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Making Substitutions Explicit in SASyLF"

Michael D. Ariotti & John Tang Boyland
Department of EE & Computer Science
College of Engineering and Applied Science
University of Wisconsin—Milwaukee
Milwaukee, Wisconsin, USA
{ariotti, boyland}@uwm.edu

ABSTRACT

SASyLF is an interactive proof assistant whose goal is to teach:
about type systems, language meta-theory, and writing proofs in
general. This software tool stores user-specified languages and
logics in the dependently-typed LF, and its internal proof structure
closely resembles M. This paper describes a new usability feature
of SASyLF, “where” clauses, which make explicit previously hidden
substitutions that arise from case analyses within a proof. The
requirements for “where” clauses are discussed, including a formal
definition of correctness. The feature’s implementation in SASyLF
is outlined, and future extensions are discussed.

KEYWORDS
SASyLF, proof assistant, education, unification, LF, M

1 INTRODUCTION

SASyLF [1] is an interactive! proof assistant whose goal is to teach:
about type systems, language meta-theory, and writing proofs in
general. Originally designed and developed by Jonathan Aldrich
and others, it is currently maintained by John Tang Boyland, who
uses the assistant with students to teach courses on type systems.

To facilitate its purpose, SASyLF’s language is close to what
would be written in language descriptions and proofs on paper.
Furthermore, the errors it generates are as descriptive and local to
the cause as possible, often offering suggestions for correction.

Like its older brother Twelf [6], SASyLF stores logical infor-
mation in the dependently-typed LF [2]. Unlike Twelf, SASyLF’s
internal proof structure closely resembles M [8]. SASyLF owes
much to these previous works.

The SASyLF user describes a language or logic via an abstract
syntax and a set of judgments, where each judgment is defined with
a form and a set of inference rules.

After an object language is thus described, the user can write the-
orems about its meta-theory. Each theorem is represented with the
form Vx;:71.Vx2:12. - - - .Vxp:7,.3y: 7, and must be proven with
a total recursive function, defined by cases on the inputs—as de-
scribed by Schiirmann [8].

For a given theorem, these inputs x7:71,x2: 72, . . ., X : Ty, TEpre-
sent initial assumptions, forming a local context I to the theorem,
similar to how formal parameters are treated as local variables in a

“The authors would like to thank the anonymous reviewers for their helpful comments.
ISASyLF was not originally interactive. It has been made so through a plugin for Eclipse.
This plugin, along with the command-line version of the tool and the documentation
and source for both, are available at http://github.com/boyland/sasylf.
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programmatic function. For a theorem to be applicable to the entire
object language, these inputs should be written with meta-variables.

Assumptions in SASyLF are represented in LF, and since LF is
dependently typed, often 7; depends one or more previous inputs
XjiTj, where j < i. Thus, some inputs are syntactic constructs
(which have no dependencies), while others can be schematic judg-
ments on those constructs.

To prove a theorem, its proof-as-a-function must produce a
derivation d with the same LF type 7 as y for every possible set
of inputs. (Again like a programmatic function, only the type of
the output is enforced. The form of the LF term which has that
type, and the method of its creation, are in the hands of the proof
function.) The SASYLF proof-writer has the following techniques?
available for employ on the path to producing d:

(1) The construction of a derivation via application of (a) infer-
ence rules in the language description, (b) lemmas or theo-
rems proven prior to this one, or (c) this theorem, through
induction. The arguments to such an application must be
assumptions in the local context T'. In the case of (c), the
arguments must be “smaller” than the current inputs, in a
technical sense familiar to those proving the termination of
recursive functions.

The construction of a derivation via case analysis of a syntax
construct or derivation in scope. This technique is often ap-
plied to an input of the theorem, but a derivation constructed
in the proof can be a case analysis subject as well. Also, a
case analysis need not be the final construction of a proof;
the proof can continue after the analysis is finished.

(3) For a theorem which allows hypothetical contexts—i.e., its
local context I' can be assumed to contain other assumptions
than those explicitly listed as input—its proof is allowed to
extend T’ with further hypothetical assumptions, as opposed
to the explicit constructions described in (1) and (2), and (4).
Related to (3), the construction of derivations through ma-
nipulation of the hypothetical context, taking advantage of
the fact that object variables are represented internally by LF
variables, via HOAS [5]: by weakening, by exchange, and
by substitution.

—
S
~

—~
N
=

The semantics of proof by case analysis (2) is the subject of this
paper. In particular it will be shown, as it is by Schiirmann [8], that
a case analysis represents a simultaneous substitution applied to all
assumptions in the context. Described here is a new feature of the
SASyLF language, “where” clauses, which makes these substitutions
explicit.

2Most of these correspond well to proof techniques described by Schiirmann [8].
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terminals lam dot value
true false if then else Bool

syntax

t ::=x | lam x:T dot t[x] | t t
| true | false | if t then t else t

—
1]

=T > T
| Bool

Gamma ::= * | Gamma, x:T

Figure 1: An abstract syntax for 1_,p

In the simplest terms, a theorem is proven along a given branch
of its proof whenever some d: 7 € T (although, sometimes d has to
be explicitly pointed out). However, substitutions resulting from
case analyses can alter what 7 means. By extension, then, “where”
clauses can also make what remains to be proven more transparent>.

The remainder of this section will describe an example language
which will motivate “where” clauses. Section 2 details the require-
ments for the feature, including when “where” clauses are correct,
and section 3 outlines an implementation to fulfill them. Section
4 discusses limitations of the current implementation, along with
other avenues for future work.

1.1 An Example Language

Figure 1 shows the SASyLF description of the abstract syntax (in
familiar BNF) for the simply-typed A-calculus with the addition of
booleans?, A_,p. Terminals of the language are listed explicitly for
the aid of the parser, and the student user. Terms t and types T are
defined. The notation t[x] appearing in the abstraction production
lam x:T dot t[x] means that object variable x may appear free
in term t, and is the very same variable bound in the abstraction.
To use variables, a syntax production must be provided for them.
Furthermore, a hypothetical context Gamma (although the name can
be different) must be defined to contain free variables. Judgments
and theorems which refer to Gamma—the latter corresponding to (3)
in the previous section—do so explicitly, with assumes Gamma.

Figure 2 shows relations written as judgments in SASyLF, the first
describing the operational semantics, and the second describing
the type system, of A_,5. Each judgment is given a name and a
form, followed by a set of inference rules, each of which defines an
instance of the judgment in its conclusion. The typing judgment in
particular depends on the hypothetical context Gamma, though only
T-Abs adds assumptions to Gamma in this language. The remainder
of the rules have been omitted for brevity.

3The first author used SASyLF as a student, and wrote “where” clauses as comments in
every proof for these stated benefits, even before SASyLF could parse or verify them.
4This example language is a reformulation of one from the original SASyLF paper [1],
in combination with languages from Pierce [7].

judgment eval: t -> t

————————————————————————————— E-IfTrue
if true then t2 else t3 -> t2
judgment typing: Gamma |- t : T
assumes Gamma
———————————————————— T-True
Gamma |- true : Bool
Gamma |- t1 : Bool
Gamma |- t2 : T
Gamma |- t3 : T
—————————————————————————————————— T-If

Gamma |- lam x:T1 dot t2[x] : T1 -> T2

Figure 2: Some evaluation and typing rules for 1_,p

1.2 A Proof Example

The proofs for the type soundness of this language—progress and
preservation—can be easily written in SASyLF, following those
written from Pierce [7]. In fact, many of the language meta-theory
proofs in Pierce’s book use only the techniques described in §1.

Figure 3 shows the beginning of a proof of type preservation for
A_B. There are two explicit inputs to the theorem, the derivations
d: Gamma |-t : Tand e: t -> t’. There are also three implicit
inputs—t, T, and t’—which d and e depend upon. The arbitrary
hypothetical context Gamma is not an input to the theorem, but a
repository of hypothetical assumptions which may be extended
during the proof. An oddity in this theorem is that e does not men-
tion or assume Gamma, so in fact t and t’ do not depend on it. Some
proofs of preservation for the simply-typed A-calculus are written
for closed terms—d: * |-t : T in this SASyLF representation—but
writing the theorem with an arbitrary Gamma makes it easier to
apply.

The proof in Figure 3 begins by declaring it will use induction
on derivation d. Semantically this signifies structural induction®,
which means that the user is allowed to apply the theorem being
proved, during its proof, to a subderivation of d with similar LF
type.

The proof proceeds via case analysis® on d. When a case anal-
ysis is performed on a derivation, each the inference rules in the
language description which could have produced that derivation

SSASyLF has different options to allow induction on multiple derivations at once, but
this flexibility is not needed here and is outside of the scope of this paper.

%The two lines use induction on d and proof by case analysis on d: could be
combined with the syntactic sugar proof by inductionond:.
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theorem preservation:
assumes Gamma
forall d: Gamma |-t : T
forall e: t > t’
exists Gamma |- t’ : T.
use induction on d
proof by case analysis on d:

case rule
—————————————————————————— T-True
Gamma |- true : Bool
is
proof by contradiction on e
end case
case rule

d1: Gamma |- t1 : Bool
d2: Gamma |- t2 : T
d3: Gamma |- t3 : T

————————————————————————————————————— T-1f
_: Gamma |- if t1 then t2 else t3 : T
is
proof by case analysis on e:
case rule
———————————————————————————————— E-IfTrue
if true then t’ else t3 -> t’
is
proof by d2
end case

Figure 3: The beginning of a preservation proof for 1_,p

must be addressed with a case. Here, d is a typing derivation, so all
of the language’s typing rules potentially provide cases. Since the
term and type mentioned in d are written without any particular
form, any typing rule could apply’. Many of these cases lead to an
immediate contradiction (such as the T-True case shown), because
of derivation e, also present in the context. This derivation says
t must evaluate, so cases where t is a normal form—such as an
abstraction or true—do not apply to the proof. SASyLF does not
“look ahead” in any part of the proof, however, and these normal
form cases must still be written out.

In the case for T-If, t is the if-expression if t1 then t2 else
t3 (not a normal form), where t1, t2, and t3 are new terms in the
context, with types given by the premises of the rule case. (These
premises are added to the context as well.) Unlike t, the rule case
does not impose any further restrictions on T; the meaning behind
these restrictions are discussed in §2.

The proof immediately proceeds with a case analysis on e, the
evaluation derivation. Again, a case must appear for every evalua-
tion inference rule that applies. But the t ine: t ->t’ has changed
since the theorem began. It can no longer be any term, it must have
the form if t1 then t2 else t3. As a result, not all the evaluation

"With the possible exception of T-Var (not shown), depending on how it is written.
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rules could have produced e here; from Pierce [7], the rules which
apply are E-IfTrue, E-IfFalse, and E-If.

The proof shows the case for the first of the three rules, and
completes the proof of that case in a single step. Notably, none
of the techniques from §1 are used. This is because the required
derivation is already in the context; it just needed to be pointed
out.

It may not be clear why derivation d2 proves this case. The
theorem requires that t’ has type T, but d2 gives the type of t2.
But term t2 became t’ in the inner rule case, E-I1fTrue. This was
required for e to match—i.e., to unify with—the conclusion of the
original rule E-IfTrue in Figure 2.

This lack of clarity—of just what exactly needs to be proven,
and how to get there—stems from the various substitutions going
on “under the hood” of the proof. “Where” clauses, detailed in the
remainder of this paper, bring these substitutions to light.

1.3 A Where Clause Example

Figure 4 shows the same SASyLF proof segment with “where”
clauses added. The single clause for the rule case T-If is not sur-
prising: if rule T-If provides the type for t, then t must be an
if-expression. The evaluation rule E-IfTrue, however, describes
a particular evaluation which imposes further restrictions on t,
and notably relating t2 and t’. The added “where” clauses make
these restrictions clear. From them it can be seen that all previous
derivations that mention t’ are also talking about t2, and vice
versa.

Thus, “where” clauses are a usability feature which require im-
plicit information to be made explicit, for the sake of learning how
to write proofs. As such, they align with SASyLF’s original design
philosophy.

Coq [3] (along with other tactic-based proof systems) generate
some relevant substitutions from an inversion or induction and
make them visible during the interactive proof process. Unlike
this extension of SASyLF, such systems typically do not leave this
information in the proof script stored with the proof.

