
���������	
��
�
���

����������
��
�����������
��

��������
�������

��������

���
���
�
������
��
�
����
�

 ������
!����"
������
����#��"
�����
��$$�

��������
��%&
'()*++

�������
����#�,#�
����&
����&((---%
���%����
%��(���������

Foundations of Software Technology and Theoretical Computer Science (2010) Submission

Finding a forest in a tree
Giorgio Bacci, Marino Miculan, Romeo Rizzi

Dept. of Mathematics and Computer Science, University of Udine, Italy.
{giorgio.bacci,marino.miculan,romeo.rizzi}@uniud.it

ABSTRACT.
In this paper we consider the problem of finding a forest inside an unordered tree, with no over-
laps. This apparently simple problem arises in many situations, in particular in tree transformation
systems with parametric rules, like e.g., in models for mobile and distributed computations, where
agents can be nested forming a tree-like global state which evolves according to subtree rewriting
rules. Another possible application is pattern matching within semi-structured data, like XML.
Although the problem is NP-complete in general, using the theory of Fixed Parameter Tractability
we show that the exponential explosion depends only on the width of the forest to be found, and
not on the size of the global tree. In most practical cases, the forest width is constant and small (e.g.
≤ 3), hence the problem is feasible.

1 Introduction
In the last years, hierarchical structures have received increasing interest for represent-
ing computational aspects like scoping, containment, security, locations, mobility, semi-
structured data, etc. Specific languages have been developed to this end, the paradigmatic
examples being Mobile Ambients and its derivations [5]. In these calculi, systems are com-
posed by agents, possibly nested to form an unordered tree (possibly with other links). Sys-
tem evolution is governed by rewriting rules of the form L(�X) ⇒ R(�X), where L and R are
unordered forests with “holes” in �X. Applying such a rule to a system G means finding a
context C() and parameters �D such that G = C(L(�D)); then L (the redex) is replaced by R

(the reactum), transforming the system G into G
� = C(R(�D)). A good example is given by

the following rule from CaSPiS [4], a session-centered calculus with nesting:

C(s.P, s̄.Q) ⇒ C(s.P|r � P, r � Q) (r fresh) (ServiceSync)

where C(,) is a suitable context with two holes, and P, Q are two generic processes. Ac-
tually, C, P, Q are not modified by the rule; hence the actual reduction rule is �s. 1, s̄. 2� ⇒
�s. 1|r � 1, r � 2� whilst C is the context where the redex �s. 1, s̄. 2� is found and P, Q are the
parameters the redex is instantiated to. In fact, the redex and the reactum are two forests,
composed by two trees each, and the rule is rendered graphically as in Figure 1(a).

Thus, in general, in order to apply a parametric rule �L1, . . . , Ln� ⇒ �R1, . . . , Rn� to a
state G, we need to find in the tree of G, an occurrence of each tree Li, possibly completed
by some “grafted” subtrees of G, as in Figure 1(b). Notice that these occurrences cannot
overlap (i.e., Li cannot occur within any Lj nor its parameters), and moreover the trees are
unordered, hence some rearrangements in G are possible to accomodate the redex forest.

This is the forest matching problem that we address in this paper: given a forest (the pat-

tern) and an unordered tree (the target), find a decomposition of the target into a context,
NOT FOR DISTRIBUTION

2 FINDING A FOREST IN A TREE

⇒

(a)
1

s

2

s̄

1

s

1

r�

2

r� ⇒

(b)

s s̄ s r� r�

P Q P P Q

C C

Figure 1: A parametric rule (a), and its application as forest pattern matching (b).

the pattern, and the parameters that the pattern have to be filled with, with no overlaps
between the pattern trees. This problem, which we will define formally in Section 2, arises
whenever unordered hierarchical structures are used; e.g., implementing an abstract ma-
chine for any of these calculi requires an algorithm for this problem. Another application is
semi-structured data transformation (á la XSLT on XML) by means of forest-like rules; even,
some XPath queries (e.g. using Axis) can be reduced to the forest matching problem.

Now, the forest pattern matching problem turns out to be NP-complete, as we will
prove in Section 3 by means of a reduction from 3-SAT. However, this reduction points out
the real source of time-complexity: the request that pattern trees are not overlapping in the
target. Luckily, this aspect can be approached using Downey and Fellows’ parameterized
complexity theory [7]: in Section 4 we show that this combinatorial explosion does not
depend on the size of the target tree, but only on the pattern width (i.e., the number of
trees). As a consequence, the complexity of applying a set of parametric rules to an agent
is exponential in the maximum width of the rules (which is fixed) and not on the size of
the agent (which varies during its evolution). Remarkably, in most real cases, rule width is
small: e.g., for Ambients, CaSPiS, etc, it is no more than 3. As a side result, we introduce the
new rainbow antichain problem, which is NP-complete but finite parameter tractable.

