lemma 3.1 the sequence Ah is bounded in L2, hence it admits
a subsequence which converges weakly in L2. Let A denote this weak limit. By
2 of Lemma 3.1 we have that Ah

,2 → 0 in L2, while the derivative with respect

to x1 is bounded in L2. This implies that, up to subsequences, Ah � A weakly
in W 1,2 and that the limit A is independent of x2. Since R̄h ∈ SO(3), we have

Ah +AhT = −εh
δh

AhTAh, (17)

and passing to the limit as h → 0, we obtain that A+AT = 0.
We now prove 2. By (17) we have that

sym
R̄h − I

(εh/δh)2
= sym

Ah

εh/δh
= −AhTAh

2
.

The claim now follows from 1, the compact embedding theorem, and the fact
that A is skew-symmetric.

Let us prove 3. The weak convergence of a subsequence of Bh follows from
the second estimate in 2 of Lemma 3.1. Let us call B its weak limit. Since

0 =
� R̄hT R̄h

hεh/δh

�

,2
=

R̄hT
,2

hεh/δh
R̄h + R̄hT R̄h

,2

hεh/δh
,

we deduce that symB = 0 by passing to the limit and using 3 of Lemma 3.1.
Convergence 4 is an immediate consequence of 1 of Lemma 3.1.
Property 5 follows from the equality

Ah
,1e2 =

� R̄he2 − ȳh,2/h

εh/δh

�

,1
+

� ȳh,1 − R̄he1
hεh/δh

�

,2
+

R̄h
,2e1

hεh/δh
in H−1(Ω;R3×3).

Indeed, by using 1 of Lemma 3.1 and 3 to pass to the limit we obtain A,1e2 =
Be1. This rewrites as Ai2,1 = Bi1 for i = 1, 2, 3, from which the remaining
relations in 5 follow by using the fact that A and B are skew-symmetric.

To prove 6 we note that in H−1(Ω;R3×3) there holds

(R̄hGhe1),3 =
� ȳh,3/δh − R̄he3

εh/δh

�

,1
+
� R̄he3 − e3

εh/δh

�

,1

and, using 1 and 3 of Lemma 3.1, and 1 and 4 already proven, we find

G,3e1 = A,1e3,

from which we obtain 6. Equation 7 can be proven similarly. ✷

Hereafter we assume that the following limit exists:

r := lim
h→0

εh
δ2h

. (18)
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Without loss of generality, we may assume that r ∈ {0, 1,+∞}, by possibly
changing the value of the constant C, appearing in (11), and by taking ωh =
(−ah/2, ah/2)× (−bδh/2, bδh/2) for appropriate constants a and b.

In the next lemma we take a closer look at the rescaled displacement gradient.

Lemma 3.4 Under the same assumptions of Lemma 3.3, we have

i. the sequence

�∇hȳh − I

εh/δh

�
admits a subsequence which converges to A in

L2(Ω;R3×3),

where A is the field introduced in Lemma 3.3. With r defined as in (18), the
following statements hold:

ii. if r = +∞, then, up to extracting a subsequence, sym
�∇hȳh − I

(εh/δh)2

�
→ A2

2
in L2(Ω;R3×3),

iii. if r ∈ {0, 1}, then sym
�∇hȳh − I

εh

�
is bounded in L2(Ω;R3×3).

Proof. Statement i follows by observing that

∇hȳh − I

εh/δh
=

∇hȳh − R̄h

εh
δh +

R̄h − I

εh/δh

and using 1 of Lemma 3.1 and 1 of Lemma 3.3.
Assume now (18). Statement ii follows from

sym
�∇hȳh − I

(εh/δh)2

�
= sym

�∇hȳh − R̄h

εh

�δ2h
εh

+ sym
� R̄h − I

(εh/δh)2

�
(19)

and by 1 of Lemma 3.1 and 2 of Lemma 3.3.
Similarly, for iii we have

sym
�∇hȳh − I

εh

�
= sym

�∇hȳh − R̄h

εh

�
+ sym

� R̄h − I

(εh/δh)2

�εh
δ2h

, (20)

and again the claim follows from 1 of Lemma 3.1 and 2 of Lemma 3.3. ✷

We now define two sets of displacements which will play a crucial role in
what follows.

Definition 3.5 Let A∞
be the class of all displacements u ∈ W 2,2((0, �);R3)

satisfying the following property: there exist ξ1, ξ3 ∈ W 2,2(0, �) such that

u1 = ξ1, u2 = 0, u3 = ξ3,

with

ξ�1 = −1

2
(ξ�3)

2. (21)
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Definition 3.6 Let ABN
be the set of (Bernoulli-Navier) displacements u ∈

W 1,2(Ω;R3) satisfying the following condition: there exist ξ1 ∈ W 1,2(0, �),
ξ2, ξ3 ∈ W 2,2(0, �) such that

u1 = ξ1 − x2ξ
�
2 − x3ξ

�
3, u2 = ξ2, u3 = ξ3.

Let

Ar :=

�
A∞ if r = +∞,

ABN if r ∈ {0, 1}.

In the next lemma we introduce the twist of the cross-section and we study
its convergence together with the convergence of the displacements.

Lemma 3.7 Under the same assumptions of Lemma 3.3, let ϑh : (0, �) → R be

defined by

ϑh :=
1

I0

1

εh

�

ω

�δh
h
x2ȳ

h
3 − x3ȳ

h
2

�
dx2dx3,

where

I0 :=

�

ω
(x2

2 + x2
3) dx2dx3 =

1

6
.

Let A, G, and G̃ be the fields introduced in Lemma 3.3. Then

ϑh � ϑ := A32 in W 1,2(0, �),

and for a.e. x ∈ Ω

G12(x) = −x3ϑ
�(x1) + G̃12(x1, x2),

G21(x) = −x3ϑ
�(x1) + G̃21(x1, x2).