2 DEFINING CORRECTNESS

These examples have been written to be as clear as possible. In the
wild, the user can write proofs in many correct ways. The burden is
on SASyLF to judge between what is dubious (and try to nudge the
user in a better direction), and what is just wrong (and tell them to
try again).

What does it mean for a “where” clause to be correct? It turns
out this is closely related to what it means for a case analysis to be
correct, and the latter is really three questions:

(1) Which cases apply?

(2) Have all cases been covered?

(3) Are the cases which need to be addressed written correctly
in the proof?

Answering these questions requires a more formal presentation
of SASyLF’s internals than has been given so far, and will lead to
how to determine “where” clause correctness.
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theorem preservation:
assumes Gamma
forall d: Gamma |-t : T
forall e: t > t’
exists Gamma |- t’ : T.
use induction on d
proof by case analysis on d:

case rule
—————————————————————————— T-True
_: Gamma |- true : Bool
where t := true
and T := Bool

is
proof by contradiction on e

end case

case rule

d1: Gamma |- t1 : Bool
d2: Gamma |- t2 : T
d3: Gamma |- t3 : T

————————————————————————————————————— T-If
_: Gamma |- if t1 then t2 else t3 : T
where t := if t1 then t2 else t3
is
proof by case analysis on e:
case rule
———————————————————————————————— E-IfTrue
if true then t’ else t3 -> t’
where t1 := true
and t2 := t’
is
proof by d2
end case

Figure 4: Where clauses added to the proof segment

2.1 LF Representation

In LF terms, the object language description consists of term con-
structors ¢ and type constructors a, both LF constants. The syntax
declaration

t ::=x | lam x:T dot t[x] | t t
| true | false | if t then t else t
corresponds to the LF declarations®
at :: type Ctrue : a4t
Clam : ar — (ay — at) — at Cfalse * 4t
Capp : At — 4t — at Cif : at — at — at — at

There is no constructor for variables x; SASyLF simply associates
the name prefix x with the syntax type at. (Of course, this is en-
tirely separate from the object typing system, which is internally

8The arrow — is used here, and in the example type constructor deyal, because there
are no dependencies between the types of the inputs. In general, II-notation is needed
to describe LF types and kinds which are functions.
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represented as LF dependent types.) In more general terms, a SA-
SyLF syntax declaration creates a type constructor a of LF base
kind type, along with a term constructor c; for every non-variable
production i.

A judgment declaration J, on the other hand, creates a type
constructor aj which is typically not kind type, because the form
of a judgment usually contains meta-variables. For example, the
judgment eval: t -> t creates the constructor

Geval :: at — ag — type

A SASyLF inference rule R is stored as

ai {n}i :: type aj {n}; :: type

aj {n}y :: type

where a; in the conclusion matches the type constructor in the
judgment declaration. If R has any premises (many inference rules
do not), they are also instances of judgments, and not syntax con-
structs on their own. Each set {17} represents a full list of arguments
to its type constructor, hence each derivation has kind type. The
constructors for the premise and conclusion derivations need not
be different (which would correspond to mutually dependent rela-
tions). In fact, they are often all the same, as is the case for both
the typing rules with premises in Figure 2; in each rule, both the
premise(s) and the conclusion have constructor atyping. The omit-

ted evaluation rules for A_,g which contain premises would be
similar.

"R

2.2 Case Analysis Correctness

As mentioned in §1, a SASyLF theorem, together with its proof, is
internally represented as a function. A theorem has inputs x; : 71,
X2:Ty,...,Xn: Ty contained in a local context I', and an output type
T.

A case analysis can be performed on any single syntax construct
or derivation d € T'. A case analysis also has an output derivation
type 7’ which need not be the same® as r; if different, the proof
will continue after the case analysis is finished.

When performed on a derivation!® d : a 7 {71} 4, the cases which
need to be covered are all inference rules in the language description
whose conclusions unify with a; {7} 4. These rules represent all of
the possible final steps in the derivation (or proof) of ay {7} 4. In
general, the context of the case analysis may already imply some
substitutions o as explained presently; these are applied to the
derivation’s type before unification.

Definition 2.1 (Case Analysis Subject)

Letd : aj {}q € T be a derivation on which a case analysis is
performed in a SASyLF theorem. Let o be a set of substitutions in effect
at the location of the case analysis. Then the application o(aj {1}4)
is referred to as the case analysis subject (CAS).

It is possible that the derivations in an inference rule R, as they
are written by the user, share free variable names with the CAS.
Such name clashes carry no semantic meaning, but could interfere

9 All of the case analyses in the example preservation proof begin with proof by case
analysis. The keyword proof is syntactic sugar for spelling out a derivation with
the output type for the theorem, such as _: Gamma |- t”’ : T for the one in Figure 3.
00f course, a case analysis can be performed on a syntax construct as well, such as
t or T from A_,p. Syntax case analyses are outside the scope of this paper, because
where clauses for them would be trivial and redundant.
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with unification, and so should be avoided. To check whether R
needs to be addressed in a case analysis on d then, a copy Ry should
be should be made of R which contains only fresh!! free variables.
If R¢’s conclusion is aj {n}f, then R must be addressed if there
exists a (unifier) substitution o4 such that

oq(ay {n1}r) = oq(o(ay {n1}a)) (1)

In general, unifying with Ry’s conclusion will impose restrictions

on the free variables of the CAS; these are implied by supposing

that the CAS’s proof finishes via R. It is possible that the CAS is

also more specific in some ways than the conclusion of Ry. Thus,
such a unifier o is not always one-directional.

Definition 2.2 (Case Analysis Completeness)
Let o(ay {17}q4) be the CAS of a rule case analysis with output type
t’. Let Ry be a “fresh” copy of inference rule R, such that no variable
names are shared between Ry and the CAS.
The rule case analysis is complete if:
(i) Every rule R is addressed within, such that the conclusion of
its fresh version Ry unifies with the CAS.
(ii) The proof function produces a derivation with type t/ within
each case.

It is possible that no “fresh” rule conclusions unify with ay {7}4;
this means that the complete case analysis has no cases. This is what
occurred in the rule case T-True in Figure 3. In SASyLF, proof by
contradiction on e is syntactic sugar for an empty case analysis
on e. n

This definition answers questions (1) and (2) from the beginning
of this section. What about question (3)? When is a rule case itself
written correctly? As it turns out, there are many ways to write them
incorrectly—that is, in such a way as would introduce unsoundness
into the proof.

Definition 2.3 (Rule Case Conclusion)

Suppose a unifier o exists for fresh version Ry of inference rule R,
satisfying equation (1). Given a user-written rule case R’ addressing
rule R, the conclusion of R’ is referred to as the rule case conclusion
(RCQ).

To be sure that R is sound, o4 must not map any free variables
of the RCC. The substitution o4 can be altered to comply, if it does
not already, in a process described in §3.1. But if 7 cannot be made
to comply with this requirement, this means that the RCC includes
free variables which o is about to substitute away, and this is an
error.

Given a rule case R” and unifier 64 which do not exhibit this error,
a correct rule case for R in a case analysis on d can be computed
with o4(Ry)—that is, Ry with o4 applied to all of its premises and
conclusion. For a user-written rule case R’ addressing rule R to be
correct, then, it must be written in exactly the same way as o4(Ry),
except that free variables can be renamed from one to the other in
a one-to-one fashion.

Definition 2.4 (Rule Case Correctness)
Let R’ be a user-written rule case addressing rule R in a case analysis.
Let aq be a unifier of the CAS and the conclusion of fresh version Ry

1 An easy way to obtain such variables is to create names for them which the user
cannot write.

LFMTP 2017, September 2017, Oxford, UK

of R.

The rule case R’ is correct if:
(i) None of the free variables of the RCC are mapped by o.
(ii) There exists a “bijection” unifier

oc ={ur = wi,ug = wa, - um = W}

such that

R’ = oc(04(Ry)) )
where every u; is a free variable in 04(R¢) and w; is the cor-
responding free variable in R’.

(iii) The free variables w; in the codomain of o do not share names
with other members of the local context T. (This would imply
relationships between R’ and those members which may not
be sound.)

The meaning behind the bijection unifier o, is that a correctly-
written rule case R’ represents exactly the level of restriction on the
free variables of the CAS which is required by supposing inference
rule R is the last rule applied in the CAS’s proof.

If a unifier o, exists, but it is not a bijection, it is either because
R’ is “too general” (it does not impose enough restrictions on the
free variables of the CAS), or because R’ is “too strict” (it imposes
too many). The former occurs if R’ contains free variables which
are not needed—that is, they stand for elements of o4(Ry) which
are already known to be more specific than the variable chosen.
This includes when multiple free variables in R’ are used to stand
for a single free variable in o4(Ry). On the other hand, R’ is “too
strict” when a free variable should have been used in R’, to allow
flexibility in what the variable stands for in ad(Rf), but it was not.
This includes when the same variable is used twice in R’, when
two different variables should have been used. If R is too strict, an
error is generated; if too general, a warning. Both possibilities can
occur in one incorrectly written rule case; if this occurs, SASyLF
reports the error.

If no unifier o, exists at all between Rf and R’, then rule case R’
does not address inference rule R, and SASyLF asks the user to try
again. .

This definition of correct rule cases sheds light on the nature of
the substitutions which arise from them.

Suppose rule case R’ is written correctly to address inference rule
R, and so a bijection unifier o, exists. By equation (2), considering
only the conclusions of R” and o4(R ), the RCC can be described as

RCC = aclog(ay {71}f)) ®3)

where aj {7}s is the conclusion of Ry. Equations (1) and (3) then
combine to form

RCC = oc(oy(o(ay {n1}a)) = (oc 0 og)olay {1}a))  (4)
Recall that o(a; {77}4) is none other than the CAS.

Definition 2.5 (Rule Case Substitutions)
The set of substitutions imposed by a correctly written rule case R’
whose conclusion satisfies equation (4) is

AN
oy ={v >N} € (0c00y)

where each v is a free variable of the CAS, is a one-way unifier from
the CAS to the RCC.
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This unifier oy, represents the restrictions imposed on free vari-
ables v of the CAS as a consequence of addressing inference rule R
particularly with rule case R’. The composition o, o 67 may contain
mappings from free variables of R¢, but these are irrelevant to the
unification of the RCC and the CAS, and by extension the remainder
of the proof; because of this, these mappings are not included in
Oy.

The restrictions described by oy, do not only affect the CAS;
they affect every member of the local context I' containing free
variables in o;,’s domain. In essence, oy, = {v — 75, } instantiates
all appearances of every free variable v across members of I' with
the more specific expression 7,; as a consequence, the v’s should
“disappear” inside the scope of rule case R’.

Furthermore, this substitution effect is cumulative with succes-
sive, nested case analyses. If a case analysis is performed inside the
first, another unifier oy, is exists for each case, and o}, is applied
to all elements of oy, I'. In other words, inside the inner case, the
substitution o}, o oy, is applied to all elements of I'.

Definition 2.6 (Local Context Substitutions)
Let T be the initial local context of a SASyLF theorem (i.e., the theo-
rem’s inputs). At a location L of the theorem’s proof, assume

k.. 2 1

0,,, 0,

Lo u-u

us s

are substitutions imposed by k nested case analyses whose syntactic
context encompasses L, where o, represents the substitution for the
case at outermost scope. These nested case analyses imply a succession
of composed unifiers

A
c20koodloa] )

which is applied to each member of T, as well as to any new member
of the local context which yet remains.

Therefore, o as it appeared in equations (1) and (4) represents the
successive composition of substitutions implied by all cases, or other
statements (such as inversions) that cause variable substitution,
whose syntactic context encompasses rule case R’.

The presence of such outer-scope substitutions is why, for ex-
ample, the inner case analysis on e in Figure 3 requires cases only
for rules E-IfTrue, E-IfFalse, and E-If, and not for all of the
evaluation rules of A_,g. n

It is noted above that the RCC must not mention any free vari-
ables mapped by ¢,;. Furthermore, the existence of a bijection unifier
oc as defined above implies that the RCC does not mention any
free variables mapped by o, either. Additionally, the RCC must not
reuse any free variables mapped by o if it does, this is always an
error, for o cannot be altered.

