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Abstract. A quasistatic rate-independent adhesive delamination problem of laminated
plates with a finite thickness is considered. By letting the thickness of the plates go to zero,
a rate-independent delamination model for a laminated Kirchhoff-Love plate is obtained as
limit of these quasistatic processes. The same dimension reduction procedure is eventually
applied to processes which are sensitive to delamination modes, namely opening vs. shearing
is distinguished.
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1 Introduction, notation, basic concepts

This paper aims to study delamination of sandwich-like laminated plates. In particular, a two-dimensional
model for the quasistatic evolution of the delamination process is rigorously derived by dimension reduc-
tion, starting from a three-dimensional theory of adhesive contact between two plates.

We base our analysis on Γ-convergence. The Γ-convergence method to study dimension reduction
problems has been introduced, in the static case, by Acerbi, Buttazzo and Percivale [1], for nonlinear
elastic strings. This approach has been followed soon by Anzellotti, Baldo, Percivale [3] and Borquin,
Ciarlet, Geymonat, Raoult [7] for linear elastic beams and plates. It also led to the first convergence
result for nonlinear elastic plates due to Le Dret and Raoult [39] who themselves based their approach on
that of [1]. Γ-convergence provides an alternative to the more classical formal asymptotic development
methods that, since Ciarlet and Destuynder [12], are based on a variational weak formulation of the
problem. The notion of quasi-static evolution in fracture mechanics, as addressed by Francfort and
Marigo [17,18], is based on an energy minimization procedure which fits the energetic solution framework
of Mielke and Theil [51], for which it is natural to apply Γ-convergence methods.

We confine ourselves to small strains. The surface where delamination may occur is assumed to be a-
priori prescribed. Furthermore, we restrict our attention to quasistatic unidirectional (i.e., healing of the
adhesive is not possible) rate-independent delamination. We consider a unilateral Signorini contact, which
is important to prevent (unphysical) delamination by mere compression. In the first part of the paper, we
focus on a standard, mode-insensitive delamination, while, in Section 5 we distinguish between various
modes of delamination (namely opening vs. shearing). The variational dimension reduction process leads
to a Kirchhoff-Love model for the plate. The case of a “vertically” positioned delaminating surface has
been studied in [21] and, using a Barenblatt-like cohesive crack surface energy, also in [20]. For a static
delamination on a generally-positioned delamination surface in Kirchhoff-Love plates, we refer to [29,30].
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Fig. 1. Illustration of the geometry and of the notation.
Left: a 3D thin plate-like body undergoing delamination on a prescribed surface ΓC.
Right: 2D plates obtained for ε → 0 undergoing delamination.

For notational simplicity, we study the case of only two plates glued together by one delamination
surface ΓC, dividing thus a 3-dimensional cylindrical elastic body into two parts occupying respectively
the domains Ωε

1 and Ωε
2, cf. Figure 1(left). The generalization of a sandwich laminate composed from

N ≥ 3 domains glued on N−1 surfaces is straightforward.
We assume both parts Ωε

1 and Ωε
2 to be fixed by Dirichlet boundary conditions on some (non-vanishing)

parts of the side boundary, denoted by Γε
D1 and Γε

D2, respectively; cf. again Figure 1(left). We consider
a rather special “cylindrical” case, i.e., in particular the Dirichlet parts of the boundary are positioned
vertically, while the delaminating surface ΓC is horizontal. More precisely,

Ωε
1 := ΓC×

(
− εh1

2
, 0
)
, Ωε

2 := ΓC×
(
0,
εh2
2

)
, Γε

D1 = γD1×
(
− εh1

2
, 0
)
, Γε

D2 = γD2×
(
0,
εh2
2

)
. (1.1)

We will use the abbreviation

Ωε = Ωε
1 ∪
(
ΓC×{0}

)
∪ Ωε

2= ΓC×
(
− εh1

2
,
εh2
2

)
and Γε

D
= Γε

D1 ∪ Γε
D2.

The constant parameters h1 and h2 are kept to clarify the role played by the thickness of the body in the
limit problem. This will allow for the dimensional reduction by letting the aspect ratio ε go to 0. The
geometry of the resulted laminated-composite plate (here, for simplicity, composed only of two plates) is
then depicted in Figure 1(right).

Thoroughout the whole article, we will use a rather special general framework, namely that the state,
denoted by q = (u, z), and its evolution are governed by a time-dependent stored energy, denoted by E, and
a potential of dissipative forces, denoted by R. This potential depends only on the rate

.
z of the dissipative

component z but not on the state q itself (the so-called associative case) and is positively homogeneous
(the so-called rate-independent case). The quasistatic evolution we have in mind is governed by the
following Biot’s type [5,6] system of doubly nonlinear degenerate parabolic/elliptic variational inclusions :

∂uE(t, u, z) ∋ 0 and ∂R
(
.

z
)
+ ∂zE(t, u, z) ∋ 0, (1.2)

where “∂” denotes the usual (partial) subdifferential of convex analysis, according with the fact that,
throughout the paper, the functionals R(·), E(t, ·, z), and E(t, u, ·) are convex.

An important assumption is that R is degree-1 positively homogeneous, which implies (and even is
equivalent to) that the dissipation rate is just the potential of a dissipative force. Also this implies that, if
E(t, ·, ·) is convex, the conventional weak solutions are basically equivalent (under mild additional temporal
regularity assumptions) to so-called energetic solutions of the rate-independent system associated to E

and R with the initial conditions

u(0) = u0 and z(0) = z0. (1.3)

We consider a fixed time horizon T > 0 and denote by U and Z the abstract spaces where u and z live,
respectively.

Definition 1.1 (Energetic solution). The process q = (u, z) : [0, T ] → Q := U×Z is called an energetic so-
lution of the initial-value problem given by (U×Z,E,R, u0, z0) if, beside (1.3), t 7→ ∂tE(t, q(t)) ∈ L1((0, T )),
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if for all t ∈ [0, T ] we have E(t, q(t)) < +∞ and if the global stability inequality (1.4a) and the global
energy balance (1.4b) are satisfied for all t ∈ [0, T ]:

∀q̌ = (ǔ, ž) ∈ Q : E(t, q(t)) ≤ E(t, q̌) + R(ž−z(t)), (1.4a)

E(t, q(t)) + DissR(z, [0, t]) = E(0, q(0)) +

∫ t

0

∂sE(s, q(s)) ds (1.4b)

with DissR(z, [0, t]) := sup
∑N

j=1 R(z(tj)−z(tj−1)), where the supremum is taken over all partitions 0 ≤
t0 < t1 < ... < tN ≤ t of [0, t] with N ∈ N.

If E(t, ·, ·) is separately convex but nonconvex, as in this work, then (1.2) and (1.4) are no longer equiv-
alent. The energetic formulation (1.4) then represents a generalized formulation based on a minimum-
energy principle competing with the maximum-dissipation principle or rather with Levitas’ realizabil-
ity principle [41], cf. [46, 51, 52]. The main advantages of the energetic-solution concept are that it is
derivative-free, i.e., there is no ∂uE, nor ∂zE, neither

.
z in Definition 1.1, and that it can be handled by

Calculus of Variations techniques (in particular variational convergence, as shown in [50] and as exploited
also here) as well as strictly linked with direct numerical methods, as shown in [49]. For its application
to delamination, namely to the problem determined below by (U×Z,Eε,R

d
ε, q

0
ε), with numerical imple-

mentation and computational simulations we refer to [35, 56, 59]. Roughly speaking, energetic solutions
tempt to evolve as soon as it is energetically convenient. This may, however, not be exactly always
in full agreement with the response of real systems involving some other rate-dependent phenomena.
Therefore, in spite of these theoretical and computational arguments supporting the energetic-solution
concept, there are also some other concepts of solutions that are sometimes applicable and successfully
competing with energetic solutions, cf. also [16,47,48,53] for a comparison with other notions in general,
and, e.g., [10, 31–33, 36, 37, 54, 55] in the context of crack propagation, or, e.g., [4, 13, 14] in the context
of plasticity. Moreover, we refer to e.g. [8, 9, 27, 28, 40] for some more classical approaches used in the
engineering literature. The validity of the dimension reduction results presented here for the energetic-
solution concept is not obvious in the case of other solution concepts.

One should emphasize the quite essential differences from a delamination surface being positioned
“vertically”, which was investigated in [20, 21]. In those papers the vertically positioned surface scaled
as ε, in contrast to the horizontally positioned ΓC considered in this paper. Due to this fact, the energies
have here a different scaling, cf. (3.6) and (3.10) below. Another difference due to the “sandwich” position
of the contact surface is that the delamination parameter z is now independent of x3, which means that
here it will not be rescaled and remains the same also for the limit 2D problem. Moreover, [21] considers
also a delamination model obtained for κτ = κν = κ → +∞, cf. (3.6). This leads to a so-called brittle,
Griffith-type delamination model, but such a limit passage is not clear in the framework of the present
work.

It is worth notice that a related interesting issue concernes the study of the singularities developed by
the energetic solutions, see for instance [2, 15, 25, 34, 58], including their propagation in the quasi-static
evolution process. Nevertheless this kind of analysis relies on completely different techniques and for this
reason it is out of the purposes of the present paper.

The paper is organized as follows: In Sect. 2 we formulate the original 3-dimensional problem. In
Sect. 3 we specify the scaling we want to consider, rescale the original problem to a fixed 3-dimensional
domain, and state the convergence result. In Sect. 4 we formulate a 2-dimensional variant of the limit
problem. Eventually, Sect. 5 investigates a generalization allowing to distinguish among different delam-
ination modes, namely opening from shearing or from mixing of both.

We will use the standard notation as far as the function spaces concerns: Ck for the space of functions
with continuous k-th derivative, Lp for Lebesgue spaces and W k,p for Sobolev spaces. Given a vector
function v, the α-th component of v, usually denoted by vα, will be sometimes denoted also with [v]α.

Considering the continuous parameter ε → 0+, cf. Fig. 1(left), for notational simplicity and without
any confusion, when speaking about a sequence we have in mind a countable number of ε’s, εn, converging
to 0. So, when we write Eε in fact we have in mind Eεn , and so on. We immediately make use of this
notation in introducing the concept of uniformly stable sequence which plays a basic role in stating
and proving our convergence results and in particular in the construction of a so-called mutual recovery
sequence, cf. (3.21b) below.