(22)

Let r be as in (18). Then the following statements hold:

i. if r = +∞, then, for a suitable choice of the constants ch in Lemma 3.1,

the sequence of displacements uh : Ω → R3
defined by

uh
1 :=

ȳh1 − x1

(εh/δh)2
,

uh
2 :=

ȳh2 − hx2

εh/δh
,

uh
3 :=

ȳh3 − δhx3

εh/δh
,

(23)

admits a subsequence which converges in W 1,2(Ω;R3) to a function u ∈
A∞

. Moreover,

G11(x) = −x3ξ
��
3 (x1) + G̃11(x1, x2) (24)

for a.e. x ∈ Ω.
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ii. If r ∈ {0, 1}, then, for a suitable choice of the constants ch in Lemma 3.1,

the sequence of displacements uh : Ω → R3
defined by

uh
1 :=

ȳh1 − x1

εh
,

uh
2 :=

ȳh2 − hx2

εh/h
,

uh
3 :=

ȳh3 − δhx3

εh/δh
,

(25)

admits a subsequence which converges weakly in W 1,2(Ω;R3) to a function

u ∈ ABN
. Moreover,

G11(x) = ξ�1(x1)− x2ξ
��
2 (x1)− x3ξ

��
3 (x1) +

r

2
(ξ�3(x1))

2 (26)

for a.e. x ∈ Ω.

Proof. Since A = A(x1), the convergence in i of Lemma 3.4 implies that

1

hεh/δh

�
ȳh3 −

� 1
2

− 1
2

ȳh3 dx2

�
→ A32x2 in L2(Ω),

1

εh

�
ȳh2 −

� 1
2

− 1
2

ȳh2 dx3

�
→ −A32x3 in L2(Ω).

Since ϑh can be written as

ϑh =
1

I0

1

hεh/δh

�

ω
x2

�
ȳh3 −

� 1
2

− 1
2

ȳh3 dx2

�
dx2dx3

− 1

I0

1

εh

�

ω
x3

�
ȳh2 −

� 1
2

− 1
2

ȳh2 dx3

�
dx2dx3,

it is clear that ϑh converges to ϑ := A32 strongly in L2. The convergence is
actually weak in W 1,2, as (ϑh)� is bounded in L2. Indeed, using the fact that
R̄h is independent of x3, we obtain

(ϑh)� =
1

I0

1

hεh/δh

�

ω
x2(ȳ

h
3,1 − R̄h

31) dx2dx3

+
1

I0

1

hεh/δh

�

ω
x2

�
R̄h

31 −
� 1

2

− 1
2

R̄h
31 dx2

�
dx2dx3

− 1

I0

1

εh

�

ω
x3(ȳ

h
2,1 − R̄h

21) dx2dx3,

where the first and the last term on the right-hand side are bounded in L2 by
1 of Lemma 3.1, while the second term is bounded in L2 by Poincaré-Wirtinger
inequality and the second estimate in 2 of Lemma 3.1.
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Finally, by 5 –7 of Lemma 3.3 we deduce (22).

Proof of i. For r = +∞, let us choose the constants ch in Lemma 3.1 in such a
way that ȳh − (x1, hx2, δhx3) has zero average, and let us define ûh : Ω → R3

by

ûh :=
ȳh − (x1, hx2, δhx3)

εh/δh
. (27)

From i of Lemma 3.4 we have that ∇hûh = ∇hȳ
h−I

εh/δh
admits a subsequence, not

relabeled, converging to A in L2(Ω;R3×3). Hence ∇ûh is a Cauchy sequence in
L2(Ω;R3×3) and, since ȳh − (x1, hx2, δhx3) has zero average, we have that

ûh → û in W 1,2(Ω;R3).

Moreover, since ∇hûh is bounded in L2(Ω;R3×3) and ∇hûhe1 = ûh
,1, we deduce

that û = û(x1) and Ae1 = û,1. In particular, since the matrix A is skew-
symmetric, we deduce that û1,1 = A11 = 0, û2,1 = A21 = −A12 and û3,1 =
A31 = −A13. By 5 of Lemma 3.3 we have that A12,1 = 0 and hence, û2,11 = 0.
Putting these information together, and using also the fact that û has zero
average, we obtain that there exist a constant α and a function ξ3 ∈ W 2,2(0, �),

with
� �
0 ξ3(x1) dx1 = 0, such that

û1 = 0, û2 = α
�
x1 −

�

2

�
, û3 = ξ3. (28)

On the other hand, using (27) and (13), we have
�

Ω

�
ûh
2,1 −

1

h
ûh
1,2

�
dx =

1

εh/δh

�

Ω

�
ȳh2,1 −

1

h
ȳh1,2

�
dx = 0,

hence, taking the limit as h → 0, we obtain

0 =

�

Ω

�
û2,1 −A12

�
dx = 2

�

Ω
û2,1 dx,

which, in turn, implies that α = 0 in (28). Hence

û1 = 0, û2 = 0, û3 = ξ3. (29)

Let now ūh : Ω → R3 be defined by

ȳh1 =: x1 +
�εh
δh

�2
ūh
1 , ȳh2 =: hx2 +

�εh
δh

�2 ūh
2

h
, ȳh3 =: δhx3 +

�εh
δh

�2 ūh
3

δh
,

so that

∇hȳh − I

(εh/δh)2
=




ūh
1,1 ūh

1,2/h ūh
1,3/δh

ūh
2,1/h ūh

2,2/h
2 ūh

2,3/(hδh)
ūh
3,1/δh ūh

3,2/(hδh) ūh
3,3/δ

2
h



 . (30)

By (13) we have that �

Ω
(∇ūh −∇ūhT ) dx = 0. (31)
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Since we have also that
�
Ω ūh dx = 0, by Korn inequality there exists a constant

CK such that
� sym∇ūh�L2 ≥ CK�ūh�W 1,2 . (32)

By (30) and ii of Lemma 3.4 we have that sym∇ūh admits a Cauchy subsequence
in L2(Ω;R3); hence inequality (32) implies that there exists ū ∈ W 1,2(Ω;R3)
such that, up to a subsequence,

ūh → ū in W 1,2(Ω;R3).