In summary, following are the requirements for a correct rule
case analysis, written as answers to the questions posed at the
beginning of the section. In accordance with the observation above,
a substitution o is assumed to be in effect due to (enclosing) case
analyses currently in scope; 0 = @ at the outset of a proof. Also
assume a local context T'. Finally, assume the subject of the case
analysis is derivation d : aj {7j}4 € T, and the output of the case
analysis is of type 7’.

(1) An inference rule R (as opposed to syntax productions, for
a syntax case analysis) applies to the case analysis if the
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conclusion of a “fresh” version Ry unifies with o(aj {77}q)
via unifier 0.

(2) All cases are covered when each rule from (1) has a correctly
written rule case, followed by the production of the target
derivation being proved by the case analysis.

(3) A rule case R’, addressing inference rule R, is written cor-
rectly if:

(a) There exists a “bijection” unifier o, which maps free vari-
ables of o4(Ry) to free variables in R’. The codomain of
oc must be disjoint from T'.

(b) The conclusion of R’ (the RCC) does not mention any free
variables which have been substituted away by enclosing
cases, including R’ itself. That is,

RCC = ¢(RCC) = 04(RCC) = 0c(RCC)

To show the meaning of requirement (3b), consider the RCC for
the inner rule case T-If in Figure 3

if true then t’ else t3 -> t’
If this RCC had been written either as
if true then t2 else t3 -> t’
or as
st >
neither would satisfy this last requirement. The term t was sub-
stituted away in an outer case (via o), while t2 is about to be
substituted away in this case (via oy, C o © 0y).
Interestingly, requirement (3) allows the user to rename free
variables of the CAS when writing the RCC, as long as the new
names are not already members of T.

2.3 Where Clause Correctness

Before correctness for “where” clauses is defined, it is important
to note that unlike case analysis correctness, “where” clauses have
no effect on the semantics or soundness of the proof in which
they appear. That is, if correctness for these clauses is incorrectly or
insufficiently defined or implemented, the soundness of current and
future SASyLF proofs are not affected. An exception to this is the
inversion construct; “where” clauses associated with inversions
could have semantic effect on the remainder of the proof. For now,
“where” clauses for inversions are left to future work.

The notion of “where” clauses benefits from the more formal de-
scription of case analyses in the previous section. Specifically, these
clauses must be written to make explicit the restrictions imposed by
substitutions o. There are several considerations which complicate
the requirements for “where” clauses. They are addressed in the
following sections.

2.3.1 Nested Case Analyses.

For a single case analysis, there is only one oy, in the composition o.
For nested case analyses, however, there are multiple substitutions
in play; which should correct “where” clauses represent? Looking
back at the definition of ¢ (5), there are two viable options.

The clauses could represent the full substitution 0. However, they
are more succinct if they describe only cr,]f, the last substitution
imposed by a case. In other words, the latter version of “where”
clauses describes only the most recent restrictions, as opposed to
repeating old information. Thus, this more succinct version is the
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(<CASE> <RULE>

(<ID> ":" <EXPR>)* // premises
<BAR>
<ID> ":" <EXPR> // conclusion
(<WHERE> <LHS> ":=" <RHS>
(<AND> <LHS> ":=" <RHS>)#*)?
<IS>

(<DERIVATION>)+ // continuation of proof
<END> <CASE>)*

Figure 5: The abstract syntax of cases in a rule case analysis,
including the addition of “where” clauses

one implemented in the new version of SASyLF. For example, the
nested case E-IfTrue in Figure 4 could have (only) the clause

where t := if true then t’ else t3

which reflects the entire composition o of substitutions for this rule
case; but it is more useful to require clauses that represent only the
newest mappings:

where t1 := true and t2 := t’

2.3.2  SASyLF Syntax.

Chief among remaining considerations is how correct “where”
clauses should fit into SASyLF’s abstract syntax, including the form
of the clauses themselves. In Figure 4, they immediately follow an
RCC and precede is; this syntax is generalized!? in Figure 5. This is
the ideal location for the clauses in the code, because they describe
substitutions which occur as a result of the RCC; in particular, the
right-hand sides of the clauses must all appear in the RCC. Further-
more, the “where” clauses are listed just before the section of the
proof affected by the substitutions they describe, similarly to way
“let”-bindings appear in other languages.

2.3.3  Familiarity.

Another consideration is that “where” clauses must only ever list
variables and expressions which have already been seen in the proof
text. They must never introduce anything new; the clauses should
decrease confusion, not increase complexity. "Where” clauses are in-
tended to describe oy, = {v — 7}, where the ¥’s are free variables
in the CAS. Therefore, the left- and right-hand sides (<LHS>, <RHS>)
of a correct clause must correspond to the “unparsed” (concrete
syntax) versions of LF expressions v and 1, respectively.

2.3.4  First- vs. Second-Order Left-Hand Sides.
For first-order “where” clauses, the left-hand side must simply be
the concrete name represented by v. SASyLF includes support for
second-order'® (and no higher) free variables, and “where” clauses
describing substitutions on them are slightly more verbose. Figure 6,

12The syntax shown in Figure 5 is adapted and (greatly) simplified from SASyLF’s
parsing specification.
13S ASyLF stands for Second-order Abstract Syntax Logical Framework.

lemma substitution-preserves-typing:
assumes Gamma
forall di1: Gamma |- t1 : T1
forall d2: Gamma, x:T1 |- t2[x] : T2
exists Gamma |- t2[t1] : T2.
proof by induction on d2:

case rule
————————————————————————————— T-True
_: Gamma, x:T1 |- true : Bool
where t2[x] := true
and T2 := Bool

is
proof by rule T-True

end case

Figure 6: A lemma with second-order free variables

showing the beginning of a familiar lemma'4, also shows a simple
second-order “where” clause:
where t2[x] := true

Whenever a second-order free variable v appears in SASyLF’s
syntax, it is immediately followed by explicit arguments, each en-
closed in []. At the object language level, if such an argument is a
bound variable x, it acts as a visual marker that the bound variable x
may be free in the object term represented by v (as described in §1.1).
Internally, this [] notation is represented with an LF application
with v at the head. The left-hand side of v’s “where” clause must list
v’s arguments as they appear in the CAS, modulo a-equivalence of
the whole clause and the original mapping v — 1. In the above
example, it would be inaccurate to allow

where t2 := true

letting the [x] be forgotten.
For a less simple example, suppose the LF mapping
t2 - Ay:at.(c1am T Az:ac.(t21y 2))

is present in oy, for a given rule case!®. Then

where t2[x] := lam x’:T1’ dot t21[xJ[x’]
is a correct “where” clause representing this mapping. By a-equiv-
alence,

where t2[x’] := lam x:T1’ dot t21[x’]1[x]
is also correct, but

where t2[x] := lam x’:T1’ dot t21[x’]1[x]
is not, because this right-hand expression is not the same as the LF
expression above (t21 z y is not the same as t21 y z, all else being
equal). Neither is

where t2[x] := lam x:T1’ dot t21[x][x]

correct, because the LF bound variables in the mapping are distinct.

4The so-called “substitution lemma” [7] is not actually required to prove complete
type preservation for A_,g in SASyLF; the by substitution construct may be used
instead.

15This could occur in the substitution lemma, in the case for rule T-Abs (not shown).
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2.3.5 Optional Presence.

A final consideration regarding “where” clause correctness is that
their presence in the code must be optional. Proofs for complex
object languages can be lengthy, with many nested case analyses;
not every “where” clause in these proofs may be helpful, especially
for the advanced user writing them. For novice users, however,
being forced to write correct “where” clauses is a boon. For these
users, writing the clauses demonstrates their understanding of the
substitutions they describe, and having this information visible in
the code makes continuing the proof more straightforward.

2.3.6 Summary of Requirements.
In summary, given a set of substitutions o in effect at the beginning
of a case analysis, a (correct) rule case R’ in that analysis, and a set
of new restrictions o, imposed by R’, “where” clauses for R’ are
correct if:

(1) Each clause represents a distinct mapping in oy, instead of a
mapping from the combined substitution oy, o 0.

(2) The left-hand and right-hand sides of a clause representing
a mapping (v — ny) € oy must be the concrete syntax
representations of LF expressions v and 7, respectively.
For second-order free variables v, a list of arguments each
enclosed in [] must follow v’s name on the left-hand side.
Clauses representing mappings a-equivalent to v > 1, are
allowed.

In addition, incorrectly written “where” clauses must always yield
errors, but mappings in o, which lack clauses should only yield
errors if an option making the clauses mandatory is enabled.

3 IMPLEMENTATION

Much of the infrastructure needed to verify “where” clauses was
already present in the SASyLF system prior to the feature’s addi-
tion. This includes LF-expression unification!® and case analysis
verification.

3.1 Rule Case Verification

Case analysis verification in SASyLF includes tracking and applying
CAS-RCC unifiers o, to members of contexts I' as necessary. To
accomplish this, SASyLF parses an abstract syntax (sub)tree (AST)
from a theorem and proof in the source, which is traversed in depth-
first fashion, visiting children in the order they appear in the source.
The root of proof subtree P is associated with an empty substitution
o. Every case analysis in the proof represents a subtree of P. When
a case node is entered, a new substitution o « oy, o o is created
for that node. After verification on the case node is complete, its
parent’s ¢ is restored. When x:7 € T are accessed at any node
of the proof, the ¢ associated with that node is applied to 7 first.
All of this machinery was in place before “where” clauses were
conceived; these substitutions play a critical role in SASyLF’s proof
verification process.

A side effect of adding the new feature to SASyLF was looking
more closely at this implementation; the results of this research
are summarized in §2.2. Errors were found in the verification of
rule cases, in particular relating to the use of free variables. Prior to

16SASyLF implements Nipkow’s unification algorithm [4], with additional conservative
heuristics for unifying non-pattern applications.
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this work, cases which were “too general” or which included free
variables about to be substituted away sometimes went undetected.

Following is a description of the of new process for rule case ver-
ification, which refers to the work in §2.2. For this process, assume
that once an error is reported, the procedure is finished; further
errors are not sought. When verifying a rule case R’ addressing
inference rule R, the first step is to check that R’ = o(R’), where
o is the composition of substitutions in effect at the outset of the
case analysis. If this equality fails, the error is reported.

Next, o4 is computed by unifying the CAS (to which ¢ has al-
ready been applied) and the conclusion of a fresh instance Ry of the
rule R. If this unification fails, it is reported that R’ is unnecessary.
Otherwise, a4 is “rotated” to preserve (not map) free variables of
the RCC (the conclusion of R’).

This rotation of a substitution is generalized in an algorithm
called SELEcTUNAvVOIDABLE. This algorithm takes as input a substi-
tution o and a set of free variables V. Each free variable v € V is
checked if it can be “avoided” by c—i.e., removed from the domain
of o, if present there. For each v. this is possible (1) if v is not in
the domain of o to begin with, or (2) if o(v) = 1, is n-equivalent
to a free variable z ¢ V. In the latter case, the mapping v - 1, is
“rotated” to become z + v, altering o as a side effect. This rotation
is nontrivial in general, and can affect the other mappings in o via
composition with the new one. After all v € V have been checked
in this way, the algorithm returns a set of free variables S C V,
those which could not be avoided.

The specific rotation of o7 above is achieved by gathering the free
variables of the RCC into a set V and executing SELECTUNAVOID-
ABLE(0y, V). If the resultant set S is not empty, R’ is unsound. Oth-
erwise, the substitution o resulting from this operation is applied
to produce the correct rule case candidate o4(Ry). Unification is
attempted with this candidate and R’. If it fails entirely, R’ does not
correctly address R. If a unifier o, is found, SELECTUNAVOIDABLE is
executed on it twice to establish a bijection (the order of the two
executions matters): first avoiding the free variables of Ry, then
avoiding the free variables of R’. If the resultant set S from the first
execution is non-empty, then R’ is “too strict” If S from the second
execution is non-empty, then R’ is “too general”” If both executions
return empty sets, the codomain of o, is intersected with the local
context I'; if the result not @, an error is generated. Otherwise, R’
is correctly written, and oy, is the set of all mappings in o, o oy
which act on free variables of the CAS.

3.2 Where Clause Verification

To verify “where” clauses, the new version of SASyLF parses each
of the user-written clauses into two LF expressions (the left and
right sides). It then matches them, via LF expression equality, to
mappings in oy,. (If the rule case is not correct and oy, does not exist,
“where” clauses for that case are not verified.)