3



As in Definition 1.1, we consider Q = U×Z and set q = (u, z), and we shall write, for instance, (t, q)
in place of (t, u, z). For t ∈ [0, T ] and ε ≥ 0, the sets of stable states Sε(t) is defined as

Sε(t) :=
{
q∈Q : Eε(t, q) < +∞ and Eε(t, q) ≤ Eε(t, q̌) + Rε(ž−z) ∀ q̌∈Q

}
. (1.5)

For ε fixed, we shall say that a sequence (tn, qn)n∈N is stable with respect to Eε and Rε if

qn ∈ Sε(tn) and sup
n∈N

Eε(tn, qn) < +∞. (1.6)

We shall say that a sequence (tε, qε) is uniformly stable with respect to the collection (Eε)ε>0 and (Rε)ε>0

if
qε ∈ Sε(tε) and sup

ε
Eε(tε, qε) < +∞. (1.7)

To be formal we should have put εn in place of ε everywhere in the definition above. Hence the notion
of uniformly stable sequence depends on which sequence of functionals it is referred to. According to the
mentioned shorthand convention, in the sequel we omit to state explicitly this reference when it can be
easily deduced from the context.

2 Delamination of the adhesive unilateral contact in 3D bodies

In this section we consider a Fremond’s [22–24] type model for delamination in 3D bodies which is the
starting point of our asymptotic analysis and which has been discussed, for instance, in [62]. In particular,
the existence of an energetic solution has been proven in [35] where also a numerical analysis of some
model examples is performed. In [61] this model has been characterized as a modification (or, in fact,
regularization) of the Griffith concept [26], based on the hypothesis that the two parts of the body can
be delaminated just by a phenomenologically prescribed specific energy aε (in physical units J/m2).

For later purposes, we indicate the dependence on the thickness parameter ε, even if it will be
considered fixed thoroughout this whole Section 2. Moreover, a delamination parameter z : ΓC → [0, 1]
is involved, representing the fraction of fixed adhesive: z(x) = 0 means complete delamination, z(x) = 1
means perfect integrity and, for instance, z(x) = 1

2 means that 50% of the adhesive is debonded at x ∈ ΓC.

This model is determined by the stored energy Ẽε and the dissipation energy Rε. The stored energy Ẽε,
depending on the time t, on the displacement u, and on the delamination parameter z, is given by

Ẽε(t, u, z) =





1

2

∫

Ωε
1∪Ωε

2

Ce(u):e(u)− 2f ε(t)·u dx+
∫

ΓC

zQε
([[
u
]])

dH
2 if (u, z) ∈ Aad

ε (wε
D
(t)),

+∞ else,

(2.1)

where e(u) := 1
2 (∇u)⊤+1

2∇u is the small-strain tensor and C is the tensor of elastic moduli which may
depend on x in the following way:

C = C(x) =

{
C(1) if x ∈ Ω1,

C(2) if x ∈ Ω2.
(2.2)

The symbol [[·]] in (2.1) denotes the jump across the surface ΓC and Qε : R3 → R is a positive-definite
quadratic form allowing for an anistropy of the adhesive to be specified later, cf. (3.6), and the admissible
domain dependent on the prescribed Dirichlet condition wε

D
is

A
ad
ε (wD) =

{
(u, z) ∈W 1,2(Ωε

1∪Ωε
2;R

3)× L∞(ΓC) : u = wD on Γε
D
, 0 ≤ z ≤ 1,

[[
u
]]
·ν ≥ 0 on ΓC

}
,

where ν is the normal to ΓC (i.e., the unit vector of the axis x3, see Fig.1). Finally,

Rε

(
.

z) :=





∫

ΓC

aε|
.

z| dH
2 if

.
z ≤ 0 on ΓC,

+∞ else.

(2.3)
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The ε-dependence of the body forces f ε ∈ C1([0, T ];L2(Ωε;R3)) and the boundary displacements wε
D
∈

C1([0, T ];H1/2(Γε
D
;R3)) will be precised in Section 3.1, cf. (3.3)–(3.5).

We assume that C(ℓ) are fourth-order positive-definite tensors, i.e.,

C
(ℓ)e:e ≥ c|e|2, ℓ = 1, 2, (2.4)

for every symmetric matrix e ∈ R3×3
sym and with some c > 0 and that

aε(x) ≥ aε,min (2.5)

for a suitable constant aε,min > 0 (depending on ε, but not on x) and H 2-a.e. x ∈ ΓC. Moreover, we
assume the following usual symmetry properties

C
(ℓ)
ijkl = C

(ℓ)
ijlk = C

(ℓ)
klij , i, j, k, l = 1, 2, 3, ℓ = 1, 2, (2.6)

and that the material has a monoclinic symmetry with respect to the (x1, x2)-plane, which implies

C
(ℓ)
αβγ3 = C

(ℓ)
α333 = 0, α, β, γ = 1, 2, ℓ = 1, 2. (2.7)

We restrict to the monoclinic symmetry for simplicity. In the absence of delamination, under this assump-
tion, the limit problem decouples into two separate problems: one consisting in the in-plane equilibrium
equations and the other for the out-of-plane equations.

It should be noted that Definition 1.1 does not apply directly to the problem involving Ẽε,κ if the
Dirichlet loading wε

D
varies in time because the time derivative in (1.4b) is not well defined. To handle

it, one must transform the problem into a time-independent Dirichlet loading problem. In this way, we
consider a prolongation uε

D
(t) of wε

D
(t) to the whole Ωε satisfying

[[
uε

D
(t)
]]
= 0 a.e. on ΓC for a.a. t, (2.8)

and then, instead of (2.1), we consider

Eε(t, u, z) =





1

2

∫

Ωε
1∪Ωε

2

Ce(u+uε
D
(t)):e(u+uε

D
(t)) − 2f ε(t)·(u+uε

D
(t)) dx

+

∫

ΓC

zQε
([[
u
]])

dH
2 if (u, z) ∈ Aad

ε ,

+∞ else,

(2.9)

where Aad
ε := Aad

ε (0). The spaces U, Z and Q in Definition 1.1 are as

Uε =
{
u∈W 1,2(Ωε

1∪Ωε
2;R

3) : u = 0 on Γε
D

}
, Z =

{
z∈L∞(ΓC) : 0 ≤ z ≤ 1 on ΓC

}
, Q = Uε×Z; (2.10)

here both Uε and Z are even subsets of Banach spaces and we will consider them equipped with
standard norm, weak, and weak* topologies. Having an energetic solution (uε, zε) to the problem
(Uε×Zε,Eε,Rε, q

0) according to Definition 1.1, the shifted solution (uε+u
ε
D
, zε) will serve as an energetic

solution to the original problem involving Ẽε. We will thus deal only with the transformed problems.
Note that here it is desirable to accept that ΓC and Γε

D
are not far from each other (i.e., their closures

may not be disjoint), which requires the compatibility of the boundary condition (2.8). More specifically,
we assume

wε
D
∈ C1([0, T ];H1/2(Γε

D
;R3)), (2.11)

which, in particular, ensures the existence of a prolongation uε
D
∈ C1([0, T ];W 1,2(Ωε;R3)) satisfying (2.8)

for all t.
The following proposition can be proven by applying general existence results on energetic solutions,

cf. [46, 51], and of course follows also by [35, Proposition 3.3].

Proposition 2.1. Let ε > 0 be fixed, assume (2.11), and let q0 = (u0, z0) be stable at time t = 0, that is

Eε(0, q
0) < +∞ & Eε(0, q

0) ≤ Eε(0, q̌) + Rε(ž−z0) for all q̌ = (ǔ, ž) ∈ Q. (2.12)

Then the energetic solution (uε, zε) to the problem (Uε×Z,Eε,Rε, q
0) does exist.
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3 Dimension reduction

In this section, we rescale the family of the problems on the domains Ωε
1∪Ωε

2 parameterized by ε > 0 to
a single auxiliary domain arising for ε = 1, denoted by Ω1∪Ω2, and analyze the convergence as ε→ 0.

3.1 The rescaled problem

To perform the dimension reduction it is convenient to make a change of variables in order to work on
domains independent of ε. There are lot of similarities with [21, Sect.3-5] so that we expose it only briefly.
Beside Ω1 := Ω1

1, Ω2 := Ω1
2, let also ΓD1 := Γ1

D1 and ΓD2 := Γ1
D2, so that Ω := Ω1 and ΓD := Γ1

D
. For any

ε > 0, let pε : Ω1 ∪ Ω2 → Ωε
1 ∪Ωε

2 be defined by

pε(x1, x2, x3) := (x1, x2, εx3).

The variables on the fixed domain, Ω1 ∪ Ω2, will be denoted by using the Sans font. Thus for u ∈
W 1,2(Ωε

1 ∪ Ωε
2;R

3), let u ∈W 1,2(Ω1∪Ω2;R
3) be defined by

uα :=
1

ε
uα ◦ pε, α = 1, 2,

u3 := u3 ◦ pε.
(3.1)

Of course, z is not scaled and thus it remains in Italic font. With this notation we have

1

ε
e(u) ◦ pε =

(
e(u)αβ

1
εe(u)α3

1
εe(u)3β

1
ε2 e(u)33

)
=: eε(u). (3.2)

In order to keep the displacements bounded, we need to rescale the forces and the boundary conditions
with ε. We assume that there exists f ∈ C1([0, T ];L2(Ω;R3)) such that

εℓτ+1fα(t) = f ε
α(t) ◦ pε, α = 1, 2, and εℓν+2f3(t) = f ε

3 (t) ◦ pε, ℓτ , ℓν ≥ 0. (3.3)

Concerning the boundary conditions we need to require that eε(uε
D
(t)) is bounded in L2(Ω1∪Ω2;R

3×3),
where we have set [uε

D
]α := 1

ε [u
ε
D
]α ◦ pε and [uε

D
]3 := [uε

D
]3 ◦pε. The simplest way to fulfill this requirement

is to pose uε
D
= uD, with uD satisfying the following Kirchhoff-Love assumption which is fundamental in

plate theory, cf. [11]:

[uD]α(t, x1, x2, x3) := [ρD]α(t, x1, x2)− x3
∂

∂xα
ξD(t, x1, x2), α = 1, 2,

[uD]3(t, x1, x2, x3) := ξD(t, x1, x2),
(3.4)

where ξD ∈ C1([0, T ];W 2,2(Ω)) and ρD ∈ C1([0, T ];W 1,2(Ω;R2)). Let us remark that with this choice we
have

eε(uε
D
)i3 = 0, i = 1, 2, 3, (3.5)

hence, in particular, eε(uε
D
) = eε(uD) = e(uD) for any ε.