Moreover, from (30) and ii of Lemma 3.4 it follows that ūi,α+ ūα,i = 0 for every
i = 1, 2, 3 and α = 2, 3, hence ū is a Bernoulli-Navier displacement. In other
words, there exist ξ̄1 ∈ W 1,2(0, �) and ξ̄2, ξ̄3 ∈ W 2,2(0, �) such that

ū1 = ξ̄1 − x2ξ̄
�
2 − x3ξ̄

�
3, ū2 = ξ̄2, ū3 = ξ̄3. (33)

Noticing that ūh
3 = ûh

3 δ2h/εh and recalling that r = limh→0
εh
δ2h

= +∞ yield that

ūh
3 → 0 in W 1,2(Ω); hence, ū3 = ξ̄3 = 0. Thus, (33) reduces to

ū1 = ξ̄1 − x2ξ̄
�
2, ū2 = ξ̄2, ū3 = 0. (34)

By (30) and ii of Lemma 3.4 we deduce that ū1,1 = 1
2 (A

2)11. Thus, recalling
that A is skew-symmetric, we find

ū1,1 = −1

2
((A21)

2 + (A31)
2) = −1

2
((û2,1)

2 + (û3,1)
2), (35)

and using (29) and (34), we deduce

ξ̄�1 − x2ξ̄
��
2 = −1

2
(ξ�3)

2.

Since the right-hand side depends only on x1, this implies

ξ̄��2 = 0 and ξ̄�1 = −1

2
(ξ�3)

2. (36)

From
�
Ω ū2 dx = 0 and ξ̄��2 = 0, we deduce that ξ̄2 = k̄(x1− �

2 ) for some constant
k̄. But, as a consequence of (31), we have that

�

Ω
(ū1,2 − ū2,1) dx = 0,

which implies k̄ = 0. Hence, we conclude that

ū1 = ξ̄1, ū2 = 0, ū3 = 0.

Moreover, since ξ3 ∈ W 2,2(0, �), we deduce by (36) that ξ̄1 ∈ W 2,2(0, �).
The proof of the statement concerning the convergence of uh follows now by

the analysis above after setting uh
1 := ūh

1 , u
h
2 := ûh

2 , u
h
3 := ûh

3 , and ξ1 := ξ̄1.
Finally, since A31 = û3,1 = ξ�3, equality 6 of Lemma 3.3 implies (24).
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Proof of ii. Let now r ∈ {0, 1}. The proof of this case is very similar to a part
of the proof of i, thus we only sketch it. Noticing that

ȳh1 = x1 + εhu
h
1 , ȳh2 = hx2 + εh

uh
2

h
, ȳh3 = δhx3 + εh

uh
3

δh
,

we have

∇hȳh − I

εh
=




uh
1,1 uh

1,2/h uh
1,3/δh

uh
2,1/h uh

2,2/h
2 uh

2,3/(hδh)
uh
3,1/δh uh

3,2/(hδh) uh
3,3/δ

2
h



 . (37)

By part iii of Lemma 3.4 and by Korn inequality we deduce that uh � u in
W 1,2(Ω;R3) with u ∈ ABN . Moreover, from (37) it also follows that

(∇hȳh)11 − 1

εh
� u1,1 in L2(Ω).

Multiplying both sides of (37) by δh and using i of Lemma 3.4, we obtain
that A12 = 0 and A13 = u1,3. Passing to the limit in the identity

(R̄hGh)11 =
(∇hȳh)11 − 1

εh
− R̄h

11 − 1

(εh/δh)2
εh
δ2h

,

after recalling 3 of Lemma 3.1, 2 and 4 of Lemma 3.3, and the definition of r,
we find

G11 = u1,1 − r
(A2)11

2
= u1,1 + r

(A12)2 + (A13)2

2
,

and this completes the proof. ✷

Remark 3.8 The definitions of uh and ϑh in Lemma 3.7 are given in terms of
the deformations ȳh, which in turn depend on the sequence of constant rotations
(Qh), introduced in Lemma 3.1. By Remark 3.2 any two sequences of constant
rotations satisfying Lemma 3.1 have difference going to zero, as h → 0. Using
this fact, one can show that the limits of ∇uh and ϑh are in fact independent
of the choice of (Qh).

Remark 3.9 We give here a geometrical interpretation of G11 and of the con-
straint (21). By explicitly writing εhGT

hGh → 0 in L1(Ω;R3×3) we deduce that

1

2εh
(∇hy

hT∇hy
h − I) � symG in L1(Ω;R3×3). (38)

Hence symG is the limit of a rescaled sequence of Green-St. Venant strain
tensors; thus, G11 measures the length’s variation of fibers parallel to the axis
of the beam (see [2]). The component of (38) on the first row and first column
can be rewritten as

(∇hyh − I)11
εh

+
1

2

εh
δ2h

� (∇hyh − I)T

εh/δh

(∇hyh − I)

εh/δh

�

11
� G11 in L1(Ω). (39)
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This equation highlights the fact that G11 is “generated” by a linear and a
quadratic term in ∇hyh − I.

In the case r ∈ {0, 1}, by using (25) and i of Lemma 3.4, we find

u1,1 +
1

2
r(ATA)11 = G11

that is,

G11(x) = ξ�1(x1)− x2ξ
��
2 (x1)− x3ξ

��
3 (x1) +

r

2
(ξ�3(x1))

2,

which is exactly (26). We note that when the energy is “small”, i.e., r = 0, the
quadratic term in ∇hyh − I does not give any contribution in G11. According
to our geometrical interpretation of G11, we deduce that the length’s variation
along the axis of the beam is given by ξ�1 for r = 0 and ξ�1 +

1
2 (ξ

�
3)

2 for r = 1.
In the case r = +∞, that is, when εh/δ2h → +∞, we deduce from (39), after

multiplication by δ2h/εh, that

(∇hyh − I)11
(εh/δh)2

+
1

2

� (∇hyh − I)T

εh/δh

(∇hyh − I)

εh/δh

�

11
→ 0 in L1(Ω).

As before, by using (23) and i of Lemma 3.4, we find

u1,1 +
1

2
(ATA)11 = 0

that is, ξ�1 +
1
2 (ξ

�
3)

2 = 0, which is exactly the constraint (21). This implies that
in this regime the axis of the beam is inextensible.