For second-order “where” clauses, arguments in [] are parsed
from the left-hand side into a list of variable bindings; these are
made available when parsing the right-hand side, as if bound on
that side. The user’s right-hand LF expression is then wrapped with
lambda abstractions corresponding to the left-hand arguments;
the last argument forms the first wrapping, and so on. The right-
hand side is then verified via LF expression equality just as with a
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first-order clause, and a-equivalence is allowed. If the user gives
non-variable arguments, not enough arguments, or too many, ap-
propriate errors are given. A special error is generated if there are
arguments on the left-hand side of a first-order clause.

4 FUTURE WORK

The primary avenue for future work with “where” clauses should
be usability testing with actual users, preferably students learning
to use SASyLF and to write sound proofs. The feature seems worthy
of inclusion (and has led to many interesting subproblems and bug
fixes), but it is not currently known whether student users will find
“where” clauses helpful or obtrusive.

4.1 Current Limitation

There is one major limitation to the current “where” clause imple-
mentation: SASyLF does not verify “where” clauses when changes
occur in the hypothetical context from a CAS to the RCC. This is
due the way these contexts are internally represented, via additional
abstractions wrapped around an LF expression in the context. There
are potential plans to revamp this representation, which would also
change the way these clauses are handled.

4.2 Extensions

The new version of SASyLF parses the user’s “where” clauses to
LF, and verifies them at that level. An extension of this feature is
to produce the concrete clauses internally and insert them into the
user’s code; this can be accomplished with an Eclipse “Quick Fix”
option. The cases for a case analysis can already be generated and
inserted in this way, which is similar to a feature described in the
original SASyLF paper [1].

Another extension for “where” clauses lies with inversions, a
feature in SASyLF which allows the proof-writer to perform a case
analysis with exactly one applicable case in-line. This construct
immediately alters the local substitution o, and this alteration re-
mains in effect until the end of the given case in a proof. In this way,
the inversion construct behaves similarly to a “let” construct in
other languages. Because of the alterations to o, inversions should
include “where” clauses just as rule cases do. In fact, the clauses may
be even more important for inversions, since they do not explicitly
list an RCC in their syntax.

5 CONCLUSION

“Where” clauses in SASyLF provide a means of making previously
hidden substitutions in a proof explicit to the user. These substi-
tutions represent restrictions that occur when answering a case
in a case analysis, and have a pervasive effect on the remainder
of the proof within that case. Making these substitutions explicit
should make learning to write proofs with the assistant easier for
student users, and thus aligns with SASyLF’s education-focused
design philosophy.
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ABSTRACT

Under the Curry-Howard isomorphism, modal operators corre-
spond to the type of closed code. Nanevski et al. generalized this
result and proposed the contextual modal type theory. They intro-
duced the notion of context that corresponds to free variables of
code. Therefore the contextual modal type theory treats open code.

This paper provides another formulation of contextual modal
type theory: Kripke-style contextual modal type theory. Our type
system is based on the Kripke-style formulation of modal logic,
whereas the original system is based on the dual-context formula-
tion. The resulting system has Lisp-like quasiquotation, and hence
we expect that KCMTT is adequate for the basis of syntactical
metaprogramming,.

KEYWORDS

Contextual Modal Type Theory, Lambda Calculus, Modal Logic,
Metaprogramming

1 INTRODUCTION

The theory of modal calculi, which corresponds to intuitionistic
modal logic through the Curry-Howard correspondence [11], have
been studied since 1990s [1, 6, 8, 9]. It is known that some modali-
ties correspond to types of closed code, that is, code without free
variables. For example, the type OA represents closed code that will
be evaluated to the value of type A. From this perspective, modal
calculi have been studied as a foundation for staged computation
and run-time code generation [3].

The main restriction of modal calculi is that they can manipulate
only closed codes. Nanevski et al [7] proposed a solution to this
problem, as Contextual Modal Type Theory(CMTT). Contextual
modal types are a generalized notion of modal types. They are al-
lowed to have an environment in a modal operator. For example, the
type [x: A, y: B]C represents code that will be evaluated to the value
of type C, under the environment x: A, y: B. As you can see, modal
types are the special case of contextual modal types, where envi-
ronments are always empty (and therefore code is closed). CMTT is
based on Pfenning and Davies’ dual-context modal type system [8]
(we borrow the name ’dual-context’ from Kavvos [4]). Their modal
type system corresponds to S4 modal logic, and therefore CMTT
corresponds to S4 modal logic.

In this paper, we propose another type system for CMTT. To
distinguish from the original CMTT, we call our type system as
Kripke-style CMTT (KCMTT). As the name shows, KCMTT is a
generalization of the Kripke-style modal type system[3, 6, 9], where
contexts form stack and terms have Lisp-like quasi-quotation. As a
result, KCMTT provides four variations that correspond to K, T, K4,
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S4 respectively. KCMTT is different from the original CMTT at this
point. The following table shows the position of KCMTT among
related work.

Modal Type | Contextual Modal Type
Dual-Context (8] (7]
Kripke-Style [6, 9] KCMTT

The paper is structured as follows. In Section 2, we provide
Kripke-style contextual modal logic, which is the logic part of
KCMTT. In section 3, we give the definition KCMTT in detail and
show fundamental properties. Finally, we discuss future work and
our motivation for KCMTT.

2 KRIPKE-STYLE CONTEXTUAL MODAL
LOGIC

Before the definition of the type system, we introduce Kripke-style
natural deduction for contextual modal logic(KCML). KCML is a
natural extension of Pfenning and Davies’ [8] Kripke-style modal
logic. The fundamental idea of KCML and Kripke-style modal logic
is the Kripke-style judgment, which has a stack of context.

First, we explain the notion of Kripke-style hypothetical judg-
ment and then construct natural deduction system. We also show
that our system is well-defined, that is, introduction and elimina-
tion rules for contextual modality satisfy local-soundness and local
completeness [8].

2.1 Kripke-Style Hypothetical Judgment

First, we introduce Kripke-style hypothetical judgment, a general-
ization of hypothetical judgment. The idea of Kripke-style hypo-
thetical judgment is not new: Martini and Masini [6] and Pfenning
and Wong [9] initially proposed Kripke-style judgment around the
same time, to construct modal calculi.

In a Kripke-style hypothetical judgment, hypotheses form a
stack, where semicolons separate contexts. We write A, B, ... for
propositions, I for hypotheses, and ¥ for a stack of hypotheses.

L T—t;.. s H A

Informally, this judgment states the following fact from the view-
point of Kripke semantics: for arbitrary world sequence w;,, —
Wyp—1 — ... = wy, the proposition A holds at the world wy if T},
holds in wyy,, I};—1 holds in w,,_1, and so on. When the context
stack has single context, it is equivalent to hypotetical judgment.

In the rest of this section, we construct a natural deduction
system on the Kripke-style hypothetical judgment. First, we define
the following hyp rule, as we can use the assumption in the current
world as the conclusion.

A€eT

h =
Yy 1A
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We construct natural deduction system of KCML in the following
way. First, we define structural properties that Kripke-style judg-
ment should satisfy. Afterward, we add rules for logical connectives
so that those principles are formally proved as metatheory.

First, we define the following substitution principle. The substi-
tution principle states that assumptions in a level can be replaced
with other assumptions when we can conclude all of the former
assumptions from the latter ones. This principle generalizes the
usual substitution principle which substitutes a single variable. This
style is useful when we reason quotations in Section 3.

Substitution Principle If ¥;A;, ..., Ap; ¥ B and ¥;T
A; holds forall 1 < i < n, then ‘I’;F;‘I” ~B.

In addition to substitution principle, we can add two structural
principles imposing some properties of world relations: reflexivity
and transitivity.

As we said before, a stack of context is corresponds to a sequence
of worlds. When the world relation satisfies reflexsivity, any two
adjacent worlds in the stack can be same. Therefore it is natural to
assume that we can merge them.

Reflexive Principle If ¥;T;T; %' - A then W;T,T'; ¥ + A

Same discussion applies when the world relation satisfies transitiv-
ity. In this case, we can insert contexts between adjacent contexts.

Transitive Principle If ¥;T; %' - A, then ¥;...;T;¥ F A

As aresult, we have four variations of logic depending on whether
we assume reflexivity and transitivity of the world relation. In clas-
sical modal logic [5], it is known that K, T, K4, and S4 modal logic
correspond to those properties of the world relation. Therefore we
identify symbols K, T, K4, S4 with those variations. In the rest of
this paper, we write ¥ =g A when we assume no properties of
the world relation. We write ¥ =7 A when we assume reflexivity,
¥ g4 A when we assume transitivity, and ¥ g4 A when we
assume both. We just write ¥ = A when we do not assume those
conditions.

2.2 Kripke-Style Natural Deduction

Now we are ready to construct a natural deduction system for
KCML. For simplicity, we consider the fragment with implication
and contextual modality. Let us denote propositional variables with
P,Q,.... Propositions in KCML are inductively defined as follows.

Context I':=- | AT

Propositions A,B:=P | A— B|[T]A
For a contextual modality [T ]A, we call the formar part context part,
and the latter body part.

Let us define introduction and elimination rules for logical con-

nectives. For implications, their introduction and elimination rules
are almost same as usual hypothetical judgment.

¥, T,AFB

I ¥.;THA-B
¥;T—A—-B

¥;T B

¥,THA

Rules for implications are concerned with only the current world.
Other worlds in the context stack are used only when we use con-
textual modal operator.

The introduction rule for contextual modality is defined as fol-
lows.

Yuito Murase

[ ¥,T'—A
¥+ [T]A
Kripke’s multiple world semantics justifies this rule. Let us think
of a special case where ¥;T; - = A. The current world corresponds
to the arbitrary world next to I', and we can interpret “A holds
for any world next to I'”. By the definition of modal operator in
Kripke’s multiple world semantics, we conclude that “0A holds at
I”. Contextual modality generalizes modal operator to have context.
When we assume neither reflexivity nor transitivity, the corre-
sponding elimination rule is defines as follows. This rule states that
A holds in the next world assuming T’ when [B; ... B,, ]JA holds at
the current world and B; holds in the next world for each i assum-
ing I'. As you can see, introduction / elimination rules for modal
operator interact with context stack by pushing and popping.

¥+ [By...B,lA ¥.THB;forl<i<m
[IE ¥.THA
We can generalize this elimination rules to support reflexivity
and transitivity as follows. Assuming reflexivity, we can identify
the current world as the next world, and this corresponds to the
case | = 0. Assuming transitivity, the Ith next world is also the next
world for [ > 1.

e ¥ b [By,...,Bn]A ¥.T);...;T FBifori<ism
! ¥;I;...;THA

h I=1 forK [=0,1 forT

WRETEY 151 forKa [20 for S4

Pfenning and Davies[8] stated that the elimination rule should
not be too strong or too weak concerning the introduction rule,
and proposed two conditions that introduction/elimination rules
should satisfy: local soundness and local completeness. We should
confirm that introduction/elimination rules for contextual modal
types satisfy these conditions.

Let us think of the case of S4. The same discussion holds for K, T,
and K4. Local soundness is the property that an elimination rule is
not too strong with respect to the introduction rule. This property
is shown by the following local reduction pattern where n > 0.
This pattern demonstrates that we can omit introduction followed
by elimination. D is generated from D and &£, with substitution,
reflexive, and transitive principle.

D
¥Y;Aq,...,Ap, B £
¥+ [Af,...,Apn]B ¥;I;;...; T HFAjfort<i<m
¥;I;;...;IT B

[JE;

UR

I

D
¥;Iy;...;I1 =B
On the other hand, local completeness is the property that an
elimination rule is not too weak with respect to the introduction
rule. This property is shown by the following local expansion pat-
tern. This pattern demonstrates that original judgment (in this
pattern, ¥ = [Ay,. .., A, ]B) can be restored after elimination.
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D
Y+ [Ag,...,An]B
VE
h
D Py AL AL A
[ ¥+ [Ay,...,An]B fori<i<m
! Y. Ay,....,A, B

5+ [A1,....Am]B
We call this natural deduction system KCML, which consists
of Kripke-style judgment, the hyp rule, and the introduction and
elimination rules for implication and contextual modality.