The quadratic form used in (2.1), possibly scaling anisotropically the elastic response of the adhesive,
is considered, for any ε > 0, to be of the form, see for instance Tavara et al. [63],

Qε(s) := εqτ+1κτ |sτ |2 + εqν+3κν |sν |2, qτ , qν ∈ R, κτ , κν > 0, (3.6)

where s = (sτ , sν) ∈ R2 × R.
Denoting by [[u]]τ := ([[u1]], [[u2]]) and [[u]]ν := [[u3]], respectively, the tangential and the normal jump of

the displacement across the delamination surface ΓC, and using the relation (3.1) between u ∈W 1,2(Ωε
1 ∪

Ωε
2;R

3) and u ∈W 1,2(Ω1∪Ω2;R
3), for any ε > 0 we get

Qε
([[
u
]])

= εqτ+3κτ
∣∣[[u
]]
τ

∣∣2 + εqν+3κν
∣∣[[u
]]
ν

∣∣2 = ε3Qε
([[
u
]])
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having defined

Qε
([[
u
]])

:= εqτκτ
∣∣[[u
]]
τ

∣∣2 + εqνκν
∣∣[[u
]]
ν

∣∣2. (3.7)

The functional Qε (as well as Qε) modulates differently the components of the jump of u. The different
scalings take into account the different rigidity in the in-plane and in the out-of-plane directions of the
cylinders of height εhℓ, ℓ = 1, 2.

It is convenient to do the same also with the body force. Recalling (3.3) and using again (3.1) we
observe that

f ε·(u+uε
D
) =

∑

α=1,2

εℓτ+2fεα(uα+[uD]α) + εℓν+2fε3(u3+[uD]3) =: ε2fε · (u+uD),

having defined
fε := (εℓτ f1, ε

ℓτ f2, ε
ℓν f3).

For (u, z) ∈ A
ad
ε we have

Eε(t, u, z) =
1

2

∫

Ωε
1∪Ωε

2

Ce(u+uε
D
(t)):e(u+uε

D
(t))− 2f ε(t)·(u+uε

D
(t)) dx +

∫

ΓC

zQε
([[
u
]])

dH
2

=
ε3

2

∫

Ω1∪Ω2

Ceε(u+uD(t)):e
ε(u+uD(t))− 2fε(t)·(u+uD(t)) dx+ ε3

∫

ΓC

zQε
([[
u
]])

dH
2

= ε3Eε(t, u, z), (3.8)

where we used

Eε(t, u, z) :=





1

2

∫

Ω1∪Ω2

Ceε(u+uD(t)):e
ε(u+uD(t))− 2fε(t)·(u+uD(t)) dx

+

∫

ΓC

zQε
([[
u
]])

dH
2 if (u, z) ∈ A

ad,

+∞ else,

(3.9)

with

A
ad :=

{
(u, z) ∈W 1,2(Ω1∪Ω2;R

3)× L∞(ΓC) : u = 0 on ΓD, 0 ≤ z ≤ 1,
[[
u
]]
ν
≥ 0 on ΓC

}
.

The energy functional has been scaled by dividing by ε3, as it is conventionally done in linear elasticity.
On the other hand, it is easy to see that any other choice turns out to be equivalent. Indeed, since
the bulk energy is a quadratic form of u, one can always reduce to this case by suitably re-scaling the
displacements. Similarly we rescale the dissipation energy; we assume that there exist a measurable
function a ∈ L1(ΓC) and d ∈ R such that

aε
ε3+d

= a (3.10)

for any ε, so that

Rε(
.

z) = ε3Rd
ε(
.

z) (3.11)

where

Rd
ε

(
.

z) :=




εd
∫

ΓC

a|.z| dH
2 if

.
z ≤ 0 on ΓC,

+∞ else.
(3.12)

The choice d = 0 is the one that yields the same scaling of the stored energy, and only in this case we
expect to obtain a non-trivial dissipation in the limit problem (see Liero and Mielke [43, Remark 2.1] for
a justification “a priori” of this choice). Referring to (2.5), we also assume that aε,min = ε3+damin for a
suitable constant amin > 0 so that a(x) ≥ amin for H 2-a.e. x ∈ ΓC.

To conclude this section, it is worth notice that the dissipation energy Rd
ε induces the following

dissipation distance
D

d
ε(z1, z2) := Rd

ε(z2−z1).
Moreover, concerning the notation used in Definition 1.1, we have that DissRd

ε
(z, [0, t]) = Dd

ε(z(0)− z(t)).
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3.2 The limit problem

It is further useful to introduce the following “reduced” tensor of elastic moduli

C
0
αβγδ := Cαβγδ −

Cαβ33Cγδ33

C3333
, α, β, γ, δ = 1, 2. (3.13)

Let us remark (see also [1]) that, when setting g(e) := 1
2Ce:e for e ∈ R3×3

sym, under assumptions (2.6)
and (2.7) one has

1

2
C

0ẽ:ẽ = min
η∈R2,ρ3∈R

g

(
ẽ η
η⊤ ρ3

)
for every ẽ ∈ R

2×2
sym, (3.14)

where the minimum is achieved for η = 0 and ρ3 = −∑2
α,β=1 C33αβ ẽαβ/C3333. Of course, C0 depends

on x3 as C does, cf. (2.2). Moreover, let us denote by ẽ(u) the 2×2-matrix with components

ẽ(u)αβ := e(u)αβ , α, β = 1, 2.

Before we can write the expected limit energy, it remains to introduce the quadratic form

Q0
(
s) := 10(qτ )κτ |sτ |2 + 10(qν)κν |sν |2, s ∈ R

2 × R, (3.15)

and the vector field

f0 :=
(
10(ℓτ )f1 , 10(ℓτ )f2 , 10(ℓν)f3

)
, (3.16)

where 10(r) takes the value 1 if r = 0 and is 0 otherwise. Let us remark that the choice qτ = qν = 0,
κτ = κν = κ gives Q0

(
[[u]]
)
= κ|[[u]]|2.

Then we define

E0(t, u, z) :=





1

2

∫

Ω1∪Ω2

C
0ẽ(u+uD(t)):ẽ(u+uD(t))

−2f0(t)·(u+uD(t)) dx +

∫

ΓC

zQ0
([[
u
]])

dH
2 if (u, z) ∈ Aad

KL
,

+∞ else,

(3.17)

where

Aad
KL

=
{
(u, z) ∈ Aad : u ∈W 1,2

KL
(Ω1∪Ω2;R

3) and z
[[
u
]]
σ
= 0 a.e. on ΓC if qσ < 0 (σ = τ, ν)

}
,

and where W 1,2
KL (Ω1∪Ω2;R

3) stands for the space of Kirchhoff-Love displacements

W 1,2
KL

(Ω1∪Ω2;R
3) :=

{
u ∈W 1,2(Ω1∪Ω2;R

3) : e(u)i3 = 0 for i = 1, 2, 3
}
. (3.18)

Finally, we define

Rd
0 =









∫

ΓC

a|.z| dH
2 if

.
z ≤ 0 on ΓC,

+∞ else,
if d = 0,

{
0 if

.
z ≤ 0 on ΓC,

+∞ else,
if d > 0,

{
0 if

.
z = 0 on ΓC,

+∞ else,
if d < 0.

(3.19)

The evolution problems will be considered on the spaces

U =
{
u∈W 1,2(Ω1∪Ω2;R

3) : u = 0 on ΓD

}
and Z from (2.10).
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3.3 Convergence

We discuss here the convergence of energetic solutions associated with the problem (U×Z,Eε,R
d
ε , q0,ε) to

energetic solutions associated to the problem (U×Z,E0,R
d
0, q0), as ε → 0. This is done by applying the

abstract scheme developed in [50]. Since most of the requirements can be obtained as simple adaptations
from [21], we mainly highlight the differences.

The closure of Aad and of the constraints on the jumps, the continuity of the functional representing
the work of the body forces, the convergence of the powers

∂tEε(tε, uε, zε) =

∫

Ω1∪Ω2

Ceε(
.

uD(tε)):e
ε(uε+uD(tε))−

.

f ε(tε)·(uε+uD(tε))− fε(tε)·
.

uD(tε) dx (3.20)

to

∂tE0(t, u, z) =

∫

Ω1∪Ω2

C
0ẽ(
.

uD(t)):ẽ(u+uD(t))−
.

f0(t)·(u+uD(t))− f0(t)·.uD(t) dx,

provided that tε → t, zε
∗
⇀ z in L∞(ΓC), 0 ≤ zε ≤ 1 a.e., and uε ⇀ u inW 1,2(Ω1∪Ω2;R

3) as ε→ 0+, with
(tε, uε, zε) being a uniformly stable sequence (cf. (1.7) for Eε and Rd

ε instead of Eε and Rε, respectively)
follow by a straightforward adaptation of the proofs of [21, Lemmas 4.1 and 5.2] concerning the case of a
transversal delamination surface.

In the next lemma we prove the lower semicontinuity inequality (3.21a) and the existence of a so-called
mutual recovery sequence, since these results are not simple adaptations of arguments of [21].

Lemma 3.1. If tε → t, zε
∗
⇀ z in L∞(ΓC), 0 ≤ zε ≤ 1 a.e., and uε ⇀ u in W 1,2(Ω1∪Ω2;R

3) as ε→ 0+,
then

lim inf
ε→0+

Eε(tε, uε, zε) ≥ E0(t, u, z), (3.21a)

and, for every ž ∈ L∞(ΓC) and every ǔ ∈ W 1,2(Ω1∪Ω2;R
3), there exist žε ∈ Z and ǔε ∈ U such that

ǔε ⇀ ǔ in W 1,2(Ω1∪Ω2;R
3), žε

∗
⇀ ž in L∞(ΓC) and

lim sup
ε→0

[
Eε(tε, ǔε, žε) + R

d
ε(žε−zε)

]
≤ E0(t, ǔ, ž) + R

d
0(ž−z). (3.21b)

Proof. We first observe that from the convergence assumptions on (zε) and (uε), where the latter implies
the strong convergence of the traces of uε on ΓC, it follows that

∫

ΓC

zε
∣∣[[uε

]]
σ

∣∣2 dH
2 →

∫

ΓC

z
∣∣[[u
]]
σ

∣∣2 dH
2, σ = τ, ν. (3.22)

Let us prove the lower semicontinuity inequality (3.21a). Under the assumption that the liminf on the
left-hand side be finite, by the positive definiteness of C (see (2.4)) and the continuity of w with respect
to t and the fact that ℓτ , ℓν ≥ 0, there exists a positive constant C such that

∥∥eε(uε)
∥∥
L2(Ω1∪Ω2;R3)

≤ C (3.23)

and ∫

ΓC

zεε
qσ
∣∣[[uε

]]
σ

∣∣2 dH
2 ≤ C, σ = τ, ν. (3.24)

For any i = 1, 2, 3, from (3.23) we get
∥∥e(uε)i3

∥∥
L2(Ω1∪Ω2;R3)

≤ Cε, thus, passing to the limit, we obtain

e(u)i3 = 0, which implies u ∈ W 1,2
KL (Ω1∪Ω2;R

3).
Rewriting (3.24) as

0 ≤
∫

ΓC

zε
∣∣[[uε

]]
σ

∣∣2 dH
2 ≤ Cε−qσ ,

if qσ < 0, taking the limit as ε→ 0+ in this inequality we get
∫

ΓC

z
∣∣[[u
]]
σ

∣∣2 dH
2 = 0
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hence z[[u]]σ = 0 H 2-a.e. on ΓC. Namely, (u, z) ∈ Aad
KL

and therefore we have that also the right-hand
side in (3.21a) is finite. Using (3.22) in the terms occurring in Qε with qσ = 0 (σ = τ, ν) and neglecting
those in which qσ 6= 0, and using moreover the fact that

lim
ε→0+

∫

Ω1∪Ω2

fε(t)·(uε+uD(t)) dx =

∫

Ω1∪Ω2

f0(t)·(u+uD(t)) dx,

we argue that it suffices to prove that

lim inf
ε→0+

∫

Ω1∪Ω2

Ceε(uε+uD(tε)):e
ε(uε+uD(tε)) dx ≥

∫

Ω1∪Ω2

C
0ẽ(u+uD(t)):ẽ(u+uD(t)) dx.