3.1 A liminf inequality

In this subsection we prove a lower bound of the limit energy. We start by
recalling a result proven in [8, Lemma 3.4].

Lemma 3.10 Assume that limh→0 εh = 0. Let (yh) ⊂ W 1,2(Ω;R3), (Rh) ⊂
SO(3) and

Gh :=
Rh∇hyh − I

εh
� G in L2(Ω;R3×3).

Then

lim inf
h→0

1

ε2h

�

Ω
W (∇hy

h) dx ≥ 1

2

�

Ω
Q3(G) dx,

where Q3 is the quadratic form introduced in (3).

We now state and prove the following liminf inequality.

Theorem 3.11 Assume (12). Let yh ∈ W 1,2(Ω;R3) be a sequence of defor-

mations satisfying (11). Then, there exist rotations Qh ∈ SO(3) and constants

ch ∈ R such that, setting ȳh := QhT yh − ch,
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1. ȳh → x1e1 in W 1,2(Ω;R3) and ∇hȳh → I in L2(Ω;R3×3).

Under assumption (18), setting

uh
1 :=






1

(εh/δh)2
(ȳh1 − x1) if r = +∞,

1

εh
(ȳh1 − x1) if r ∈ {0, 1},

uh
2 :=






1

εh/δh
(ȳh2 − hx2) if r = +∞,

1

εh/h
(ȳh2 − hx2) if r ∈ {0, 1},

uh
3 :=

1

εh/δh
(ȳh3 − δhx3),

ϑh :=
1

I0

1

hεh

�

ω
(δhx2ȳ

h
3 − hx3ȳ

h
2 ) dx2dx3,

we have that

2. up to subsequences, there exists u ∈ Ar
such that uh � u in W 1,2(Ω;R3);

if r = +∞, the convergence is actually strong in W 1,2(Ω;R3);

3. up to subsequences, there exists ϑ ∈ W 1,2(0, �) such that ϑh � ϑ in

W 1,2(0, �).

Moreover,

lim inf
h→0

1

ε2h

�

Ω
W (∇hy

h) dx ≥ Ir(u,ϑ), (40)

where Ir : Ar×W 1,2(0, �) → [0,+∞) is defined by

Ir(u,ϑ) := 1
24

� �

0
Q2(u

��
3 ,ϑ

�) dx1

if r = +∞, and by

Ir(u,ϑ) := 1
24

� �

0
Q2(ξ

��
3 ,ϑ

�) dx1+
1
2

� �

0
E
�
ξ�1+

r
2 (ξ

�
3)

2
�2

dx1+
1
24

� �

0
E
�
ξ��2
�2

dx1

if r ∈ {0, 1}. Here ξ1, ξ2, and ξ3 are as in the definition of Ar
(see Defini-

tion 3.6).

Proof. Take as Qh the sequence of rotations constructed in Lemma 3.1 and as
ch a sequence of constants chosen as in Lemma 3.7. Then, statement 1 follows
from 1 and 3 of Lemma 3.1 and from the fact that ȳh − (x1, hx2, δhx3) has zero
average. Statements 2 and 3 follow from Lemma 3.7.

Let us prove (40). Using the frame indifference of W and the definition of
ȳh we have that

W (∇hy
h) = W (∇hȳ

h). (41)
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Let R̄h be the sequence of approximating rotations of Lemma 3.1 and let

Gh :=
R̄hT∇hȳh − I

εh
.

By 4 of Lemma 3.3 we have that, up to subsequences, Gh � G in L2(Ω;R3×3).
Working with the corresponding subsequence (not relabeled) of ∇hyh, and

taking into account (41), Lemma 3.10, and (4), we get

lim inf
h→0

1

ε2h

�

Ω
W (∇hy

h) dx ≥ 1

2

�

Ω
Q3(G) dx =

1

2

�

Ω
Q3(symG) dx

≥ 1

2

�

Ω
Q2(G11,

1
2 (G12 +G21)) dx, (42)

where the last inequality follows from the definition (6) of Q2.
By Lemma 3.7 we have that for every r ∈ {0, 1,+∞} there exist g, g̃ ∈

L2((0, �)× (− 1
2 ,

1
2 )) such that

G11(x) = −x3ξ
��
3 (x1) + g(x1, x2),

1
2 (G12(x) +G21(x)) = −x3ϑ

�(x1) + g̃(x1, x2)

for a.e. x ∈ Ω. Since Q2 is a quadratic form, we obtain
�

Ω
Q2(G11,

1
2 (G12 +G21)) dx =

�

Ω
Q2(−x3ξ

��
3 + g,−x3ϑ

� + g̃) dx

=

�

Ω
x2
3Q2(ξ

��
3 ,ϑ

�) dx+

�

Ω
Q2(g, g̃) dx.(43)

If r = +∞, we simply deduce
�

Ω
Q2(G11,

1
2 (G12 +G21)) dx ≥

�

Ω
x2
3Q2(ξ

��
3 ,ϑ

�) dx,

hence, by (42)

lim inf
h→0

1

ε2h

�

Ω
W (∇hy

h) dx ≥ 1
24

� �

0
Q2(ξ

��
3 ,ϑ

�) dx1.

If r ∈ {0, 1}, by (26) we have that

g(x1, x2) = ξ�1(x1)− x2ξ
��
2 (x1) +

r

2
(ξ�3(x1))

2,

hence, using the definition of E (see (7)) we have
�

Ω
Q2(g, g̃) dx ≥

�

Ω
E
�
ξ�1 − x2ξ

��
2 + r

2 (ξ
�
3)

2
�2

dx

=

�

Ω
E
�
ξ�1 +

r
2 (ξ

�
3)

2
�2

dx+

�

Ω
x2
2E

�
ξ��2
�2

dx

=

� �

0
E
�
ξ�1 +

r
2 (ξ

�
3)

2
�2

dx1 +
1
12

� �

0
E
�
ξ��2
�2

dx1. (44)
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Thus, combining (42) – (44), we conclude that

lim inf
h→0

1

ε2h

�

Ω
W (∇hy

h) dx ≥

≥ 1
24

� �

0
Q2(ξ

��
3 ,ϑ

�) dx1 +
1
2

� �

0
E
�
ξ�1 +

r
2 (ξ

�
3)

2
�2

dx1 +
1
24

� �

0
E
�
ξ��2
�2

dx1.