2.3 Fundamental Properties
Tueorem 2.1. (1) ¥ g A= ¥ Fx A forX € {T,K4,54}
QYT A=>¥ g A
B YFgs A= TP g A

Proor. For (1), it easy to show that derivation tree of ¥ g
A is also derivation tree of ¥ Fx A for X € {T,K4,54}. Same
discussion for (2) and (3). O

Finally, we formally prove that KCML satisfies the substitution,
reflexive, and transitive principles.

THEOREM 2.2. (1) ForX € {K,T,K4,54},if ¥;A;... Ap;... Fx

B and ¥;T Fx A; holds forall1 < i < m, then¥;T;... —x B.
(2) ForX € {T,S4}, if ¥;T;T;... -x B, then ¥;I.T';... Fx B.
(3) ForX € {K4,54},if ¥;T;...x B, then ¥;...;T;... Fx B.
Proor. By induction on the derivation rules. O
2.4 Examples
We show some examples provable in KCML.
(1) Fk [C]I(A— B) - [C]A— [C]B
(2)BFr[B]JA—= A
(3) Fka [C]A - [D][C]A  (6) Fk [A]A
@Fk[ClA-[C.D]A () kg [A]B—[](A— B)

G)Fx[C.ClA-[C]A  (®)Fk [1(A—B) - [A]B

In these examples, you can see that contextual modality gener-
alizes modality. Each of (1), (2), (3) corresponds to the contextual
version of axioms K, T, and 4. Note that (2) is derivable assuming re-
flexivity, and (3) assuming transitivity. Figure 1 gives the derivation
tree of (1). We omit derivation trees for other examples.

[}]1?) T ¢ [C](A = B) b T o e :
! ICHx A—> B I;C g A
—E
1 LCFxB
T x [CIB

-]

[C](A—-B)Fk [Cl]A—[C]B
k [€](A-B) - [C]A—[C]B

-1
where T := [C](A - B),[C]A

Figure 1: Example of a Derivation Tree
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With the introduction rule for contextual modality, we can iden-
tify the proposition [T']A with the hypothetical judgment T - A
(not Kripke-style hypothetical judgment). The propositions (4), (5)
and (6) represent weakening, contraction, and the hyp rule, demon-
strating this idea.

The propositions (7) and (8) show that contextual modality is
equivalent to modality with implication. In this sense, contextual
modal logic is not stronger than modal logic. However, we think
that contextual modality enables us a finer analysis of some notions.
For example, our motivation for contextual modality is to reason
binding manipulation on open code. We give detail in Section 4.

3 KRIPKE-STYLE CONTEXTUAL MODAL
TYPE THEORY

In this section, we construct Kripke-style contextual modal type
theory (KCMTT), a typed lambda calculus which corresponds to
KCML through the Curry-Howard correspondence [11].

3.1 Type System

We write x,y, . . . for variables, 7 for base types, I, m,n. .. for non-
negative integers. The syntax of KCMTT is defined as follows.

Types ST w=1|S>T|[St,...,Sm]T
Terms M,N,L :=x|Ax:T.M | MN
| (1T T )M | (NG, ... Ny YM
Context r =:==-|LL,x:T
Context Stack ¥ o= |¥T
Judgment J =Y¥hkx M:T(X € {K,K4,T,S4})

ForacontextI' =x; : Ty ... : Tyn, we define the domain of T
as dom(T) = xq,...,%;, and the range of T as rg(T) = T, ..., Tpy.
For a context stack ‘I’ Iy;...; I, we also define the domain of ¥
as dom(¥) = dom(Iy),...,dom(I}y,). Let us think of a Kripke-style
judgment ¥ — M : T. For the case of K and K4, it is enough to
assume that variables in the range of T are distinct for each context
I' in ¥. However, in the case of T and S4 adjacent contexts can be
merged by the reflexive principle, and therefore we assume that all
variables in the domain of ¥ are distinct.

In KCMTT, two constructs are added to simply typed lambda
calcuclus [11]: quotation and unquotation. From the viewpoint of
staged computation, a quotation ‘(I')M can be interpreted as “a code
of M under the environment I'”. On the other hand, unquotation
can be seen as “evaluation of the code M through [ stages, giving
the environmt Ny, ..., Np,”. As a special case, 0-level unquotation
can be interpreted as eval function in Lisp.

The typing rules of KCMTT are defined as follows. Those rules
correspond to deduction rules of KCML in Section 2. In the rest
of this paper, we assume that all terms are typed: for any term M,
there exists a type judgment ¥ = M : T. We also identify terms
under a-equivalence in Definition 3.5, and hence we can rename
bound variables.

x:TeT
.+ x

¥:I''x:THM:S

(Var)
Y.THAx:TM:T—S

(Abs)

Y. ITHM:T—->S Y. THN:T
¥.THMN:S

(App)
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Y.T—M:T
“r)M : [rg(T)]T
¥I;..; N i T
Ye=M:[T,...,TulS fori<ism
¥;Iy;...; 0 F Ny, N,)M 2 S
I=1 forK [=0,1 forT
[>21 forK4 [=20 for S4

In KCMTT, free variables have levels which correspond to the
depth of the context stack. For [ > 1, the set of level-I free variables
in a term M, FV;(M), is defined as follows.

{x} whenl=1

(Quo) v

(Unq),

where {

FV; =
1) @ otherwise
FVi(M) — henl = 1
FVi(Ax: T.M) 1(M) = {x} when |
FVi(M) otherwise
FVi(MN) = FV;(M) U FV;(N)
FVi(“«(r)M) = FVj41(M)
FVi(,k(Ny,..,N,,)M)
_ Ulsism FVi(N;) when ! < k
| FVisk(M) U Us<icm FViI(N;)  otherwise

For a judgment I}y;...;Iy = M : T, FV;(M) corresponds to the
I-th context I';. We can formally state this idea by the following
lemma.

LEMMA 3.1. If ¥;Ty;...;Ty B M: T, then FVi(M) S dom(T}).

Proor. By induction on the derivation. O

A quotation ‘(T)M corresponds to the [ ]-introduction rule in
KCML. T is required to include all level-1 free variables in M by
the (Quo) rule, and therefore there are no ill-formed codes with
“undeclared variables”. An unquotation , I{Ny, ..., N,,,}M corresponds
to the []-elimination rule in KCML. In contrast to quotation, it
substitutes all level-1 free variables in M with Ny, ..., Ny,.

3.2 Substitution

For | = 1, a substitution [Ny /x1, . . ., Np [ X, 17 is @ meta operation
that maps a term to a term. It substitutes level-I free variables
X1,...,Xm with terms Ny, ..., Ny, respectively.

Substitution is inductively defined as follows. We denote o for
a content of substitution. For 0 = Ny /x1,. .., Ny, /xm, we define
FVi(o) = U1<i<m FVI(N;) and dom(o) = x1, . . ., Xp,. We assume
that all variables in dom(o) are distinct.

{N whenl!=1and N/x € o
x[o]r =

x  otherwise
(MN)[e]i = (M[a];)(N[a]1)

Ax:A.(M[c];) whenl =1,
(x: AM)[o]; = ;‘ni i";”g/i (o)
Ax:A.(M[c];) whenl > 1

“ry(Mloli+1)
{,uNl[a]l...Nm[a]z)M

(«mM)[e];

(,k(N;...N,, YM)[c]; when [ < k

Jk(Ni[0];...Nm[o1))M[c]j—k otherwise

Yuito Murase

Substitution corresponds to rewriting proof trees with the sub-
stitution principle in KCML. The following substitution lemma
formally states the substitution principle in KCMTT.

LEMMA 3.2 (SUBSTITUTION LEMMA).

If¥x1:51, s Xm :Sm;—15. . ;T M T and ¥;T = N; & S;
foralll < i < m,then ¥;I3T_y;...;I1 = M[o];: T, where
o =Ni/x1,...,Nm/[xm.

ProoF. By induction on the derivation rules. O

Note that this substitution is capture-avoiding one, though there
is apparently no collision check for quotation. It works because the
substitution and the bindings of the quotation are at different levels.
As a result of substitution lemma, we can state that weakening,
exchange, and single substitution preserves types.

3.3 Level Substitution

Forl = 1and m 2 0, a level substitution 1;" is a meta operation
that maps a term to a term.

x T;n =x
(MN) 17" = (M 1" )(N 1]")
(Ax: AM) 1] = Ax: A(M 1T")
(«rym) 17" = (M 1)

S k+m—1(N{17",...N, 17" YM whenl < k
SN T, s N 1T WM T;rik otherwise

(yk(N17---’Nn>M) T;n

The idea of the level substitution may not be intuitive. Proof theoreti-
cally, it corresponds to rewriting proof-trees with reflexive/transitive
principles. The following lemmas formally state those principles.

LEMMA 3.3 (LEVEL SUBSTITUTION LEMMA). (i) ForX € {T, S4},

if ;T 5T Fx MiT , then ¥;T4q,175.. 50 Fx
M1Y:T.
(ii) For X € {K4,54} andm > 1, if ¥;T;4151y;.. ;T Bx M:T,

then ‘P;FIH;‘I";TI;...;H Fx M T;n:T where W' is size-
(m — 1) stack of empty contexis.

Proor. By induction on the derivation rules. O

Note that a level substitution Ti is identity on terms. Therefore
the level substituion lemma for the K variant is trivial.

3.4 Equivalence on Terms
Now we are ready to define a-equivalence, f-reduction and 75-
expansion rules.
Definition 3.4. Let ~ be a binary relation on terms. ~ is compatible

iff it satisfies the following conditions.

My ~ My = Ax:T.M; ~ Ax:T.M,

M; ~ My = (M;N) ~ (M2N)

My ~ My = (NMy) ~ (NMy)

My ~ My = “(T)My ~ “(T)M;
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My ~ My = JI(N;...Np )My ~ ,I{N;...N,,)M>

1 1 1 1
My ~ My = ,KLy...Lpy,My,Ly...L,)N ~ J{Ly...Lp,,My,L;...L,,)N

Definition 3.5. a-equivalence = is the least transitive, reflexive,
and compatible relation on terms satisfying the following:

i T.M =g dy: T.(M[x/y]1)

ot Th s X T )M = (yltTl,---»ym:Tm)(M[yl/xl’ s ’ym/xm]l)

R E
Definition 3.6. f-reduction = and n-expansion = are the least
compatible relations on terms which satisfy the following:

R
(Ax: AM)N = M[N/x];
R k
SN, s N Y (1T ey X i T M = MO 17 [Ny /%15, N [xm |1

E
M= Ax:T.Mx
whenYHM:T - S

M g Ux1i T e X T ) (, {XIM)
when¥ =M : [T,...,T,,]S
Finally, we get subject reduction and expansion.
THEOREM 3.7 (SUuBJECT REDUCTION/EXPANSION). (i) If ¥

R
M:T and M= N, then Y+ N:T .
E
(ii)) f Y= M:T and M= N, then ¥ = N:T.

R E
Proor. By induction on the definition of = and =. The base
cases are proved by Lemma 3.2 and 3.3. O

3.5 Examples

The following examples show KCMTT type judgments which cor-

respond to examples in Section 2. We use X,Y for higher level

variables, and a, b for lower ones.

(1) Fg AX:[C](A = B).AY:[C]A.“(a:C)(, 1{a)X)(, 1{a)Y)
:[Cl(A—B) - [C]A—~[C]B

(2) a: BT AX:[B]A.,0(a)X : [B]JA > A

(3) Fka AX:[CJA.“(a:D)(b:C),2(b)X : [C]A - [D][C]A

(4) Fg AX:[C]A.“(a:C,b:D),1{a)X : [C]A = [C,D]A

(5) I—KAX [C,ClA.“(a:C),1{a,a)X : [C,C]A — [C]A

(6) Fx “(a:A)a: [A]A

(7) I—K AX [A]B.“()(Aa: A.,1(a)X) : [A]B — [](A — B)

(8) Fx AX:[J(A = B)."(a:4) ( 1)X)a : [](A - B) - [A]B

4 FUTURE WORK

In this paper, we introduced the overview of KCMTT.

There are many problems to be solved. This paper only provides
subject reduction/expansion and does not prove confluency and
strong normalization. We expect that proofs in previous work of
Kripke-style modal type theory may be helpful. Comparison be-
tween S4 KCMTT and the original CMTT is also necessary. We
expect that they have equal expressiveness, but otherwise the dif-
ference can be interesting. Davies and Pfenning[3] provide mutual
translation between S4 Kripke-style modal type theory and dual-
context modal type theory. This translation may help us to solve
the problem.
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Our goal is to construct a type system for syntactical metapro-
gramming such as macro system in Common Lisp [12] or Tem-
plate Haskell [10]. Although those implementations give a great
extensibility to programming languages, they are known not to be
type-safe. In other words, code with syntactic extension, even if
it is well-typed, may extend to ill-typed code. Therefore we want
a type system for syntactical metaprogramming that guarantees
type-safety of syntactic extension.