Since, for α, β = 1, 2,
eε(uε)αβ = e(uε)αβ ⇀ e(u)αβ in L2(Ω1∪Ω2;R

3),

using property (3.14) and the continuity of uD with respect to t we find

lim inf
ε→0+

∫

Ω1∪Ω2

Ceε(uε+uD(tε)):e
ε(uε+uD(tε)) dx ≥ lim inf

ε→0+

∫

Ω1∪Ω2

C
0ẽ(uε+uD(tε)):ẽ(uε+uD(tε)) dx

≥
∫

Ω1∪Ω2

C
0ẽ(u+uD(t)):ẽ(u+uD(t)) dx,

which concludes the proof of (3.21a).
Concerning the mutual recovery sequence, we first of all observe that inequality (3.21b) is nontrivial

only when the right hand side is finite. In particular this implies that ǔ ∈ U, ž ∈ Z and z ≥ ž ≥ 0 on ΓC.
As done in [21], merging ideas from [7] and [61], we define

(ǔε)α := ǔα, α = 1, 2, (3.25a)

(ǔε)3 := ǔ3 + ε2ηε, (3.25b)

žε :=

{
zεž/z if z > 0,
0 if z = 0,

(3.25c)

with ηε(x1, x2, x3) :=
∫ x3

0 ψε(x1, x2, s) ds as x3 ∈ [−h1, h2] for some ψε ∈ C∞
0 (Ω) such that ψε → ψ :=

−
∑2

α,β=1 C33αβ ẽ(ǔ+uD(t))αβ/C3333 and ε∂ψε/∂xα → 0 in L2(Ω) for α = 1, 2.
It is easy to check that with this choice we have that

lim
ε→0

Rd
ε(žε − zε) = Rd

0(ž − z).

Thus, to prove the claim it suffices to deal with the convergence of the energy functional and the proof
proceeds exactly as in [21, Lemma 4.5], with the only difference concerning the convergence of the term

∫

ΓC

žεQ
ε
([[
ǔε
]])

dH
2

which we are going to discuss here. Under the non restrictive assumption E0,κ(t, ǔ, ž) < +∞, which
implies

ž
[[
ǔ
]]
σ
= 0 if qσ < 0, σ = τ, ν, (3.26)

we have that the sequence

∫

ΓC

εqσ žε|
[[
ǔε
]]
σ
|2 dH

2





→
∫
ΓC
ž|[[ǔ]]σ|2 dH 2 if qσ = 0, thanks to (3.22),

→ 0 if qσ > 0, thanks to (3.22),

= 0 if qσ < 0,

where the last line is because in that case žε|[[ǔε]]σ|2 = žε|[[ǔ]]σ|2 = 0 by (3.26) and by definition of žε.
Summarizing we have therefore

∫

ΓC

žεQ
ε
([[
ǔε
]])

dH
2 →

∫

ΓC

žQ0
([[
ǔ
]])

dH
2,

which concludes the proof.
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Let us remark that the mutual recovery sequence condition stated in [50] is

lim sup
ε→0

[
Eε(tε, ǔε, žε) + Rd

ε(žε−zε)− Eε(tε, uε, zε)
]
≤ E0(t, ǔ, ž) + Rd

0(ž−z)− E0(t, u, z)

where (uε, zε) is a stable sequence converging to (u, z). This is, in general, slightly weaker than (3.21b),
as proven in [50, Prop.2.2]. Anyhow, here proving right (3.21b) was even simpler.

The dimension reduction result is summarized in the next statement which can be proven by following
the same lines of [21, Theorem 5.5].

Theorem 3.2 (Convergence for ε→ 0). Let q0 = (u0, z0) ∈ Q and, for any ε > 0, let q0,ε = (u0,ε, z0,ε) ∈
Sε(0) with Sε as in (1.5) with Eε and Rd

0 in place of Eε and Rε, and let q0,ε
∗
⇀ q0 and Eε(0, q0,ε) → E0(0, q0)

as ε→ 0. Let further qε = (uε, zε) : [0, T ] → Q be an energetic solution to the problem (U×Z,Eε,R
d
ε , q0,ε).

Then, there exist q = (u, z) : [0, T ] → Q and a subsequence (indexed, for simplicity, again by ε) such that

Eε(t, qε(t)) → E0(t, q(t)) for every t ∈ [0, T ], (3.27a)

Rd
ε(zε(t)−zε(0)) → Rd

0(z(t)−z(0)) for every t ∈ [0, T ], (3.27b)

∂tEε(·, qε(·)) → ∂tE0(·, q(·)) in L1(0, T ), (3.27c)

zε(t)
∗
⇀ z(t) in L∞(ΓC) for every t ∈ [0, T ], (3.27d)

uε(t)⇀ u(t) in W 1,2(Ω1∪Ω2;R
3) for every t∈[0, T ]. (3.27e)

Moreover, any q obtained in this way is an energetic solution to the problem (U×Z,E0,R
d
0, q0).

The proof, as already mentioned, follows the same lines of [21, Theorem 5.5] and therefore is omitted.
However, the reader can get an insight of this proof by looking at Section 5 where the proof of a more
complicated case is provided.

Remark 3.3 (Isotropic material). The most typical case of C is Cijkl = λδijδkl + µ(δikδjl + δilδjk) with
µ > 0 the so-called shear modulus, λ is the so-called bulk modulus, λ+ 2

3µ > 0. Then the corresponding
quadratic form becomes 1

2Ce:e = µ|e|2 + 1
2λ|tr e|2 and the quadratic form (3.14) determining C0 from

(3.13) is 1
2C

0ẽ:ẽ = 2µẽ212 + µ(ẽ211+ẽ
2
22) +

µλ
2µ+λ(ẽ11+ẽ22)

2, cf. [7].

Remark 3.4 (Scaling of the adhesive response). The choice of the quadratic term Qε in (3.7) allows for
an anisotropic behavior of the adhesive. In fact, the three-dimensional plate which is the starting point
of our asymptotic analysis corresponds to the choice ε = 1. This means that the elastic response of the
adhesive in the 3D model is characterized by the quadratic form

Q1
([[
u
]])

:= κτ
∣∣[[u
]]
τ

∣∣2 + κν
∣∣[[u
]]
ν

∣∣2

and the case κτ = κν corresponds to an isotropic behavior of the adhesive. In the limit model, the response
of the adhesive is described by the quadratic form Q0 defined in (3.15). As already remarked, the choice
κτ = κν = κ and qτ = qν = 0 (which corresponds to an isotropic scaling) gives Q0

(
[[u]]
)
= κ|[[u]]|2. If

qν > 0 and qτ > 0, the term involving Qε is so small that it simply disappears and thus the limit problem
describes the non-adhesive Signorini contact. In particular, z will not evolve at all. The too-early-jump
effect which energetic solutions may produce in non-convex problems trivially disappears in the limit. If
instead qν < 0 and qτ < 0 then the limit turns out to be a brittle delamination problem while, on the other
hand, if qν = qτ = 0 then the limit problem describes a kind of adhesive contact. In the remaining cases
we end up with a mix of brittle delamination and adhesive or sliding (non-adhesive) contact problems.
Generally speaking, the choice of the scaling of the various terms in the expression of Qε has, to some
extent, a purely mathematical meaning: indeed, different scalings simply allow us to capture different
properties of the solutions of the 3D problem, cf. [57]. Nevertheless, in our case this choice can also be
driven by the physics of the problem, namely, by the kind of approximation that we decide to pursue and
that we want to incorporate in the limit problem.
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For constitutive reasons the elastic constants of the adhesive must satisfy the inequality κν/κτ ≥ 2,
see Távara et al. [63]. If we know that κτ is much smaller with respect to κν , then we can decide to
“simplify” the problem with essentially three kinds of approximations. In the first, κτ is so small that
we choose to approximate the behavior of the adhesive with a Signorini contact problem in the plane
and by an adhesive contact in the normal direction: this corresponds to the choice qτ > 0 and qν = 0.
In the second, κν is so large that we choose the approximation with a brittle delamination problem in
the normal direction and an adhesive contact in the plane: this corresponds to qτ = 0 and qν < 0. In
the third, κτ is so small and κν so large that we choose to approximate with a Signorini contact in the
plane and a brittle delamination in the normal: this corresponds to qτ > 0 and qν < 0. Finally, we could
instead take qτ = qν = 0 and obtain an adhesive problem with constants κτ and κν also in the limit
problem, without any approximation.

4 Delaminating Kirchhoff-Love plate reformulated on ΓC

The aim of this section is to provide a truly two-dimensional formulation of the limit problem merely on
ΓC.

Let us recall that u ∈ W 1,2
KL (Ω1∪Ω2;R

3) if and only if there exist ρℓ = (ρℓ1, ρ
ℓ
2) ∈ W 1,2(ΓC;R

2) and
ξℓ ∈ W 2,2(ΓC) such that

uα(x1, x2, x3) =

{
ρ1α(x1, x2)− x3

∂
∂xα

ξ1(x1, x2) if x3 ∈ (−h1/2, 0),
ρ2α(x1, x2)− x3

∂
∂xα

ξ2(x1, x2) if x3 ∈ (0, h2/2),
with α = 1, 2, (4.1a)

u3(x1, x2, x3) =

{
ξ1(x1, x2) if x3 ∈ (−h1/2, 0),
ξ2(x1, x2) if x3 ∈ (0, h2/2),

for (x1, x2) ∈ ΓC, (4.1b)

see Le Dret [38, Lemma 4.2] for the case of a single plate. Since the effective domain of the limit energy
E0,κ is contained in the set of Kirchhoff-Love displacements W 1,2

KL (Ω1∪Ω2;R
3) (see (3.17)), it is thus

possible to rewrite the limit energy functionals in terms of the Kirchhoff-Love generalized displacements
ρℓ and ξℓ, with ℓ = 1, 2.