✷

3.2 Recovery sequences

Here we shall prove that the lower bound obtained in the previous subsection
is achieved. For clarity we shall discuss the cases r = ∞ and r ∈ {0, 1} in two
different subsections.

3.2.1 The recovery sequence in the case r = ∞

In this subsection we consider the case in which

lim
h→0

εh
δh

= 0 and lim
h→0

εh
δ2h

= r = +∞, (45)

and we further assume that

lim
h→0

h2εh
δ2h

= 0. (46)

Theorem 3.12 Assume (45) and (46). Then for every (u,ϑ) ∈ A∞×W 1,2(0, �)
there exists a sequence of deformations yh ∈ W 1,2(Ω;R3) such that, setting

uh
1 :=

1

(εh/δh)2
(yh1 − x1),

uh
2 :=

1

εh/δh
(yh2 − hx2),

uh
3 :=

1

εh/δh
(yh3 − δhx3),

ϑh :=
1

I0

1

hεh

�

ω
(δhx2y

h
3 − hx3y

h
2 ) dx2dx3,

we have that ∇hyh → I in L2(Ω;R3×3), uh → u in W 1,2(Ω;R3), ϑh → ϑ in

W 1,2(0, �), and

lim sup
h→0

1

ε2h

�

Ω
W (∇hy

h) dx ≤ I∞(u,ϑ), (47)

where

I∞(u,ϑ) := 1
24

� �

0
Q2(u

��
3 ,ϑ

�) dx1.
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Proof. Let us fix (u,ϑ) ∈ A∞×W 1,2(0, �) smooth enough and let ξ1 and ξ3 be
as in the definition of A∞, see Definition 3.5. For every t ∈ [0, �] we define

A(t) :=




0 0 −ξ�3(t)
0 0 −ϑ(t)

ξ�3(t) ϑ(t) 0



 .

To simplify notation we set ηh := εh/δh, which tends to 0 by (45). Let
Rh : [0, �] → R3×3 be the solution of the Cauchy problem

�
X � = ηhXA� in [0, �],

X(0) = exp(ηhA(0)).

It is easy to see that Rh(t) ∈ SO(3) for every t; indeed, Rh(0) ∈ SO(3) and
(Rh(Rh)T )� = 0 on [0, �] from the equation. Moreover, the function

Qh(t) := I + ηhA(t) + η2h

� t

0
A(s)A�(s) ds+ 1

2η
2
hA

2(0),

solves the problem
�
(Qh)� = ηhQhA� + η3hL in [0, �],

Qh(0) = exp(ηhA(0)) +O(η3h),

where

L(t) = −
�� t

0
A(s)A�(s) ds+

1

2
A2(0)

�
A�(t).

Therefore, by Gronwall Lemma we have that |Rh −Qh| = O(η3h) uniformly on
[0, �]; in other words,

Rh(t) = I + ηhA(t) + η2h

� t

0
A(s)A�(s) ds+ 1

2η
2
hA

2(0) +O(η3h). (48)

Finally, let us fix ϕ ∈ C∞([0, �]) and γ ∈ C∞([0, �];R3), and define

βh(x) := εhR
h(x1)





− 1
2h

2x2
2x3ϕ�(x1)

−hx2x3ϕ(x1)
1
2
h2

δh
x2
2ϕ(x1)





− εhhx2x3ϑ
�(x1)R

h(x1)e1 +
1
2εhδhx

2
3R

h(x1)γ(x1).

We consider the sequence of three-dimensional deformations yh : Ω → R3

given by

yh(x) :=

� x1

0
Rh(t)e1 dt+Rh(x1)




0

hx2

δhx3



+ βh(x) + ch,
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where ch1 := η2hξ1(0), c
h
2 := 0 and ch3 := ηhξ3(0).

We first check the convergence of the tangential and normal displacements
uh. The expansion (48) and the definition of A∞ imply that

Rh
11(x1) = 1− η2h

� x1

0
ξ�3(s)ξ

��
3 (s) ds− 1

2η
2
hξ

�
3(0)

2 +O(η3h)

= 1− 1
2η

2
hξ

�
3(x1)

2 +O(η3h)

= 1 + η2hξ
�
1(x1) +O(η3h), (49)

and
Rh

12(x1) = O(η2h), Rh
13(x1) = O(ηh), (50)

as h → 0, uniformly in [0, �]. Since Rh = I + O(ηh), we have that βh
1 = o(η2h)

and ∇βh
1 = o(η2h). Combining these two facts with (48)–(50), we obtain that

uh
1 (x) = ξ1(x1) + o(1),

∇uh
1 (x) = ξ�1(x1)e1 + o(1).

Therefore, we can conclude that uh
1 converges to u1 strongly in W 1,2(Ω).

Similar computations show that uh
k converges to uk strongly in W 1,2(Ω) for

k = 2, 3.
Finally, we note that

ϑh = ϑ+
1

I0

1

hεh

�

ω
(δhx2β

h
3 − hx3β

h
2

�
dx2dx3 +O(ηh) = ϑ+ o(1),

which gives the desired convergence.
Let us prove now the convergence of energies (47). By differentiation we

obtain

∇hy
h = Rh(x1) + (Rh)�(x1)




0

hx2

δhx3



⊗ e1 +∇hβ
h.

Since by definition

RhT (Rh)� = ηhA
� (51)

and ηhδh = εh, we deduce that

RhT∇hy
h = I + εh




−x3ξ��3
−x3ϑ

�

h
δh
x2ϑ

�



⊗ e1 +RhT∇hβ
h.