The basic idea of such metaprogramming is quasiquotation syn-
tax, which enables programmers to construct code. There are some
formal systems which provide Lisp-like quasiquotation such as
Kripke-style modal calculi [3] and linear temporal calculi [2]. How-
ever, they are not capable of binding manipulation: Kripke-style
modal calculi only treat closed code, and linear temporal calculi do
not allow access to free variables in open code. We think KCMTT
can be the basis for type system of syntactical metaprogramming
because it provides Lisp-like quasiquotation and allows access to
free variables in open code.

With comparison to CMTT, we think that KCMTT is preferable
as the type system for this purpose. First, it has quasiquotation con-
structs. Second, it is sufficiently weak as a logical system. We do not
need runtime code evaluation for syntactical metaprogramming. It
is known that the T axiom corresponds to runtime code evaluation,
and therefore we may omit assumption on the reflexivity. KCMTT
provides K and K4 variants, and we think those variants perceive
the nature of syntactical metaprogramming.
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ABSTRACT

Property-based testing is a technique for validating code against
an executable specification by automatically generating test-data.
From its original use in programming languages, this technique
has now spread to most major proof assistants to complement the-
orem proving with a preliminary phase of conjecture testing. We
present a proof theoretical reconstruction of this style of testing
for relational specifications (such as those used in the semantics
of programming languages) and employ the Foundational Proof
Certificate framework to aid in describing test generators. We do
this by presenting certain kinds of “proof outlines” that can be used
to describe the shape and size of the generators for the conditional
part of a proposed property. Then the testing phase is reduced to
standard logic programming search. After illustrating our tech-
niques on simple, first-order (algebraic) data structures, we lift it
to data structures containing bindings using A-tree syntax. The
AProlog programming language is capable of performing both the
generation and checking of tests. We validate this approach by
tackling benchmarks in the metatheory of programming languages
coming from related tools such as PLT-Redex.

1 INTRODUCTION

In this brief paper, we examine property-based testing (PBT) from
a proof theory point-of-view and explore some of the advantages
that result from exploiting this perspective.

1.1 Generate-and-test as bipoles

Imagine that we wish to write a relational specification for reversing
lists. There are, of course, many ways to write such a specification
but in every case, the formula

VL: (list int) VR: (list int) [revL R D revR L]

stating that revis idempotent should be a theorem. In fact, we might
wish to prove a number of formulas of the form Vx: 7 [P(x) D Q(x)]
where both P and Q are formulae over given relational specifications
and a single variable (for brevity). Occasionally, it can be important
in this setting to move the type judgment x: 7 into the logic by
turning the type into a predicate: Vx[(7(x) AP(x)) D Q(x)]. Proving
such formulas can often be difficult since their proof may involve
the clever invention of prior lemmas and induction invariants. In
many practical settings, such formulas are, in fact, not theorems
since the relational specifications in P and/or Q can contain errors.
It can be therefore valuable to first attempt to find counterexamples
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to such formulas prior to pursue a proof. That is, we might try to
prove formulas of the form Ix[(z(x) A P(x)) A =Q(x)] instead. If
a term t of type 7 can be discovered such that P(t) holds while
Q(t) does not, then one can return to the specifications in P and
Q and revise them using the concrete evidence in ¢t about how
the specifications are wrong. The process of writing and revising
relational specifications could be aided if such counterexamples are
discovered quickly and automatically.

The literature contains at least two ways to view Horn clause-
style relational specifications in proof-theoretic terms. For example,
specifications such as
1st nl.

Ist (cns N Ns) :- nat N, Ist Ns.

nat z.
nat (s N) :- nat N.

app nl Xs Xs.

app (cns X Xs) Ys (cns X Zs) :- app Xs Ys Zs.

can be viewed as a set of first-order Horn clauses: one of these
formulas would be the universal closure of

lapp Xs Ys Zs D app (cns X Xs) Ys (cns X Zs)].

The proof search approach to encoding Horn clause computation re-
sults in the structuring of proofs with repeated switchings between
a goal-reduction phase and a backchaining phase [19]. The notion
of focused proof systems generalizes this view of proof construction
in the sense that goal-reduction corresponds to the negative phase:
during this phase, the conclusion-to-premise construction of proofs
proceeds without needing to make any choices (no backtracking).
At the same time, the backchaining phase corresponds to the posi-
tive phase: during this phase, proof construction generally needs
to consume some information from, say, an oracle or to allow for
some nondeterminism. The combination of a positive phase and a
negative phase is called a bipole. In this view of logic programming,
proof search involves proofs with arbitrary numbers of bipoles.
Comprehensive focusing systems exist for linear, intuitionistic and
classical logics [15].

A different approach to the proof theory of Horn clauses in-
volves encoding them as fixed points. For example, the Prolog-style
specifications above of nat and app can be written instead as the
following fixed point definitions.

nat =pANAn (n =z v aAn'(n=sn’ A" N n’))
app =pAAAxsAysizs ((xs = nl AY ys = zs) v

’ ’ ’ ’ ’
Ax’Axs’Azs’ (xs = cns x” xs” AT zs = cns x” zs” AT A xs ys zs”))

When using a focused proof system for logic extended with fixed
points, such as is employed in Bedwyr [2] and described in [1, 13],
proofs of formulas such as Ix: 7 [P(x) AT =Q(x)] are a single bipole:
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when reading a proof bottom up, a positive phase is followed on all
its premises by a single negative phase that completes the proof. In
particular, the positive phase corresponds to the generation phase
and the negative phase corresponds to the testing phase. From
this description, it is conceptionally easy (as one would expect) to
construct an implementation of the testing phase while it can be
difficult to steer the generation phase through a (possibly) great deal
of nondeterminism. For example, the blind exhaustive enumeration
of possible counterexamples is generally known to be ineffective.
Significant sophistication may go into crafting generators and as-
sembling them.

1.2 Flexible test case generation via proof
reconstruction

The foundational proof certificate (FPC) framework was proposed
in [9] as a means of defining proof structures used in a range of
different theorem provers (e.g., resolution refutations, Herbrand
disjuncts, tableaux, etc). The FPC framework was designed using
focused proof systems as a kind of protocol: during the construc-
tion of a positive phase, the proof checker could request specific
information from a proof certificate. In the general setting, proof
certificates do not need to contain all the details required to com-
plete a formal proof. In those cases, a proof checker would need
to perform proof reconstruction. For example, FPCs can be used as
proof outlines [5] since they can describe some of the general shape
of a proof: e.g., apply the obvious induction invariant and complete
the proof via the enumeration of all remaining cases. The proof
checker would attempt to fill in the missing details, either obtaining
a proof of the described shape or failing to do so.

In this paper, we propose to use FPCs as a language for describing
generators. We have experimented with writing proof checkers in
both OCaml (as an extension to Abella [3]) and AProlog, which
could be used to check proof certificates and in the process steer
the proof of the expression P(x), and the corresponding typing
expression, say, 7(x).

As we shall illustrate, we have defined certificates that describe
families of proofs that are limited either by the number of inference
rules that they contain, by their height, or by both. Using similar
techniques, it is possible to define FPCs that target specific types
for specific treatment: for example, when generating integers, only
(user-defined) small integers would be produced. Using a proof
reconstructing checker (such as is easy to do with a logic program-
ming system), the search space of proofs that a FPC describes for a
specific formula of the form x [r(x) AT P(x) AT =Q(x)] can be di-
rectly translated into a description of the range of possible witness
terms for this quantifier.

1.3 Lifting PBT to treat A-tree syntax

Describing a computational task using proof theory often allows
researchers to lift descriptions based on first-order (algebraic) terms
to descriptions based on A-tree syntax (a specific approach to higher-
order abstract syntax). For example, once logic programming was
given a proof search description, it was natural to generalize the
usual approaches to logic programming from the manipulation of
first-order terms (Prolog) to the manipulation of A-terms (AProlog)
[17]. Similarly, once certain model checking and inductive theorem
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provers were presented using sequent calculus in a first-order logic
with fixed points [1, 13], it was possible to incorporate A-terms
syntax in generalizations of model checkers, as in the Bedwyr
system [2], and of theorem provers, as in Abella [3].

The full treatment of A-tree syntax in a logic with fixed points is
usually accommodated with the addition of the V-quantifier [12, 18].
While the V-quantifier has had significant impact in several rea-
soning tasks (for example, in the formalized metatheory of the
m-calculus and A-calculus) an important result about V is the fol-
lowing: if fixed point definitions do not contain implications and
negations, then exchanging occurrences of ¥ and V does not affect
what atomic formulas are proved [18, Section 7.2]. Since we shall be
limiting ourselves to Horn-like recursive definitions, the AProlog
implementation of V will also implement V.

This direct treatment of A-terms within the PBT setting allows
us to apply property-based testing to a number of metaprogram-
ming tasks. After describing some more details of how PBT can
be encoded in proof theory (and logic programming) in the next
section, we discuss in Section 3 the treatment of metaprogramming.

2 BASIC APPROACH

The setup follows [16]; we introduce a simple specification logic,
which drives the derivation of our object logic. In this case it is
basically the usual Prolog vanilla meta-interpreter, save for inter-
preting V as II; the “program” is represented as Horn-like clauses
by a two-place predicate prog relating heads and bodies, built out of
object-level logical constants (tt, or, and, nabla) and user-defined
constructors for predicates. For example, to generate lists of as
and bs and compute the reverse a list, we have the following prog
clauses, where we omit the code for append:
prog (is_elt a) tt.
prog (is_elt b) tt.
prog (is_eltlist nl) tt.
prog (is_eltlist (cns X Xs))

(and (is_elt X) (is_eltlist Xs)).
prog (rev nl nl) tt.
prog (rev (cns X Xs) Rs)

(and (rev Xs Sx) (append Sx (cns X nl) Rs)).

Suppose we want to falsify the assertion that the reverse of a list
is equal to itself. The generation phase is steered by the predicate
check, which uses a certificate (its first argument) to produce candi-
date lists up to a certain bound, in this case the height of a proof of
being a list. The testing phase performs deterministic computation
with the meta-interpreter interp and then negates the conclusion
using negation-as-failure (NAF):
cexrev Xs Ys :- check (ggen (gheight 3)) (is_eltlist Xs),

interp (rev Xs Ys), not (Xs = Ys).

Note that the call to NAF is safe since, by the totality of rev, Ys
will be ground.

The FPC kernel is presented in Figure 1. Each object-level connec-
tive is interpreted as AProlog code, and user-defined constructors
are looked up in prog and unfolded. This is driven by the meta-
interpreter interp (omitted). To it, check adds a certificate term
and calls to expert predicates on said term (except nabla, which is
transparent to the experts). Experts decide when the computation
proceeds — producing certificates for the continuations — and when
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check Cert tt :— tt_expert Cert.

check Cert (and G1 G2) :- and_expert Cert Certl Cert2, check Certl G1, check Cert2 G2.

check Cert (or G1 G2) :- or_expert Cert Cert' LR, ((LR = left, check Cert' G1); (LR = right, check Cert' G2)).
check Cert (nabla G) ;= pi x\ check Cert (G x).

check Cert A .- unfold_expert Cert Cert', prog A G, check Cert' G.

tt_expert (ggen (gsize In In)).

tt_expert (ggen (gheight _)).

or_expert (ggen (gsize In Out)) (ggen (gsize In Out)) _.

or_expert (agen (gheight H)) (qgen (gheight H))

and_expert (ggen (gsize In Out)) (qgen (gsize In Mid)) (ggen (gsize Mid Out)).

and_expert (qgen (gheight H)) (qgen (gheight H))

(qgen (gheight H)).

unfold_expert (ggen (gsize In Out)) (ggen (gsize In' Out)) :- In > @, In' is In - 1.

unfold_expert (qgen (gheight H)) (qgen (gheight H'))

:=H >0, H isH - 1.