Recalling the expression (3.4) of uD, we first observe that

ẽ(u) =

{
ẽ(ρ1)− x3∇2ξ1 if x3 ∈ (−h1/2, 0),
ẽ(ρ2)− x3∇2ξ2 if x3 ∈ (0, h2/2),

and ẽ(uD) = ẽ(ρD)− x3∇2ξD

for some ρD and ξD given. In terms of these new variables, we have

1

2

∫

Ω1∪Ω2

C
0ẽ(u+uD):ẽ(u+uD) dx =

1

2

∑

ℓ=1,2

∫

ΓC

hℓ
2
C

0ẽ(ρℓ+ρD):ẽ(ρ
ℓ+ρD)+

+(−1)ℓ+1h
2
ℓ

8
C

0ẽ(ρℓ+ρD):∇2(ξℓ+ξD) +
h3ℓ
24

C
0∇2(ξℓ+ξD):∇2(ξℓ+ξD) dH

2

while
∫

Ω1∪Ω2

f·(u+uD) dx =
∑

ℓ=1,2

∫

ΓC

ϕ0
3(ξ

ℓ+ξD) +
∑

α=1,2

ϕ0
α(ρ

ℓ
α+[ρD]α)− ϕ1

α
∂

∂xα
(ξℓ+ξD) dH

2

with ϕs
α(x1, x2) := 10(ℓτ )

∫ h2/2

−h1/2

xs3fα(x1, x2, x3) dx3, (x1, x2) ∈ ΓC,

ϕs
3(x1, x2) := 10(ℓν)

∫ h2/2

−h1/2

xs3f3(x1, x2, x3) dx3, (x1, x2) ∈ ΓC,

where, for simplicity, we have not stressed the dependence of uD, f, ρD, ξD, and ϕ
s
i on t. Since

∣∣[[u
]]
τ

∣∣2 =

2∑

α=1

∣∣[[uα
]]∣∣2 =

2∑

α=1

∣∣ρ1α−ρ2α
∣∣2 = |ρ1 − ρ2|2,

∣∣[[u
]]
ν

∣∣2 =
∣∣[[u3

]]∣∣2 =
∣∣ξ1−ξ2

∣∣2
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we have that, according to (3.15),

Q0
([[
u
]])

= 10(qτ )κτ
∣∣ρ1−ρ2

∣∣2 + 10(qν)κν
∣∣ξ1−ξ2

∣∣2. (4.2)

In terms of the new variables, the set Aad
KL

becomes

ÂKL

ad :=
{
(ρ, ξ, z) ∈W 1,2(ΓC;R

2)2 ×W 2,2(ΓC)
2 × L∞(ΓC) : 0 ≤ z ≤ 1, ξ1 ≥ ξ2 a.e. on ΓC,

z|ρ1 − ρ2| = 0 if qτ < 0, z(ξ1 − ξ2) = 0 if qν < 0, (4.3)

ρℓ|γDℓ
= 0, ξℓ|γDℓ

= ∇ξℓ|γDℓ
· ν = 0 a.e. on γDℓ, ℓ = 1, 2

}
,

and the stored energy is

Ê0(t, ρ, ξ, z) :=





1

2

∫

ΓC

∑

ℓ=1,2

(hℓ
2
C

0ẽ(ρℓ+ρD):ẽ(ρ
ℓ+ρD) + (−1)ℓ+1h

2
ℓ

8
C

0ẽ(ρℓ+ρD):∇2(ξℓ+ξD)

+
h3ℓ
24

C
0∇2(ξℓ+ξD):∇2(ξℓ+ξD)− ϕ0

3(ξ
ℓ+ξD)− ϕ0

α(ρ
ℓ
α+[ρD]α) + ϕ1

α
∂

∂xα
(ξℓ+ξD)

)

+z10(qτ )κτ
∣∣ρ1−ρ2

∣∣2 + z10(qν)κν
∣∣ξ1−ξ2

∣∣2 dH
2 if (ρ, ξ, z) ∈ ÂKL

ad,

+∞ else.

Moreover, we consider the dissipation R
d
0 from (3.19). The limit problem admits therefore a purely 2D

formulation, thanks to (4.1).

5 Mode-sensitive delamination

Engineering models of delamination are usually more complicated than presented here so far: the dissipa-
tion in the so-called mode I (delamination by opening) is less than in the so-called mode II (delamination
by shearing); sometimes, the difference may be tens or even hundreds of percents, cf., e.g., [42, 45]. Re-
cently, a quasistatic associative model has been devised, analyzed, and tested computationally in [59,60].
The purpose of this last section is to adapt the previously exposed asymptotic analysis to this mode-
sensitive model.

5.1 Formulation of the problem and scaling

Microscopically, the additional dissipation in Mode II may be explained by a certain plastic process both in
the adhesive itself and in a narrow bulk vicinity of the delamination surface before the actual delamination
starts, cf. [42, 64]. Following [59, 60], we are therefore led to consider an additional plastic-like inelastic
process on ΓC described by a further dissipative variable π having the meaning of the “plastic” interfacial
slip on ΓC. Denoting the delamination parameter by ζ in this section, the “rate-independent variable” z
then will have two components, i.e., z = (ζ, π).

Instead of Ẽε and Rε from (2.1) and (2.3), we now consider the following energy functionals proposed
in [59, 60]

Ẽε(t, u, ζ, π) =





1

2

∫

Ωε
1∪Ωε

2

Ce(u):e(u)− 2f ε(t)·u dx

+

∫

ΓC

ζQε
([[
u
]]
−Tπ

)
+
κε

H

2
|π|2 + κε0

2

∣∣∇
S
π
∣∣2 dH

2 if (u, ζ) ∈ A
ad
ε (wε

D
(t)),

and π ∈ W 1,2(ΓC;R
2),

+∞ else,

(5.1a)
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where ∇
S
is the gradient along the two-dimensional surface ΓC and T : R2 → R3 : (π1, π2) 7→ (π1, π2, 0),

and

Rε

(.
ζ,
.

π) :=





∫

ΓC

aε|
.

ζ |+ σε,yield|
.

π| dH
2 if

.
ζ ≤ 0 on ΓC,

+∞ else.

(5.1b)

Instead of Z from (2.10), z = (ζ, π) lives in the space

Z :=
{
(ζ, π) ∈ L∞(ΓC)×W 1,2(ΓC;R

2); 0 ≤ ζ ≤ 1 on ΓC

}
.

The coefficient κε
H
> 0 is related with a kinematic-type hardening. The idea of this model is that under

increasing load, in Mode II, first the interfacial slip starts evolving when the stress achieves the threshold
σε,yield and, due to the hardening, the stress still continues growing until the threshold aε activates the
delamination ζ which then eventually stops also the evolution of π. This implies that the driving stress
for π has, after delamination, a magnitude less than σε,yield. This scenario needs the condition

1

2
κετaε < σ2

ε,yield ≤ 2κετaε with κετ = [Qε]′′τ (5.2)

to be satisfied, cf. [59, Formula (13.69)] or [60, Formula (14)], where [Qε]′′τ here denotes the second
tangential derivative of Qε. The validity of this model has been tested numerically in [60]. Dealing now
for simplicity with the case qτ = qν = 0 in the definition (3.6) of Qε, from the relation above we obtain
that

κετ = 2εkτ .

Taking into account that aε = ε3a, cf. (3.10), the two-sided condition (5.2) turns into ε4κτa ≤ σ2
ε,yield ≤

4ε4κτa. It leads us to set

σε,yield = ε2σyield (5.3)

for some σyield satisfying

kτa < σ2
yield ≤ 4kτa. (5.4)

The energy dissipated in Mode II, let us denote it by aII
ε , is

aII

ε = aε +
σε,yield

√
2κεtaε − σ2

ε,yield

κε
H

, (5.5)

cf. again [59,60], and then the so-called fracture-mode sensitivity aII
ε /aε is indeed bigger than 1 as expected

in engineering models, namely

aII
ε

aε
= 1 +

σε,yield
κε

H

√
2κεt
aε

−
σ2
ε,yield

κε
H
aε

. (5.6)

Setting
κε

H
= εκ

H
, κ

H
> 0,

we can control aII
ε /aε uniformly with respect to ε.

Let us remark that, to fit it more straightforwardly to the previous sections, we used the model with
∇

S
π, as suggested in [60, Remark 3]. Then this model is indeed an extension of the previous model in

the sense that, if σyield > 4kτa and π(0) = 0, no plastic slip is ever triggered and this model gives the
same response as that one in Section 2.
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Following the same lines traced at the end of Section 2, instead of (5.1a), we can consider

Eε(t, u, ζ, π) =





1

2

∫

Ωε
1∪Ωε

2

Ce(u+ uεD(t)):e(u+ uεD(t)) − 2f ε(t)·(u+ uεD(t)) dx

+

∫

ΓC

ζQε
([[
u
]]
−Tπ

)
+
κε

H

2
|π|2 + κε0

2

∣∣∇
S
π
∣∣2 dH

2 if (u, ζ) ∈ Aad
ε ,

and π ∈ W 1,2(ΓC,R
2),

+∞ else.

Scaling displacements and body forces and choosing Dirichlet boundary conditions as at the beginning
of Section 3.1, we introduce the scaled interfacial slip

π :=
1

ε
π ◦ pε

and set
κε0 = εκ0, κ0 > 0,

in order to obtain
Eε(t, u, ζ, π) = ε3Eε(t, u, ζ,π),

for (u, ζ) ∈ Aad
ε , where

Eε(t, u, ζ,π) =





1

2

∫

Ω1∪Ω2

Ceε(u+uD(t)):e
ε(u+uD(t))− 2fε(t)·(u+uD(t)) dx

+

∫

ΓC

ζQε
([[
u
]]
− Tπ

)
+
κ

H

2
|π|2 + κ0

2

∣∣∇
S
π

∣∣2 dH
2 if (u, ζ) ∈ Aad

and π ∈ W 1,2(ΓC,R
2),

+∞ else.

(5.7)

Concerning the dissipation energy, contrarily to what we have done in Section 3, we consider here only
the scaling that leads to a non trivial limit dissipation; namely, under the scalings (3.10) with d = 0 and
(5.3), we have

Rε(
.

ζ,
.