Using property (51) and the orthogonality of Rh, a direct computation shows
that

RhT∇hβ
h = εh




0 −x3ϑ

� − 1
2
h2

δh
x2
2ϕ

� − h
δh
x2ϑ

�

0 −x3ϕ − h
δh
x2ϕ

1
2
h2

δh
x2
2ϕ

� h
δh
x2ϕ 0



 (52)

+ εhx3(γ ⊗ e3) +
1
2
h2ε2h
δ2h

x2
2ϕA

�e3 ⊗ e1 + o(εh).
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Under the assumption (46) the second term in the second line of the previous
formula is of order o(εh). Hence

RhT∇hy
h = I + εhB

h(x) + o(εh),

where

Bh :=




−x3ξ��3 −x3ϑ

� − 1
2
h2

δh
x2
2ϕ

� − h
δh
x2ϑ

� + x3γ1
−x3ϑ

� −x3ϕ − h
δh
x2ϕ+ x3γ2

h
δh
x2ϑ

� + 1
2
h2

δh
x2
2ϕ

� h
δh
x2ϕ x3γ3



 .

Applying the identity (I+B)T (I+B) = I+2symB+BTB and observing that
ε2h(B

h)TBh = O(ε2hh
2/δ2h) = o(εh) by (46), we obtain

(∇hy
h)T∇hy

h = I + 2εhx3Z + o(εh)

where

Z =




−ξ��3 −ϑ� 1

2γ1

−ϑ� −ϕ 1
2γ2

1
2γ1

1
2γ2 γ3



 .

By frame-indifference we have

W (∇hy
h) = W

��
(∇hyh)T∇hyh

�
= W (I + εhx3Z + o(εh)).

As Z is bounded in L∞, for h small enough the matrix I+εhx3Z+o(εh) belongs
to the neighborhood of SO(3) where W is of class C2, so that, by expanding W
around the identity, we have

ε−2
h W (∇hyh) → 1

2x
2
3Q3(Z) a.e. in Ω,

ε−2
h |W (∇hyh)| ≤ C(|Z|2 + 1).

By the dominated convergence theorem this implies

lim
h

1

ε2h

�

Ω
W (∇hy

h) dx = 1
24

� �

0
Q3(Z) dx1. (53)

Consider now the general case. Let (u,ϑ) ∈ A∞×W 1,2(0, �), and let ξ1 and
ξ3 be as in the definition of A∞. Let also ϕ ∈ L2(0, �) and γ ∈ L2((0, �);R3) be
such that

Q2(u
��
3 ,ϑ

�) = Q3




−ξ��3 −ϑ� 1

2γ1

−ϑ� −ϕ 1
2γ2

1
2γ1

1
2γ2 γ3



 (54)

a.e. in (0, �). Finally, let us consider sequences ξk3 , ϑk, ϕk ∈ C∞([0, �]) and
γk ∈ C∞([0, �];R3) such that ξk3 → ξ3 strongly in W 2,2(0, �), ϑk → ϑ strongly in

22



W 1,2(0, �), ϕk → ϕ strongly in L2(0, �), and γk → γ strongly in L2((0, �);R3).
Setting uk := (ξk1 , 0, ξ

k
3 ), where

ξk1 (x1) := −1

2

� x1

0

�
(ξk3 )

�(t)
�2

dt+ ξ1(0)

for every x1 ∈ (0, �), it is immediate to see that uk ∈ A∞ ∩ C∞([0, �];R3) and
uk → u in W 2,2((0, �);R3). By the previous argument for every k ∈ N we
can construct a sequence of three-dimensional deformations, whose associated
displacement and twist function converge to (uk,ϑk), as h → 0, and satisfying
(53) with Z replaced by

Zk :=




−(ξk3 )

�� −(ϑk)� 1
2γ

k
1

−(ϑk)� −ϕk 1
2γ

k
2

1
2γ

k
1

1
2γ

k
2 γk

3



 .

Using a diagonal argument, the continuity of the left-handside of (53) with
respect to the L2 convergence, and equality (54), we deduce the Γ-limsup in-
equality (47). ✷

Remark 3.13 The assumption (46) used in Theorem 3.12 is crucial in the
construction of the recovery sequence since it allows us to control the stretch of
the mid-plane, i.e., the x1x2-plane. For instance, in (52) it permits to drop the
term

1
2
h2ε2h
δ2h

x2
2ϕA

�e3 ⊗ e1 = 1
2
h2ε2h
δ2h

x2
2ϕ(−ξ��3 e1 ⊗ e1 − ϑ�e2 ⊗ e1),

that clearly represents a mid-plane deformation.
We note also that (46) coincides with the assumption that was required in

the analysis of the critical regime, developed in [7]. Indeed, in this case we have
limh→0

εh
δh

= 1, so that (46) is equivalent to

lim
h→0

h2

δh
= 0,

which coincides with condition (5.6) in [7].

3.2.2 The recovery sequence in the case r ∈ {0, 1}

In this subsection we consider the case in which

lim
h→0

εh
δh

= 0 and lim
h→0

εh
δ2h

= r ∈ {0, 1}. (55)
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Theorem 3.14 Assume (55). Then for every (u,ϑ) ∈ ABN×W 1,2(0, �) there

exists a sequence of deformations yh ∈ W 1,2(Ω;R3) such that, setting

uh
1 :=

1

εh
(yh1 − x1),

uh
2 :=

1

εh/h
(yh2 − hx2),

uh
3 :=

1

εh/δh
(yh3 − δhx3),

ϑh :=
1

I0

1

hεh

�

ω
(δhx2y

h
3 − hx3y

h
2 ) dx2dx3,

we have that ∇hyh → I in L2(Ω;R3×3), uh → u in W 1,2(Ω;R3), ϑh → ϑ in

W 1,2(0, �), and

lim sup
h→0

1

ε2h

�

Ω
W (∇hy

h) dx ≤ Ir(u,ϑ), (56)

where

Ir(u,ϑ) := 1
24

� �

0
Q2(ξ

��
3 ,ϑ

�) dx1+
1
2

� �

0
E
�
ξ�1+

r
2 (ξ

�
3)

2
�2

dx1+
1
24

� �

0
E
�
ξ��2
�2

dx1

with ξ1, ξ2 and ξ3 as in the definition of ABN
.

Proof. Let us fix (u,ϑ) ∈ ABN×W 1,2(0, �) smooth enough and let ξ1, ξ2, and
ξ3 be as in the definition of ABN . Let us fix α, γ,σ ∈ C∞([0, �];R3×3

sym).