Figure 1: Kernel for expert-driven term generation

it fails. The first argument of an expert, e.g., and_expert, refers to
the conclusion of the corresponding rule and the remaining ones, if
any, to the premises. Here the complexity of generated candidates is
bound by limiting unfoldings, either by height (gheight, producing
shallow terms), number of constructors (qsize, producing small
terms), or both by pairing (not shown here, but see [6]).

3 PBT FOR METAPROGRAMMING

To showecase the ease with which we handle searching for coun-
terexamples in binding signatures, we encode a simply-typed A-
calculus augmented with constructors for integers and lists, follow-
ing the PLT-Redex benchmark from http://docs.racket-lang.org/
redex/benchmark.html. The language is as follows:

Types A,B == int|ilist| A—> B

Terms M = x| Ax:A.M | My My |c|err
Constants ¢ w=  n|plus|nil|cons| hd|tl
Values \%4 c|Ax:A. M | plus V

| cons V' | cons Vi V;

The rules for the dynamic and static semantics are given in Fig-
ure 2, where the latter assumes a signature X with the obvious type
declarations for constants. Rules for plus are omitted for brevity.

The encoding in AProlog is pretty standard and also omitted:
we declare constructors for terms, constants and types, while we
carve out values via an appropriate predicate. A similar predicate
characterizes the threading in the operational semantics of the err
expression, used to model run time errors such as taking the head
of an empty list. We follow this up (see the bottom of Figure 2)
with the static semantics (predicate wt), where constants are typed
via a table tcc. Note that we have chosen an explicitly context-
ed encoding of typing as opposed to one based on hypothetical
judgments such as in [16]: this choice avoids using implications
in the body of the typing predicate and, as a result, allows us to
use AProlog’s universal quantifier to implement the reasoning level
V-quantifier.

Now, this calculus enjoys the usual property of subject reduction
and progress, where the latter means “being either a value, an error,
or able to make a step” And in fact we can fairly easily prove
those results in a theorem prover such as Abella. However, the
case distinction in the progress theorem does require some care:

were it to be unprovable given a mistake in the specification, it
would not be immediate to localize where the problem may be. On
the other hand, one could wonder whether our calculus enjoys
the subject expansion property — the alert reader will undoubtedly
realize that this is highly unlikely, but rather than wasting time in
a proof attempt, we search for a counterexample and find:
cexsexp M M' A :- check (qgen (qsize 8 _)) (step M M'),

interp (wt null M' A),

not (interp (wt null M A)).

A = listTy

M'"=cnl

M =app (c hd) (app (app (c cns) (c n1)) (c _))

Other queries we can ask: are there untypable terms, or terms that
do not converge to a value?

As a more comprehensive validation we addressed the nine mu-
tations proposed by the PLT-Redex benchmark, to be spotted as
a violation of either the preservation or progress properties. For
example, the first mutation introduces a bug in the typing rule for
application, matching the range of the function type to the type of
the argument:

Tts Mi:A—> B Tty My:B
Tty My My :B

T-APP-B1

The given mutation makes both properties fail:

cexprog M A :- check (qgen (gsize 6 _)) (wt null M A),
not (interp (progress M)).

A = intTy

M = app (c hd) (c (toInt zero))

cexpres M M' A :- check (ggen (gsize 8 _)) (wt null M A),
interp (step M M'),
not (interp (wt null M' A)).

A = funTy listTy intTy

lam (x\ ¢ hd) listTy

app (lam (x\ lam (y\ x) listTy) intTy) (c hd)

X X
non

Table 1 reports the tests, performed under Ubuntu 16.04 on a Intel
Core i7-870 CPU, 2.93GHz with 8GB RAM. We time-out the compu-
tation when it exceeds 300 seconds. We list the results obtained by
AProlog (AP) under Teyjus [20], the counterexample found, and a
brief description of the bug together with Redex’s difficulty rating
(shallow, medium, unnatural). The column aC lists the time taken by
aCheck [7] using NAF, which is not always the best technique [8],
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E-HD E-TL
hd (cons My My) — M; tl (cons My My) — M,
My — M M— M
E-AB —— —— E-APP1 ——— E-APP2
Ax A MV — [x > VIM S My M; — 1\4{ My VM—VM
Y(c)=A . I,x:Ars M: B Tts Mi:A—> B Try My: A
g 2 =4 xAeT g - T-ABS — >t > 2" Toapp
ks err: A Fx c: A Ty x: A Tty Ax:A.M:A—> B T'ts My M : B
prog (wt _ err _) tt.
prog (wt _ (c M) A) (tcc M A).

prog (wt Gamma M A)
prog (wt Gamma (lam M Ax)

(memb (bind M A) Gamma).

(funTy Ax A)) (nabla x\ wt (cons (bind x Ax) Gamma) (M x) A).

prog (wt Gamma (app M N) A) (and (wt Gamma M (funTy B A)) (wt Ga N B)).

Figure 2: Static and dynamic semantics of the Stlc language.

bug check aC AP cex

Description/Rating

1  preservation 0.3  0.05

(Ax:int. Ay:ilist. x) hd

range of function in app rule

progress 0.1 002 hdo matched to the arg. (S)
2 progress 0.27 0.06  (cons 0) nil value (cons v) v omitted (M)
3 preservation 0.04 0.01  (Ax:int. cons) cons order of types swapped
progress 0.1 004 hdo in function pos of app (S)
4  progress to. 207.3  (plus 0) ((cons 0) nil) the type of cons return int (S)
5  preservation to. 0.67  tl((cons 0) nil) tail reduction returns the head (S)
6  progress 248 0.4 hd ((cons 0) nil) hd reduction on part. applied cons (M)
7  progress 1.04 0.1 hd ((Ax:ilist. err) nil)  no eval for argument of app (M)
8  preservation 0.02 0.01  (Ax:ilist. x) nil lookup always returns int (U)
9  preservation 0.1  0.02  (Ax:ilist. cons) nil vars do not match in lookup (S)

Table 1: Stic benchmark

but it corresponds very closely to the architecture of the present
paper. Of course, aCheck sits on top of an interpreted (prototype)
language, whereas Teyjus is a compiler: however, one can argue
that the two level themselves out, since we use meta-interpretation
for test generation. The results are essentially indistinguishable,
save for bugs 4, 5 and 6: in the first, which is surprisingly hard to
find, aCheck times out, while we comfortably beat the time limit.
aCheck flunks number 5, which is immediate for us. Finally in bug
6 aCheck’s fixed integrative deepening strategy needs to explore
the search space up to level 11, while we can leverage the FPC
ability to use the qsize metric.

4 RELATED WORK

Property-based testing is a technique for validating code against
an executable specification by automatically generating test-data,
typically in a random and/or exhaustive fashion. From its original
use in programming languages [10], this technique has now spread
to most major proof assistants [4, 22] to complement theorem prov-
ing with a preliminary phase of conjecture testing. We do not have
the space for a comprehensive review, for which we refer to [7],
but we mention two of the main players w.r.t. metatheory model
checking: PLT-Redex [11] is an executable DSL for mechanizing
semantic models built on top of DrRacket with support for random

testing a la QuickCheck; its usefulness has been demonstrated in
several impressive case studies [14]. However, Redex has limited
support for relational specifications and none whatsoever for bind-
ing signature. This is where aCheck [7] comes in. The tool adds on
top of the nominal logic programming language aProlog a checker
for relational specifications as we do here. One of the implemen-
tation techniques is based as well on NAF, as far as testing of the
conclusion is concerned. The generation phase is instead “wired in”
via iterative-deepening search, based on derivation height. In this
sense aCheck is less flexible than the FPC-based architecture that
we propose here, since it can be seen as a fixed choice of experts.

Finally, more distant cousins in the logic programming world are
declarative debugging [21] and the Logic-Based Model Checking
project at Stony Brook (http://www.cs.sunysb.edu/~Imc).

5 CONCLUSION AND FUTURE WORK

We have described some work-in-progress that uses standard logic
programming techniques and some recent developments in proof
theory to design a flexible framework for PBT. Given its proof
theoretic pedigree, it was immediate to extend PBT to the metapro-
gramming setting.


http://www.cs.sunysb.edu/~lmc

Property-Based Testing via Proof Reconstruction

Figure 1 specifies only two certificate formats: one that limits the
size and one that limits the height of a proof. We have also imple-
mented another certificate format that implements both restrictions
at the same time. It is easy to code other certificates: by reading
random bits from an external source of entropy, certificates can
describe randomly organized proofs (and, hence, witness terms).
Certificates can also be organized to consider only allowing small
proofs for one type but random for another type: thus, one could
easily design a certificate that would explore randomly generated
lists containing just, say, the integers 0 and 1.

While AProlog is used here to discover counterexamples, one
does not actually need to trust the logical soundness of AProlog
(negation-as-failure makes this a complex issue). Any counterex-
ample that is discovered can be output and used within, say, Abella
to formally prove that it is indeed a counterexample. In fact, we
plan to integrate our take on PBT in Abella, in order to support
both proofs and disproofs.
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ABSTRACT

As a follow-up to the POPLMark Challenge, we propose a new
benchmark for machine-checked metatheory of programming lan-
guages: establishing strong normalization of a simply-typed lambda-
calculus with a proof by Kripke-style logical relations. We believe
that this case-study overcomes some of the limitations of the orig-
inal challenge and highlights, among others, the need of native
support for context reasoning and simultaneous substitutions.

1 INTRODUCTION

The usefulness of sets of benchmarks has been recognized in many
areas of computer science, and in particular in the theorem proving
community, for stimulating progress or at least taking stocks of
what the state of the art is — TPTP [Sutcliffe 2009] is one shining
example. The situation is less satisfactory for proof assistants, where
each system comes with its own set of examples/libraries, some
of them gigantic; this is not surprisingly, since we are potentially
addressing the whole realm of mathematics.

In a more limited setting, some 12 years ago, a group of renowned
programming language theorists came together and issued the so-
called POPLMark Challenge [ Aydemir et al. 2005] (PC, in short), with
the aim of fostering the collaboration between the PL community
and researchers in proofs assistants/logical frameworks to bring
about:

“[...] a future where the papers in conferences such as

POPL and ICFP are routinely accompanied by mechan-

ically checkable proofs of the theorems they claim”

(page 51 op. cit.)
As we know, the challenge revolved around the meta-theory of F .,
which, requiring induction over open terms, was an improvement
over the gold standard of mechanized meta-theory in the nineties:
type soundness. Yet, the spotlight of the PC was still on

“type preservation and soundness theorems, unique
decomposition properties of operational semantics,
proofs of equivalence between algorithmic and declar-
ative versions of type systems, etc.” (ibidem)

Further, the authors made paramount “the problem of represent-
ing and reasoning about inductively-defined structure with binders”
(our emphasis), while providing a balanced criticism of de Bruijn
indexes as an encoding technique. That focus was understandable,
since at that time the only alternative to concrete representations
was higher-order abstract syntax (HOAS), mostly in the rather pe-
culiar Twelf setting, the implementation of nominal logic being in
its infancy.
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While the response of the theorem-proving community was im-
pressive with more than 15 (partial) solutions submitted (https:
/Iwww.seas.upenn.edu/~plclub/poplmark/), one can argue whether
the envisioned future has became our present — according to
Sewell’s POPL 2014 Program Chair’s Report (https://www.cl.cam.
ac.uk/~pes20/popl2014-pc-chair-report.pdf) “Around 10% of sub-
missions were completely formalised, slightly more partially for-
malised”. It is also debatable whether the challenge had a direct
impact on the development of proof assistants and logical frame-
works: specialized systems such as Abella [Baelde et al. 2014] and
Beluga [Pientka and Cave 2015] were born out of independent re-
search of the early 2000. To be generous, we could impute Abella’s
generalization of its specification logic to higher-order [Wang et al.
2013] to this Twelf POPLMark solution [Pientka 2007], but devel-
opment in mainstream systems such as Coq, Agda, and (Nominal)
Isabelle were largely driven by other (internal) considerations.

In a much more modest setting, but in tune with the goal of the
PC, [Felty et al. 2017] recently presented some benchmarks with
the intention of going beyond the issue of representing binders,
whose pro and cons they consider well-understood. Rather, the
emphasis was on the all important and often neglected issue of
reasoning within a context of assumptions, and the role that prop-
erties such as weakening, ordering, subsumption play in formal
proofs. These are more or less supported in systems featuring some
form of hypothetical and parametric reasoning, but the same issues
occur in first-order representation as well; in this setting, typically,
they are not recognized as crucial, rather they are considered one
of the prices one has to pay when reasoning over open terms. This
set of benchmarks was accompanied by a preliminary design of a
common language and open repository [Felty et al. 2015b], which
is fair to say did not have a resounding impact so far.