π) = ε3R(
.

ζ,
.

π),

where

R(
.

ζ,
.

π) :=





∫

ΓC

a|
.

ζ|+ σyield|
.

π| dH
2 if

.
ζ ≤ 0 on ΓC,

+∞ else.

Then we define

E0(t, u, ζ,π) =





1

2

∫

Ω1∪Ω2

C
0ẽ(u+uD(t)):ẽ(u+uD(t)) − 2f0(t)·(u+uD(t)) dx

+

∫

ΓC

ζQ0
([[
u
]]
− Tπ

)
+
κ

H

2
|π|2 + κ0

2

∣∣∇
S
π

∣∣2 dH
2 if (u, ζ) ∈ Aad

KL
,

and π ∈W 1,2(ΓC,R
2),

+∞ else,

(5.8)

where now
Aad

KL
=
{
(u, ζ) ∈ Aad : u ∈W 1,2

KL
(Ω1∪Ω2;R

3)}.
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5.2 Dimension reduction

Now we are going to perform the same analysis (dimension reduction and relation between energetic
solutions associated to the rescaled and the limit problems) that we discussed in Section 3, providing
in particular the link between the functionals Eε and E0. Again, the main idea is to apply the abstract
scheme developed in [50]. This case involving mixed modes of delamination is more complicated and
requires much detailed adaptations. Also for the sake of clarity, we preferred to give the whole proofs.

In the next lemma we prove a lower bound for the limit energies.

Lemma 5.1 (Lower semicontinuity). If tε → t, ζε
∗
⇀ ζ in L∞(ΓC), 0 ≤ ζε ≤ 1 a.e., πε ⇀ π in

W 1,2(ΓC;R
2) and uε ⇀ u in W 1,2(Ω1∪Ω2;R

3) as ε→ 0+, then

lim inf
ε→0+

Eε(tε, uε, ζε,πε) ≥ E0(t, u, ζ,π). (5.9)

Proof. Under the assumption that the liminf on the left-hand sides be finite, by the positive definiteness of
C (see (2.4)) and the continuity of w with respect to t, it follows that, up to subsequences,

∥∥eε(uε)
∥∥
L2 ≤ C

and hence
∥∥e(uε)i3

∥∥
L2 ≤ Cε, i = 1, 2, 3; thus, passing to the limit, we obtain e(u)i3 = 0 which implies

u ∈ W 1,2
KL (Ω1∪Ω2;R

3). By this fact and by Lemma 3.1 we have that also the right-hand side in (5.9) is
finite and that it suffices to prove that

lim inf
ε→0+

∫

Ω1∪Ω2

Ceε(uε+w(tε)):e
ε(uε+w(tε)) dx+

∫

ΓC

ζεQ
ε
([[
uε
]]
− Tπε

)
+
κ

H

2
|πε|2 +

κ0
2

∣∣∇
S
πε

∣∣2 dH
2 ≥

≥
∫

Ω1∪Ω2

C
0ẽ(u+w(t)):ẽ(u+w(t)) dx +

∫

ΓC

ζQ0
([[
u
]]
− Tπ

)
+
κ

H

2
|π|2 + κ0

2

∣∣∇
S
π

∣∣2 dH
2.

The bulk term can be treated as we did in the proof of (3.21a) noticing that, for α, β = 1, 2,

eε(uε)αβ = e(uε)αβ ⇀ e(u)αβ in L2(Ω1∪Ω2),

using property (3.14) and the continuity of w with respect to t to obtain

lim inf
ε→0+

∫

Ω1∪Ω2

Ceε(uε+w(tε)):e
ε(uε+w(tε)) dx ≥ lim inf

ε→0+

∫

Ω1∪Ω2

C
0ẽ(uε+w(tε)):ẽ(uε+w(tε)) dx

≥
∫

Ω1∪Ω2

C
0ẽ(u+w(t)):ẽ(u+w(t)) dx.

Since πε ⇀ π in W 1,2(ΓC;R
2) then we immediately get

lim inf
ε→0+

∫

ΓC

κ
H

2
|πε|2 +

κ0
2

∣∣∇
S
πε

∣∣2 dH
2 ≥

∫

ΓC

κ
H

2
|π|2 + κ0

2

∣∣∇
S
π

∣∣2 dH
2.

Finally, concerning the term involving Qε we have

lim
ε→0+

∫

ΓC

ζεQ
ε
([[
uε
]]
− Tπε

)
dH

2 = lim
ε→0+

∫

ΓC

ζε
(
κτ |
[[
uε
]]
τ
− πε|2 + κν |

[[
uε
]]
ν
|2
)
dH

2

=

∫

ΓC

ζ
(
κτ |
[[
u
]]
τ
− π|2 + κν |

[[
u
]]
ν
|2
)
dH

2 (5.10)

=

∫

ΓC

ζQ0
([[
u
]]
− Tπ

)
dH

2,

where in the first and last equalities we used the definitions of Qε and Q0 respectively, while the second
follows by observing that, by our assumptions,

κτ |
[[
uε
]]
τ
− πε|2 + κν |

[[
uε
]]
ν
|2 → κτ |

[[
u
]]
τ
− π|2 + κν |

[[
u
]]
ν
|2 in L1(ΓC),

while ζε
∗
⇀ ζ in L∞(ΓC).
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The next lemma is fundamental to apply the Γ-convergence scheme developed in [50].

Lemma 5.2 (Mutual recovery sequence). Let t ∈ [0, T ], and (u, (ζ, π))) ∈ U × Z. For every uniformly
stable sequence (tε, uε, (ζε,πε)) ∈ [0, T ]× U × Z such that tε → t in [0, T ], uε ⇀ u in W 1,2(Ω1∪Ω2;R

3),

ζε
∗
⇀ ζ in L∞(ΓC), πε ⇀ π in W 1,2(ΓC;R

2), and for every (ǔ, (ζ̌ , π̌)) ∈ U × Z, there exist ǔε ∈ U and
(ζ̌ε, π̌ε) ∈ Z such that

ǔε ⇀ ǔ in W 1,2(Ω1∪Ω2;R
3), (5.11)

ζ̌ε
∗
⇀ ζ̌ in L∞(ΓC), (5.12)

π̌ε ⇀ π̌ in W 1,2(ΓC;R
2), (5.13)

lim sup
ε→0+

[
Eε(tε, ǔε, ζ̌ε, π̌ε) + R(ζ̌ε−ζε, π̌ε−πε)− Eε(tε, uε, ζε,πε)

]

≤ E0(t, ǔ, ζ̌, π̌) + R(ζ̌−ζ, π̌−π)− E0(t, u, ζ,π). (5.14)

Moreover, setting for any ε ≥ 0

Ēε(t, u, ζ,π) := Eε(t, u, ζ,π)−
∫

ΓC

κ0
2
|∇

S
π|2 dH

2, (5.15)

then we have

lim sup
ε→0+

[
Ēε(tε, ǔε, ζ̌ε, π̌ε) + R(ζ̌ε−ζε, π̌ε−πε)

]
≤ Ē0(t, ǔ, ζ̌, π̌) + R(ζ̌−ζ, π̌−π). (5.16)

Proof. First of all we notice that, since the sequence (tε, uε, (ζε,πε)) is uniformly stable, by the lower
semicontinuity Lemma 5.1 we have that E0(t, u, ζ,π) < +∞. Moreover we can assume that right-
hand side in (5.14) (and then in (5.16)) be finite, otherwise the result is achieved by simply taking
(ǔε, (ζ̌ε, π̌ε)) = (ǔ, (ζ̌ , π̌)) for any ε > 0. This non-resctrictive assumption, together with the finiteness of
E0(t, u, ζ,π), implies that

E0(t, ǔ, ζ̌ , π̌) < +∞ and R(ζ̌−ζ, π̌−π) < +∞.

In particular then we have ζ ≥ ζ̌ a.e. on ΓC. Inspired by [60], let us define

ζ̌ε :=





ζεζ̌

ζ
if ζ > 0,

0 if ζ = 0,

and π̌ε := π̌ + πε − π.

Then it is easy to check that 0 ≤ ζ̌ε ≤ 1 a.e. on ΓC, ζ̌ε
∗
⇀ ζ̌ in L∞(ΓC) and π̌ε ⇀ π̌ in W 1,2(ΓC;R

2) (in
particular, (5.12) and (5.13) are proven). Moreover, since ζ̌ε − ζε ≤ 0, then

lim
ε→0+

R(ζ̌ε−ζε, π̌ε−πε) = lim
ε→0+

∫

ΓC

a(ζε − ζ̌ε) + σyield|π̌−π| dH
2

=

∫

ΓC

a(ζ − ζ̌) + σyield|π̌−π| dH
2 = R(ζ̌−ζ, π̌−π).

Thus, to prove (5.14) it sufficies to deal with the convergence of the energies, that is, it is enough to prove
that

lim sup
ε→0+

[
Eε(tε, ǔε, ζ̌ε, π̌ε)− Eε(tε, uε, ζε,πε)

]
≤ E0(t, ǔ, ζ̌ , π̌)− E0(t, u, ζ,π). (5.17)

The sequence ǔε can be constructed following what we did in [21] and in the proof of Lemma (3.1) and
which we recall also here for convenience of the reader. For fixed t we let

ψ := −
2∑

α,β=1

C33αβ ẽ(ǔ+uD(t))αβ
C3333

,
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and choose ψε ∈ C∞
0 (Ω) such that ψε → ψ and ε∂ψε/∂xα → 0 in L2(Ω) for α = 1, 2. Set

ηε(x1, x2, x3) :=

∫ x3

0

ψε(x1, x2, s) ds

and

(ǔε)α := ǔα, α = 1, 2,
(ǔε)3 := ǔ3 + ε2ηε.

}
(5.18)

In this way we have ǔε ∈ W 1,2(Ω1∪Ω2;R
3) and ǔε → ǔ in W 1,2(Ω1∪Ω2;R

3) (in particular, (5.11) is
proven). Since E0(t, ǔ, ζ̌, π̌) < +∞ then for every ε, by construction, (tε, ǔε, ζ̌ε, π̌ε) belongs to the
effective domain of Eε and therefore

Eε(tε, ǔε, ζ̌ε,πε) =
1

2

∫

Ω1∪Ω2

Ceε(ǔε+uD(tε)):e
ε(ǔε+uD(tε))− 2f(tε)·(ǔε+uD(tε)) dx

+

∫

ΓC

ζ̌εQ
ε
([[
ǔε
]]
− Tπ̌ε

)
+
κ

H

2
|π̌ε|2 +

κ0
2

∣∣∇
S
π̌ε

∣∣2 dH
2. (5.19)

By (3.2) and since ǔ and uD are in W 1,2
KL (Ω1∪Ω2;R

3), we have

eε(ǔε+uD(tε)) =

(
e(ǔ+uD(tε))αβ

ε

2

∂ηε
∂xα

sym ψε

)
.