We consider the sequence of three-dimensional deformations yh : Ω → R3

given by

yh(x) :=




x1

hx2

δhx3



+ εh




ξ1 − x2ξ�2 − x3ξ�3 − hx2x3ϑ

�

1
hξ2 − x3ϑ

1
δh
ξ3 +

h
δh
x2ϑ



+ εhβ
h(x),

where





βh
1 := δh(x2

3α13 + 2x2x3γ13 + 2x3σ13) +
1
2h

2x2
2x3α�

22 + h(x2
2γ12 + 2x2σ12),

βh
2 := h(x2x3α22 +

1
2x

2
2γ22 + x2σ22) + δh(x2

3α23 + 2x3σ23),

βh
3 := δh(

1
2x

2
3α33 + x2x3γ33 + x3σ33) + hx2

2γ23 − 1
2
h2

δh
x2
2α22.

It is easy to see that the displacement and the twist function associated with
yh converge to u and ϑ in W 1,2. Moreover, we have that

∇hy
h = I + εh

�
Mh +

1

δh
A+∇hβ

h
�
, (57)

where

Mh :=




u1,1 − hx2x3ϑ

�� −ξ�2/h− x3ϑ
� −hx2ϑ

�/δh
ξ�2/h− x3ϑ

� 0 0
hx2ϑ

�/δh 0 0
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and

A :=




0 0 −ξ�3
0 0 −ϑ
ξ�3 ϑ 0



 .

Also,

∇hβ
h =




0 x2γ12 + σ12 x3α13 + x2γ13 + σ13

x3α22 + x2γ22 + σ22 x3α23 + x2γ23 + σ23

sym x3α33 + x2γ33 + σ33





+




0 x2γ12 + σ12 x3α13 + x2γ13 + σ13 + h2x2

2α
�
22/(2δh)

0 hx2α22/δh + x3α23 − x2γ23 + σ23

skw 0





+O(h) +O(δh/h).

Thus, we obtain

∇hy
hT∇hy

h = I + 2εh sym
�
Mh +

1

δh
A+∇hβ

h
�
+

ε2h
δ2h

ATA

+O
� ε2h
hδh

�
+O

�hε2h
δ2h

�

= I + 2εh sym (Mh +∇hβ
h + r

2A
TA) + o(εh),

where the last equality follows from (55). From the above relations we deduce
that

sym (Mh +∇hβ
h + r

2A
TA) = Z1 + x2Z2 + x3Z3 +O(h) +O(δh/h),

where

Z1 :=




ξ�1 +

r
2 (ξ

�
3)

2 r
2ξ

�
3ϑ+ σ12 σ13

r
2ϑ

2 + σ22 σ23

sym r
2 ((ξ

�
3)

2 + ϑ2) + σ33



 , (58)

Z2 :=




−ξ��2 γ12 γ13

γ22 γ23
sym γ33



 , Z3 :=




−ξ��3 −ϑ� α13

α22 α23

sym α33



 . (59)

By frame-indifference we have

W (∇hy
h) = W

��
(∇hyh)T∇hyh

�
= W (I + εh(Z1 + x2Z2 + x3Z3) + o(εh)).

As (Z1 + x2Z2 + x3Z3) ∈ L∞(Ω;R3×3), for h small enough the matrix I +
εh(Z1 + x2Z2 + x3Z3) + o(εh) belongs to the neighborhood of SO(3) where W
is of class C2, so that by Taylor expansion we have

ε−2
h W (∇hyh) → 1

2Q3(Z1 + x2Z2 + x3Z3) a.e. in Ω,

ε−2
h |W (∇hyh)| ≤ C(|Z1 + x2Z2 + x3Z3|2 + 1).
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By the dominated convergence theorem this implies

lim
h

1

ε2h

�

Ω
W (∇hy

h) dx =

= 1
2

�

Ω
Q3(Z1 + x2Z2 + x3Z3) dx

= 1
2

�

Ω
Q3(Z1) + x2

2Q3(Z2) + x2
3Q3(Z3) dx

= 1
24

� �

0
Q3(Z3) dx1 +

1
2

� �

0
Q3(Z1) dx1 +

1
24

� �

0
Q3(Z2) dx1.

Consider now the general case. Let (u,ϑ) ∈ ABN×W 1,2(0, �), and let ξ1,
ξ2, and ξ3 be as in the definition of ABN . Let also α, γ,σ ∈ L2((0, �);R3×3

sym) be
such that

E
�
ξ�1 +

r
2 (ξ

�
3)

2
�2

= Q3(Z1), E
�
ξ��2
�2

= Q3(Z2), Q2(ξ
��
3 ,ϑ

�) = Q3(Z3),

a.e. in (0, �), where the Zi are defined as in (58)–(59). Arguing as in the proof
of Theorem 3.12, we deduce the Γ-limsup inequality (56) by density. ✷

4 Convergence of minimizers

In this section we introduce a sequence of forces and characterize the asymptotic
behaviour, as h → 0, of minimizers (or almost minimizers) of the total energy.
This is made precise in the following theorem.

Theorem 4.1 Let (αh) be a sequence of strictly positive real numbers such that

lim
h→0

αh

δ2h
= 0 (60)

and let εh := αh/δh. Let fh, f ∈ L2((0, �)×(− 1
2 ,

1
2 )) be such that

�

(0,�)×(− 1
2 ,

1
2 )
fh dx1dx2 =

�

(0,�)×(− 1
2 ,

1
2 )
xif

h dx1dx2 = 0, i = 1, 2 (61)

and
1

αh
fh � f weakly in L2((0, �)×(− 1

2 ,
1
2 )). (62)

Let

Jh(y) := Ih(y)−
�

Ω
fhe3 · y dx

for y ∈ W 1,2(Ω;R3).
Then the following statements hold:

i. | inf Jh| ≤ Cε2h for any h > 0 small enough.
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ii. If (yh) ⊂ W 1,2(Ω;R3) is a minimizing sequence of
1
ε2h
Jh

in the following

sense

lim
h→0

� 1

ε2h
Jh(yh)− inf

1

ε2h
Jh

�
= 0, (63)

then there exist some constants Qh ∈ SO(3) and ch ∈ R3
such that, setting

ȳh := QhT yh − ch, we have that

ȳh → x1e1 strongly in W 1,2(Ω;R3). (64)

iii. Assume in addition that

lim
h→0

αh

δ3h
= lim

h→0

εh
δ2h

= r ∈ {0, 1,+∞}. (65)