In the mean time, the PL world did not stand still, obviously. One
element that we have picked on is the multiplication of the use of
proofs by logical relations [Statman 1985] — not coincidentally, those
featured in [Aydemir et al. 2005]’s section “Beyond the challenge”.
From the go-to technique to prove normalization of certain calculi,
proofs by logical relations are now used to attack problems in the
theory of complex languages models, with applications to issues
in equivalence of programs, compiler correctness, representation
independence and even more intensional properties such as non-
interference, differential privacy and secure multi-language inter-
operability, to cite just a few [Ahmed 2015; Bowman and Ahmed
2015; Neis et al. 2015].

Picking up on PC’s final remark “We will issue a small number
of further challenges [...]”, we propose, as we detail in Section 2.3 a
new challenge that we hope it will move the bar a bit forward. We
suggest Strong Normalization (SN) for the simply-typed lambda-
calculus proven via logical relations in the Kripke style formulation,
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see [Coquand 1991] for an early use. We discuss the rationale in
the next Section.

2 THE CHALLENGE

2.1 Problem Selection

(Strong) normalization by Tait’s method is a well-understood and
reasonably circumscribed problem that has been a cornerstone of
mechanized PL theory, starting from [Altenkirch 1993]. There are
of course many alternative ways to prove SN for a lambda-calculus,
see for example the inductive approach of [Joachimski and Matthes
2003], partially formalized in [Abel 2008], or by reduction from
strong to weak normalization [Sorensen 1997]. For that matter, a
SN proof via logical relations for the simply-typed lambda calculus
can be carried out (see for a classic example [Girard et al. 1990])
without appealing to a Kripke definition of reducibility, at the cost,
though, of a rather cavalier approach to “free” variables. However,
the Kripke technique is handy in establishing SN for richer theories
such as dependently typed ones, as well as for proving stronger re-
sults, for example about equivalence checking [Crary 2005; Harper
and Pfenning 2005].

We claim that mechanizing such a proof is indeed challenging
since:

o It focus on reasoning on open terms and on relating different
contexts or worlds, taking seriously the Kripke analogy. The
quantification over all extensions of the given world may
be problematic for frameworks where contexts are only im-
plicitly represented, or, on the flip side, may require several
boring weakening lemmas in first-order representations.

o The definition of reducibility requires a sophisticated notion
of inductive definition, which must be compatible with the
binding structures, but also be able to take into account
stratification, to tame the negative occurrence of the defined
notion.

e Simultaneous substitutions and their equational theory (com-
position, commutation etc.) are central in formulating and
proving the main result. For example, in the proof of the
Fundamental Theorem 2.8, we need to push substitutions
through (binding) constructs.

In this sense, this challenge goes well beyond the original PC, where
the emphasis was on binder representations, proofs by structural
induction and operational semantics animation.

Previous formalizations of strong normalization usually follows
Girard’s approach, see for example [Donnelly and Xi 2007] car-
ried out in ATS/LF, or the one available in the Abella repository
(abella-prover.org/~normalization/). Less frequent are formaliza-
tions following the Kripke discipline: both [Cave and Pientka 2015]
and [Narboux and Urban 2008] encode [Crary 2005]’s account of de-
cision procedures for term equivalence in the STLC, in Beluga and
Nominal Isabelle respectively; the latter was then extended in [Ur-
ban et al. 2011] to formalize the analogous result for LF [Harper and
Pfenning 2005]. See [Abel and Vezzosi 2014] for a SN Kripke-style
proof for a more complex calculus and [Rabe and Sojakova 2013]
for another take to handling dependent types — this paper also
contains many more references to the literature.
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The choice of a Kripke-style proof of SN for the STLC may sound
contentious on several grounds and hence we will try to motivate
it further:

e We acknowledge that SN is not the most exciting application
of logical relations, some of which we have mentioned in the
previous Section. Still, it is an important topic in type theory,
in particular w.r.t. logical frameworks’ meta-theory, see for
example [Altenkirch and Kaposi 2016], and in this sense dear
to our hearts. It is a well-known textbook example, which
uses techniques that should be familiar to the community of
interest in the simplest possible setting.

o Yes, the STLC is the prototypical toy language, while a POPL
paper will address richer PL theory aspects. For one, adding
more constructs, say in the PCF direction, perhaps with an
iterator, would make the proof of the fundamental theorem
longer, but not more interesting. Secondly, we think that a
good benchmark should be simple enough that it could be
tried out almost immediately if one is acquainted with proof-
assistants. Conversely, it should encourage a PL theorist to
start playing with proof assistants. Finally, we do suggest
extensions of our challenge in the next Section.

e The requirement of the “Kripke-style” may seem overly con-
strictive, especially since this may not be strictly needed for
the STLC. However, as we have argued before, this is meant
as a springboard for more complex case studies, where this
technique is forced on us. Remember that we are interested
in comparing solutions. A more ambitious challenge may
not solicit enough solutions, if the problem is too exotic or
simply too lengthy.

2.2 Evaluation Criteria

One of the limitations of the PC experiment was in the evaluation
of the solutions, although it is not easy to avoid the “trip to the
z00” effect, well-known from trying to comparing programming
languages: there is no theory underlying the evaluation; criteria
tend to be rather qualitative, and finally, the comparison itself may
be lengthy [Felty et al. 2015a]. Within these limitations, of the
proposed solutions we will take into consideration the:

o Size of the necessary infrastructure for defining the base lan-
guage: binding, substitutions, renamings, contexts, together
with substitution and other infrastructural lemmas.

e Size of the main development versus the main theorems
in the on-paper proof, in particular, number of technical
lemmas not having a direct counterpart in the on-paper
proof.

More qualitatively, we will try to assess the:

e Ease of using the infrastructure for supporting binding, con-
texts, etc. How easy is it to apply the appropriate lemmas in
the main proof? For example, does applying the equational
theory of substitutions require low-level rewriting, or is it
automatic?

e Ease of development of the overall proof; what support is
present for proof construction, when not for proof and coun-
terexample search?
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2.3 The Challenge, Explained

Let us recall the definition of the STLC, starting with the grammar
of terms, types, contexts and substitutions:

Terms M,N:=x | AxxTM | MN
Types T, ==B | T—>S
Context T = | I,x:T

Subs o =¢ | o,N/x

The static and dynamic semantics are standard and are depicted
in Figure 1. Since we want to be very upfront about the fact that
evaluation goes under a lambda and thus involves open terms, we
make the context explicit even in the reduction rules, contrary to
what, say, Barendregt would do. Note that, because of rule E-Ass,
we do not need to assume that the base type is inhabited by a
constant. We denote with [c]M the application of the simultaneous
substitution ¢ to M and with [o1]oy their composition.

We now define the set of strongly-normalizing terms as pioneered
by [Altenkirch 1993] and by now usual:

VM’ 'T+rM — M’ TrM €SN
I'+-MeSN

SN — WF

expressing that the set of strongly normalizing terms is the well-
founded part of the reduction relation. A more explicit formulation
of strong normalization is allowed, see for example [Joachimski and
Matthes 2003], but then an equivalence proof should be provided.
Note that reasoning with the above rule SN-WF cannot proceed by
structural induction, since it is not the case that M’ is a sub-term
of M.
The logical predicates have the following structure:

e '+t M e Rr,and

e I"+oeRr.

We use a Kripke-style logical relations definition where we wit-
ness the context extension using a weakening substitution p. This
can be seen as a shift in de Bruijn terminology, while other encod-
ings may use different (or no particular) implementation techniques
for handling context extensions.

Definition 2.1 (Reducibility Candidates).
o'+ MecRgiffiTFM:BandT + M € SN:

eI+t MeRr_sif THFM:T — S and for all N, A such that
['<p A if A+ N e Rythen A+ ([p]M) N € Rs.

As usual, we lift reducibility to substitutions:

Definition 2.2 (Reducible Substitutions).

eI'FeecR.
° I"I—O’,N/XERRX:T iHF/FGERF andF’kNeRT.

We now give an outline of the proof as a sequence of lemmas —
the reader will find all the details in the forthcoming full version of
this paper.

LEMMA 2.3 (SEMANTIC FUNCTION APPLICATION).
IfT+MeRr_sandT'+ N € Ry thenT - M N € Rs.

Proor. Immediate, by definition. O

LEMMA 2.4 (SN CLOSURE UNDER WEAKENING).
IfT} <p I andTy + M € SN thenT; + [p]M € SN.

Proor. By induction on the derivation of It - M € SN. ]
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LEmMMA 2.5 (CLOSURE OF REDUCIBILITY UNDER WEAKENING).
Ifrl <p I, andTy + M € R7 thenTy + [p]M € Rr.

ProoF. By cases on the definition of reducibility using the above
Lemma 2.4 and weakening for typing. O

LEMMA 2.6 (WEAKENING OF REDUCIBLE SUBSTITUTIONS).
IfT1 <p Iz andTy + o € Ry then I + [plo € Ro.

Proor. By induction on the derivation of I + 0 € Rg using
Closure of Reducibility under Weakening. O

LEMMA 2.7 (CLOSURE UNDER BETA EXPANSION).
IfT+ N eSNandT + [N/x]M € Rs thenT + (Ax:T.M) N € Rs.

Proor. By induction on S after a suitable generalization. O

THEOREM 2.8 (FUNDAMENTAL THEOREM).
IfT+M:T andT’ + o € Rr thenT’ + [6]M € Rr.

Proor. By induction on T + M : T. In the case for functions, we
use Closure under Beta Expansion (Lemma 2.7) and Weakening of
reducible substitution (Lemma 2.6). o

3 BEYOND THE CHALLENGE

There is an ongoing tension between weak and strong logical frame-
works [de Bruijn 1991], with which we can encode our benchmarks.
Weak frameworks are designed to accommodate advanced infra-
structural features for binders (HOAS/nominal syntax etc.) and for
judgments (hypothetical and parametric), but may struggle on other
issues, such as facilities for computation or higher-order quantifi-
cation/impredicativity. There are at least two coordinates in which
we can directly extend our benchmark, to further highlight this
dilemma:

o Logical relations for dependent types [Abel and Vezzosi 2014;
Rabe and Sojakova 2013], up to the Calculus of Constructions.
Here we need to go beyond first-order quantification, which
is typically what is on offer in weak frameworks.

e Proofby logical relation via step-indexing [Appel and McAllester

2001]. Here we have two issues:

(1) the logical relation may even be harder to be accepted by
the meta-language as an inductive definition than with
simple types; in fact, the work around the negative occur-
rence of the defined relation cannot be based on structural
induction on types, but it has to use some form of course-
of-value induction.

(2) It involves a limited amount of arithmetic reasoning:
“definitions and proofs have a tendency to become
cluttered with extra indices and even arithmetic, which
are really playing the role of construction line.” ([Ben-
ton and Hur 2010]).

This latter point may be problematic for frameworks such
as Abella and Beluga, which do not (yet) have extensive
libraries, nor computational mechanisms (rewriting, re-
flection) for those tasks.
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Term M has type T in context T’

Andreas Abel, Alberto Momigliano, and Brigitte Pientka

x:TeTl ILx:TrM:S F'rM:(T—>S) TrN:T
T-ABs™ T-Arp
Trx:T TF (x:T.M): (T — S) Tr(MN):S
I'tM — M’| Term M steps to term M’ in context I
LLxT+M M’ 4 ’
al — E-Aps™® E-App-ABs LEM — M, LEN — NT

It Ax:T.M — Ax:T.M’ I't (Ax:T.M) N — [N/x]M

IT''tMN — M'N I'tMN — MN’

Figure 1: Typing and reduction rules for the STLC

4 CALL FOR ACTION

We ask the community to submit solutions and we plan to invite ev-
eryone who does so to contribute towards a joint paper discussing
trade-offs between them. The authors commit themselves to pro-
duce solutions in Agda, Abella and Beluga. To resurrect the slogan
from the PC, a small step (excuse the pun) for us, a big step for
bringing mechanized meta-theory to the masses!
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