Taking the limit as ε→ 0+ we have

lim
ε→0+

∥∥∥∥∥e
ε
(
ǔε+uD(tε)

)
−
(
ẽ(ǔ+uD(t)) 0

0 −∑2
α,β=1C33αβ ẽ(ǔ+uD(t))αβ/C3333

)∥∥∥∥∥
L2(Ω1∪Ω2;R3×3)

= 0,

and therefore, concerning the bulk part in (5.19), we obtain

lim
ε→0+

∫

Ω1∪Ω2

Ceε(ǔε+uD(tε)):e
ε(ǔε+uD(tε)) dx =

∫

Ω1∪Ω2

C
0ẽ(ǔ+uD(t)):ẽ(ǔ+uD(t)) dx,

and, by the lower semicontinuity Lemma 5.1, we have

lim sup
ε→0+

[ ∫

Ω1∪Ω2

Ceε(ǔε+uD(tε)):e
ε(ǔε+uD(tε)) dx−

∫

Ω1∪Ω2

Ceε(uε+uD(tε)):e
ε(uε+uD(tε)) dx

]

≤
∫

Ω1∪Ω2

Cẽ(ǔ+uD(t)):ẽ(ǔ+uD(t)) dx−
∫

Ω1∪Ω2

Cẽ(u+uD(t)):ẽ(u+uD(t)) dx. (5.20)

By the same argument used to prove (5.10) we have

lim
ε→0+

∫

ΓC

ζεQ
ε
([[
uε
]]
− Tπε

)
dH

2 =

∫

ΓC

ζQ0
([[
u
]]
− Tπ

)
dH

2 (5.21)

and

lim
ε→0+

∫

ΓC

ζ̌εQ
ε
([[
ǔε
]]
− Tπ̌ε

)
dH

2 =

∫

ΓC

ζ̌Q0
([[
ǔ
]]
− Tπ̌

)
dH

2. (5.22)

Since πε → π and π̌ε → π̌ then

lim
ε→0+

∫

ΓC

κ
H

2
|πε|2 dH

2 =

∫

ΓC

κ
H

2
|π|2 dH

2 and lim
ε→0+

∫

ΓC

κ
H

2
|π̌ε|2 dH

2 =

∫

ΓC

κ
H

2
|π̌|2 dH

2. (5.23)

Concerning the term involving the gradient, by the so-called binomial trick we have

|∇
S
π̌ε|2 − |∇

S
πε|2 = (∇

S
π̌ε −∇

S
πε) · (∇S

π̌ε +∇
S
πε) = (∇

S
π̌ −∇

S
π) · (∇

S
π̌ε +∇

S
πε)
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and since ∇
S
π̌ε +∇

S
πε ⇀ ∇

S
π̌ +∇

S
π in L2(ΓC;R

2), then we get

lim
ε→0+

∫

ΓC

(
|∇

S
π̌ε|2 − |∇

S
πε|2

)
dH

2 =

∫

ΓC

(
|∇

S
π̌|2 − |∇

S
π|2
)
dH

2

and therefore

lim
ε→0+

∫

ΓC

κ0
2

∣∣∇
S
π̌ε

∣∣2 dH
2 −

∫

ΓC

κ0
2

∣∣∇
S
πε

∣∣2 dH
2 =

∫

ΓC

κ0
2

∣∣∇
S
π̌

∣∣2 dH
2 −

∫

ΓC

κ0
2

∣∣∇
S
π

∣∣2 dH
2. (5.24)

Inequality (5.16) follows by (5.20), (5.21), (5.22), (5.23), and Lemma 3.1. Using moreover (5.24) we
finally obtain also (5.14) and the proof is concluded.

5.3 Convergence of solutions

The aim of this section is to show, assuming q0ε ⇀ q0 in Q, the convergences of (the solutions to) the
corresponding quasi-static evolution problems. The notation in use is that of [50]. According to what we
have done above, we denote by Q the topological product of the spaces U and Z endowed, respectively,
with the weak and the weak* topology. Since U is reflexive here, its weak topology is also weak*, and
thus the convergence in Q will be denoted simply by

∗
⇀. Setting q = (u, z) and z = (ζ,π), we shall write,

for instance, (t, q) in place of (t, u, z) and the latter in place of (t, u, ζ,π).
Our results will be achieved by applying general abstract theorems proven in [19, 44, 50]. In what

follows we write and check the assumptions needed to apply those theorems.
The dissipation distance

D(z1, z2) = R(z2−z1)
satisfies the following properties, corresponding to [50, Formulas (2.2)–(2.4)].

Pseudo distance:

D(z1, z1) = 0 and D(z1, z3) ≤ D(z1, z2) +D(z2, z3) for any z1, z2, z3 ∈ Z. (5.25)

Lower semi-continuity of D:

D : Z× Z → [0,+∞] is w∗-lower semi-continuous. (5.26)

Positivity of D:

if a sequence (zn) in Z and z ∈ Z are such that
min{D(zn, z),D(z, zn)} → 0, then zn → z weakly* in Z.

(5.27)

From (5.26) it follows (2.5) of [50], that is

Lower Γ-limit for D:

for any pair of stable sequences (tn, qn), (ťn, q̌n
) such that

(tn, qn
)

∗
⇀ (t, q), (ťn, q̌n)

∗
⇀ (ť, q̌) in [0, T ]× Q, we have

D(z, ž) ≤ lim infn→+∞ D(zn, žn).

(5.28)

From Korn’s inequality, (2.4), (3.4) and (3.5), we find

Eε(t, u, z) ≥
1

2

∫

Ω1∪Ω2

Ceε(u+uD(t)):e
ε(u+uD(t))− 2fε(t) · (u+uD(t)) dx

≥ c
∥∥e(u+uD(t))

∥∥2
L2 −

1

2α

∥∥f(t)
∥∥2
L2 −

α

2

∥∥u+uD(t)
∥∥2
L2 ≥ K

∥∥u
∥∥2
W 1,2 − C, (5.29)

where f = (f1, f2, f3), see (3.3). This last inequality, together with a similar computation for E0, shows
that the set

⋃
ε≥0{q ∈ Q : Eε(t, q) ≤ E} is weakly relatively compact. Moreover, for any ε ≥ 0 the

functionals Eε(t, ·) are weakly lower semicontinuous in Q due to the convexity of the bulk part of the
energy and Lemma 3.1. Thus the sublevels are also closed and the following property (corresponding to
(2.6) of [50]) holds
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Compactness of energy sublevels:

for all t ∈ [0, T ] and all E ∈ R we have
(i) {q ∈ Q : Eε(t, q) ≤ E} is compact for any ε ≥ 0;
(ii)

⋃
ε≥0{q ∈ Q : Eε(t, q) ≤ E} is relatively compact.

(5.30)

Since f and w are continuously differentiable with respect to t (see Section 3.1), then Eε(·, q) ∈
C1([0, T ]) for all ε ≥ 0 and all q ∈ Q for which Eε(·, q) < +∞.

If Eε(s, u, z) < +∞ for s ∈ [0, T ], then we have

∂tEε(t, u, z) =

∫

Ω1∪Ω2

Ceε(
.

uD(t)):e
ε(u+uD(t)) −

.

f ε(t)·(u+uD(t)) − fε(t)·.uD(t) dx (5.31)

and, since (e(
.
uD))i3 = 0 (see (3.5)), by inequality (5.29) we have

∣∣∂tEε(t, u, z)
∣∣ ≤ c

(∥∥e(.uD)(t)
∥∥2
L2 + ‖

.

f (t)‖2L2 +
∥∥uD(t)

∥∥2
L2 +

∥∥f(t)
∥∥2
L2 +

∥∥.uD(t)
∥∥2
L2 + Eε(t, u, z) + C

)
,

which, together with a similar computation for E0, leads to (see (2.7) of [50])

Uniform control of the power ∂tEε:

there exist cE0 ∈ R and cE1 > 0 such that
for any ε ≥ 0, t ∈ [0, T ] and q ∈ Q,
if Eε(t, q) < +∞ then Eε(·, q) ∈ C1([0, T ]) and
|∂tEε(s, q)| ≤ cE1 (c

E
0 + Eε(s, q)) for all s ∈ [0, T ].

(5.32)

By definition of E0 (given in (3.17)) it follows that if E0(0, u, z) is finite then u ∈ W 1,2
KL (Ω1∪Ω2;R

3)
and thus E0(t, u, z) is finite for every t ∈ [0, T ]. Since f and w are C1 with respect to t, condition (2.8)
of [50] is satisfied, namely

Uniform time-continuity of the power ∂tE0,κ:

for every η > 0 and E ∈ R there exists δ > 0 such that
E0(0, q) ≤ E, |t1 − t2| < δ ⇒ |∂tE0(t1, q)− ∂tE0(t2, q)| < η.

(5.33)

By Lemma 5.1 we get the following property (2.10) of [50]

Lower Γ-limit for Eε,κ:

for any uniformly stable sequence (tε, qε) such that

(tε, qε)
∗
⇀ (t, q) in [0, T ]× Q, we have

E0(t, q) ≤ lim infε→0+ Eε(tε, qε).

(5.34)

The following lemma essentially corresponds to property (2.9) of [50]; the only difference is that we
establish the convergence in the open interval (0, T ) instead of its closure. This fact will not affect the
arguments used in the sequel.

Lemma 5.3 (Conditioned continuous convergence of the power). Let (t, q) ∈ (0, T )× Q and let (tε, qε)

be a uniformly stable sequence. If (tε, qε)
∗
⇀ (t, q) in [0, T ]× Q, then

∂tEε(tε, qε) → ∂tE0(t, q).

Proof. Since ∂tEε = ∂tĒε for every ε ≥ 0, where Ēε has been defined in (5.15), then we can equivalently
prove that

∂tĒε(tε, qε) → ∂tĒ0(t, q).

The proof can now be done by following exactly the same arguments of the proof of Lemma 5.2 of [21],
starting from the convergence property stated in the following lemma.
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Lemma 5.4. Let (t, q) ∈ (0, T )× Q and let (tε, qε) be a uniformly stable sequence w.r. to (Eε) and (Sε).