If r = +∞, assume also that

lim
h→0

h2εh
δ2h

= 0. (66)

Then, for

uh
1 :=






1

(εh/δh)2
(ȳh1 − x1) if r = +∞,

1

εh
(ȳh1 − x1) if r ∈ {0, 1},

uh
2 :=






1

εh/δh
(ȳh2 − hx2) if r = +∞,

1

εh/h
(ȳh2 − hx2) if r ∈ {0, 1},

uh
3 :=

1

εh/δh
(ȳh3 − δhx3),

ϑh :=
1

I0

1

hεh

�

ω
(δhx2ȳ

h
3 − hx3ȳ

h
2 ) dx2dx3,

we have that, up to subsequences, uh → ū in W 1,2(Ω;R3), ϑh � ϑ̄ weakly

in W 1,2(0, �) and Qh → Q̄, where (ū, ϑ̄, Q̄) ∈ Ar × W 1,2(0, �) × SO(3)
minimizes the functional

Jr(u,ϑ, R) :=






Ir(u,ϑ)−R32

� �

0
f̄u2 dx1 −R33

� �

0
f̄u3 dx1 if r = +∞,

Ir(u,ϑ)−R33

� �

0
f̄u3 dx1 if r ∈ {0, 1},

among all (u,ϑ, R) ∈ Ar ×W 1,2(0, �)×SO(3). Here we have set f̄(x1) :=� 1
2

− 1
2
f(x1, x2) dx2. Furthermore, we have

lim
h→0

1

ε2h
inf Jh = lim

h→0

1

ε2h
Jh(yh) = Jr(ū, ϑ̄, Q̄) = min Jr. (67)
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Remark 4.2 The two conditions in (61) guarantee that
�

Ω
fhe3 ·Qxdx = 0

for every Q ∈ SO(3) and every h > 0.

Proof of Theorem 4.1. Let (yh) be a minimizing sequence of 1
ε2h
Jh in the

sense of (63) and let ph(x) = (x1, hx2, δhx3) be defined as in (8). Applying
Lemma 3.1 with η2h := Ih(yh) and ηh in place of εh, and using Poincaré-
Wirtinger inequality we find some constants Ph ∈ SO(3) and dh ∈ R3 such

that for ỹh := PhT yh − dh − ph there holds

�ỹh�2L2 + �∇hỹ
h�2L2 ≤ Cδ−2

h Ih(yh). (68)

Moreover, by (61) we have

inf Jh ≤ Jh(ph) = −
�

Ω
δhx3f

h(x1, x2) dx = 0. (69)

Using (61) – (63), (68), and (69), we obtain

Ih(yh) = Jh(yh) +

�

Ω
fhPhT e3 · ỹh dx

≤ Cε2h + αh�ỹh�L2 ≤ Cε2h + C
αh

δh

�
Ih(yh)

�1/2
.

Recalling that εh = αh/δh, the previous inequality yields

Ih(yh) ≤ Cε2h. (70)

Moreover, using again (61), (62), and (68), we deduce

Jh(yh) ≥ −
�

Ω
fhPhT e3 · ỹh dx ≥ −αh�ỹh�L2 ≥ −Cε2h.

Since (yh) is a minimizing sequence, the last inequality together with (69) im-
plies that | inf Jh| ≤ Cε2h.

By (70) and by Theorem 3.11 we deduce statement ii of the theorem.
Assume now (65) and, if r = +∞, (66). By Theorem 3.11 we deduce that

there exists (ū, ϑ̄) ∈ Ar × W 1,2(0, �) such that, up to subsequences, uh � ū
weakly in W 1,2(Ω;R3) (strongly if r = +∞) and ϑh � ϑ̄ weakly in W 1,2(0, �).
Moreover, up to subsequences, we also have that Qh converges to some Q̄ ∈
SO(3). By (40) and (62) we obtain that

lim inf
h→0

1

ε2h
Jh(yh) ≥ Ir(ū, ϑ̄) + lim inf

h→0

�
−
�

Ω

1

αh
fhQhT e3 ·

δh
εh

(ȳh − ph) dx
�

= Jr(ū, ϑ̄, Q̄). (71)
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Let now (u,ϑ, R) ∈ Ar × W 1,2(0, �) × SO(3). By Theorems 3.12 and 3.14
there exists a sequence (ŷh) ⊂ W 1,2(Ω;R3) such that the corresponding dis-
placement ûh and twist function ϑ̂h satisfy ûh → u in W 1,2(Ω;R3), ϑ̂h → ϑ in
W 1,2(0, �), and

lim sup
h→0

1

ε2h

�

Ω
W (∇hy

h) dx ≤ Ir(u,ϑ).

This implies that

lim sup
h→0

1

ε2h
Jh(yh) = lim sup

h→0

� 1

ε2h
inf Jh

�
≤ lim sup

h→0

1

ε2h
Jh(R ŷh)

= lim sup
h→0

� 1

ε2h
Ih(ŷh)− 1

ε2h

�

Ω
fhRT e3 · ŷh dx

�

≤ Ir(u,ϑ) + lim sup
h→0

�
−
�

Ω

1

αh
fhRT e3 ·

δh
εh

(ŷh − ph) dx
�

= Jr(u,ϑ, R). (72)

Combining (71) and (72) we deduce the minimality of (ū, ϑ̄, Q̄) and the conver-
gence of the energies (67).

To conclude it remains to show that uh → ū strongly in W 1,2(Ω;R3) for
r ∈ {0, 1}. Arguing as in [10, Subsection 7.2], one can infer from (67) that
1
εh

sym(∇hȳh − I) converges strongly in L2(Ω;R3×3). Repeating the proof of
part ii of Lemma 3.7, one can show that this implies strong convergence in
W 1,2(Ω;R3) of the sequence of displacements uh. ✷
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