If (tε, qε)
∗
⇀ (t, q) in [0, T ]× Q, then

Ēε(tε, qε) → Ē0(t, q) as ε→ 0+. (5.35)

Proof. Let q =: (u, ζ,π) and qε =: (uε, ζε,πε). Being uniformly stable with respect to (Eε) and (Sε), the
sequence (tε, qε) satisfies the assumptions of Lemma 5.2 which we apply now with the choice ǔ = u, ζ̌ = ζ
and π̌ = π. Hence there exist q̌ε = (ǔε, žε) = (ǔε, ζ̌ε, π̌ε) ∈ Q with π̌ε = πε − π̌ − π = πε such that

q̌ε
∗
⇀ q in Q,

lim sup
ε→0+

[
Ēε(tε, q̌ε) + R(q̌ε−qε)

]
≤ Ē0(t, q). (5.36)

By the stability of (tε, qε) with respect to (Eε) and (Sε) we have

Ēε(tε, qε) +

∫

ΓC

κ0
2
|∇

S
πε|2 dH

2 ≤ Ēε(tε, q̌ε) +

∫

ΓC

κ0
2
|∇

S
π̌ε|2 dH

2 + R(q̌ε−qε)

= Ēε(tε, q̌ε) +

∫

ΓC

κ0
2
|∇

S
πε|2 dH

2 + R(q̌ε−qε)

from which we get
Ēε(tε, qε) ≤ Ēε(tε, q̌ε) + R(q̌ε−qε)

which, together with (5.36) gives
lim sup
ε→0+

Ēε(tε, qε) ≤ Ē0(t, q).

Hence (5.35) follows from the inequality above and an adaptation of Lemma 5.1 to Ēε.

By [50, Proposition 2.2] we get that Lemma 5.2 implies property (2.11) of [50], namely

Conditioned upper-semicontinuity of stable sets:

- for any uniformly stable sequence (tε, qε) w. r. to (Eε) and (Sε) such that

(tε, qε)
∗
⇀ (t, q) in [0, T ]× Q we have that q ∈ S0(t).

(5.37)

The existence of energetic solutions associated with the functionals Eε and R, for fixed ε > 0, has been
proven in [60]. An alternative proof could be made as in [21, Theorem 5.4], based on a general existence
theorem of Mielke [46], see also [19, 44, 50].

We are now in a position to state our main dimension reduction result.

Theorem 5.5 (Convergence as ε→ 0). Let q0 = (u0, z0) ∈ Q and, for any ε > 0, q0,ε = (u0,ε, z0,ε) ∈
Sε(0) with q0,ε

∗
⇀ q0 and Eε(0, q0,ε) → E0(0, q0) as ε → 0, let further qε = (uε, zε) : [0, T ] → Q be an

energetic solution to the problem (Q,Eε,R, qε(0)). Then there exist q = (u, z) : [0, T ] → Q such that, up
to a subsequence,

Eε(t, qε(t)) → E0(t, q(t)) for every t ∈ [0, T ], (5.38a)

R(zε(t)−zε(0)) → R(z(t)−z(0)) for every t ∈ [0, T ], (5.38b)

∂tEε(·, qε(·)) → ∂tE0(·, q(·)) in L1(0, T ), (5.38c)

ζε(t)
∗
⇀ ζ(t) in L∞(ΓC) for every t ∈ [0, T ], (5.38d)

πε(t) → π(t) in W 1,2(ΓC;R
2) for every t ∈ [0, T ], (5.38e)

uε(t)⇀ u(t) in W 1,2(Ω1∪Ω2;R
3) for every t∈[0, T ]. (5.38f)

Moreover, any q obtained in this way is an energetic solution to the problem (U×Z,E0,R, q0).
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Proof. Since t 7→ qε(t) = (uε(t), zε(t)) is an energetic solution and the power is controlled uniformly in ε,
cf. (5.32), by a Gronwall-inequality argument, it can be shown (see [19, 44, 50]) that for every t ∈ [0, T ]
the sequence Eε(t, uε(t), zε(t)) is bounded uniformly in ε; hence in particular (t, qε) is a uniformly stable
sequence. Hence, from the uniform coercivity of Eε(t, ·, ·) and Korn’s inequality (see (5.29)), we have
that, for every t ∈ [0, T ]

(πε(t)) is uniformly bounded in W 1,2(ΓC;R
2),

(uε(t)) is uniformly bounded in W 1,2(Ω1∪Ω2;R
3),

and, but this is trivial since ζε ∈ [0, 1],

(ζε(t)) is uniformly bounded in L∞(ΓC).

By applying a Helly’s type theorem (namely [50, Theorem A.1]) to the sequence (zε) = (ζε,πε), we have
that there exist ζ ∈ L∞(ΓC) and π ∈ W 1,2(ΓC;R

2) such that, up to a subsequence (not relabeled)

ζε(t)
∗
⇀ ζ(t) in L∞(ΓC), (5.39)

πε(t)
∗
⇀ π(t) in W 1,2(ΓC;R

2) (5.40)

for every t ∈ [0, T ]. We have thus proven (5.38d) and the weak convergence in (5.38e).
Moreover, for every t ∈ [0, T ] there exists a subsequence (εt) such that

uεt(t)⇀ u(t) in W 1,2(Ω1∪Ω2;R
3), (5.41)

and
θ(t) := lim sup

ε→0+
∂tEε(t, qε(t)) = lim

εt→0
∂tEεt(t, qεt(t)). (5.42)

From (5.39), (5.40), (5.41), (5.42) and Lemma 5.3 it follows that

θ(t) = ∂tE0(t, u(t), z(t)), (5.43)

from which (5.38c) follows. By [50, Theorem 3.1] and its proof we deduce that q(t) := (u(t), z(t)) is an
energetic solution to the problem (U×Z,E0,R, q(0)). By the stability inequality for the limit problem
and the strict convexity of the map u 7→ E0(t, u, z), the function u is uniquely determined by z. Hence
the convergence in (5.41) holds for the whole (sub)sequence ε, that is (5.38f).

Let us prove (5.38b). Since (uε, zε) is an energetic solution, from the energy balance follows that
DissR(zε, [0, t]) < +∞. Hence, by definition, for any partition {tj : j = 1, . . . , N} of [0, t] we have

N∑

j=1

R(ζε(tj)−ζε(tj−1),πε(tj)−πε(tj−1)) < +∞

which implies that the map t 7→ ζε(t) is non-increasing for the partial ordering “≤ a.e.”, hence ζε(t) −
ζε(0) ≤ 0 a.e. on ΓC. Then, by (5.39) and (5.40) we have

R(ζε(t)−ζε(0),πε(t)−πε(0)) =

∫

ΓC

a(ζε(0)−ζε(t))+σyield|πε(t)−πε(0)| dH
2 → R(ζ(t)−ζ(0),π(t)−π(0))

that is (5.38b).
Let us prove the strong convergence in (5.38e). Since, as already remarked, q(t) = (u(t), z(t)) is an

energetic solution to the problem (U×Z,E0,R, q(0)), then the energy balance

E0(t, q(t)) + DissR(z, [0, t]) = E0(0, q0) +

∫ t

0

∂sE0(s, q(s)) ds
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holds true. On the other hand, by the definition of Ē and since qε = (uε, zε) is an energetic solution to
the problem (Q,Eε,R, qε(0)), for any ε > 0 we have also

Eε(t, qε(t)) + DissR(zε, [0, t]) = Eε(0, q0,ε) +

∫ t

0

∂sEε(s, qε(s)) ds. (5.44)

Substituting

Eε(t, qε(t)) = Ēε(t, qε(t)) +

∫

ΓC

κ0
2
|∇

S
πε|2 dH

2

in (5.44) we find
∫

ΓC

κ0
2
|∇

S
πε|2 dH

2 = Eε(0, q0,ε)− Ēε(t, qε(t)) + DissR(zε, [0, t]) +

∫ t

0

∂sEε(s, qε(s)) ds.

Taking the limit as ε→ 0+ and observing that

— Eε(0, q0,ε) → E0(0, q0) by assumption,

— Ēε(t, qε(t)) → Ē0(t, q(t)) by Lemma 5.4 (the fact that (t, qε) is uniformly stable has been remarked
at the beginning of the proof),

— DissR(zε, [0, t]) → DissR(z0, [0, t]) which easily follows by (5.38b),

—
∫ t

0
∂sEε(s, qε(s)) ds →

∫ t

0
∂sE0(s, q(s)) ds by (5.38c)

then we have

lim
ε→0+

∫

ΓC

κ0
2
|∇

S
πε|2 dH

2 = E0(0, q0(t))− Ē0(t, q(t)) + DissR(z0, [0, t]) +

∫ t

0

∂sE0(s, q(s)) ds

= E0(0, q(t))− Ē0(t, q(t)) =

∫

ΓC

κ0
2
|∇

S
π|2 dH

2.

Together with the weak convergence, already proven, this implies the strong convergence stated in (5.38e).
Finally, (5.38a) follows by the convergence Ēε(t, qε(t)) → Ē0(t, q(t)), the definition of Ēε and the

strong convergence of πε to π.

Arguing as in Section 4 we can provide a purely 2D formulation of the limit problem on ΓC in which
the stored energy is

Ê0(t, ρ, ξ, z) :=





1

2

∫

ΓC

∑

ℓ=1,2

(hℓ
2
C

0ẽ(ρℓ+ρD):ẽ(ρ
ℓ+ρD) + (−1)ℓ+1h

2
ℓ

8
C

0ẽ(ρℓ+ρD):∇2(ξℓ+ξD)

+
h3ℓ
24

C
0∇2(ξℓ+ξD):∇2(ξℓ+ξD)− ϕ0

3(ξ
ℓ+ξD)− ϕ0

α(ρ
ℓ
α+[ρD]α) + ϕ1

α
∂

∂xα
(ξℓ+ξD)

)

+ζ10(qτ )κτ
∣∣ρ1−ρ2−π

∣∣2 + ζ10(qν)κν
∣∣ξ1−ξ2

∣∣2 dH
2 if (ρ, ξ, ζ) ∈ ÂKL

ad,

+∞ else,

where

ÂKL

ad :=
{
(ρ, ξ, ζ) ∈W 1,2(ΓC;R

2)2 ×W 2,2(ΓC)
2 × L∞(ΓC) : 0 ≤ ζ ≤ 1, ξ1 ≥ ξ2 a.e. on ΓC,

z|ρ1 − ρ2| = 0 if qτ < 0, z(ξ1 − ξ2) = 0 if qν < 0,

ρℓ|γDℓ
= 0, ξℓ|γDℓ

= ∇ξℓ|γDℓ
· ν = 0 a.e. on γDℓ, ℓ = 1, 2

}
,

and the dissipation R is given in (5.1b).
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[59] T. Roub́ıček, M. Kruž́ık, J. Zeman: Delamination and adhesive contact models and their mathematical
analysis and numerical treatment. In: Math. Methods and Models in Composites (Chap.9). (V. Mantič, ed.)
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