Concluding remarks and some directions for future work are in Section 5.

2 Labeled trees, forest patterns, and matches
In this section we define the forest pattern matching problem with no overlaps. As a first
step, we define edge-labeled unordered trees, adopting the syntax of ambient calculus with-
out actions [5], and extending it to (linear) context trees.

Let m, n range over an enumerable set Λ of labels, and x, y, z over an enumerable set Ξ
of variables. Finite sets of variables are ranged over by X, Y, Z. The set of terms is the set of
labelled context trees, finitely branching and of finite depth, where variables are interpreted
as leafs where other trees can be grafted. We denote by T(X), S(X) trees whose variables
are in X. The syntax of these trees is defined by the following grammar.

Syntax of context trees
T(X) ::= 0 empty tree

x leaf, x ∈ X

m[T(X)] labeled tree
T(Y) | T

�(Z) siblings, where X = Y � Z

G. BACCI, M. MICULAN, R. RIZZI FSTTCS 2010 3

We often abbreviate m[0] as m[], and T(X) as T. We assume that “|” associates to the
right, i.e. T | T

� | T
�� is read T | (T

� | T
��). Let lab(T) ⊂ Λ be the set of node labels in T,

and vars(T) ⊂ Ξ be the set of the variables occurring in T (obviously, vars(T(X)) ⊆ X). If
vars(T) = ∅ we say that T is ground, otherwise it is not.

The intuitive interpretation of terms T as unordered trees induces an equivalence T ≡ T
�

which is the minimal congruence that includes the commutative monoidal laws for | and 0.
This relation, similar to ambient calculus congruence, can be axiomatized as follows.

Structural congruence on context trees

T ≡ T
(refl)

T ≡ T
�

T� ≡ T
(symm)

T ≡ T
�

T
� ≡ T

��

T ≡ T��
(trans)

T ≡ T
�

T | T�� ≡ T� | T��
(sibl)

T ≡ T
�

m[T] ≡ m[T�]
(rooting)

T | T� ≡ T� | T
(comm)

T | (T� | T��) ≡ (T | T�) | T��
(assoc)

T | 0 ≡ T
(nil)

The axiomatization of structural congruence is adequate with respect to the semantic
for unordered trees: T ≡ T

� iff T and T
� represent the same tree structure (obviously where

siblings are not ordered). Clearly if T ≡ T
� then lab(T) = lab(T

�) and vars(T) = vars(T
�).

Given two tree terms T(X), S(Y) with X, Y disjoint, we can define term substitution,
written T{S/x}, as usual: the occurrence x in T is replaced by term S. For x ∈ vars(T),
vars(T{S/x}) = (vars(T) \ {x}) ∪ vars(S). Simultaneous substitution T{S1/x1, . . . , Sk/xk}
is defined by the substitution composition T{S1/x1} · · · {Sk/xk}, where x1, . . . , xn are sup-
posed to be pairwise distinct; we denote it by T{�S/�x}.

LEMMA 1. If Si ≡ S
�
i

for i ∈ {1, . . . , k}, then T{�S/�x} ≡ T{�S�/�x}.

Let us define a forest pattern match. Intuitively, given a tree list S = S1, . . . , Sn, called a
“pattern”, searching for a (sub-)match of S in a tree T means to find an occurrence of each
S1, . . . , Sn within T, without overlaps and possibly by instantiating variables in Si. This
means that we have to decompose T in a subtree C where all Si can be grafted, and a list of
subtrees to be grafted to the leaves of Si. More formally:

DEFINITION 2. A forest matching instance, denoted by T � �S, is given by a tree T(Y)
(target), and a list of trees �S(X) = S1(X1), . . . Sn(Xn) (pattern) where Xi are all disjoint and
X = ∪n

i=1Xi. We say that �S(X) matches in T(Y) if

T ≡
�
C{�S/�Z�}

�
{�D/�X} where Z

� ⊆ Z

for some context C(Z) and parameters �D(�W) = D1(W1), . . . , D|X|(W|X|). A match for T � �S

is denoted by C, �D |= T � �S, and we write |= T � �S if C, �D |= T � �S for some C, �D.

PROPOSITION 3. If |= T � �S and |= Si � �Q, for some 1 ≤ i ≤ n and n = |�S|, then |= T � �Q;
and in particular |= T � S1, . . . , Si−1, �Q, Si+1, . . . , Sn.

However, not all possible trees are interesting in patterns. First, the empty tree 0
matches all possible targets, since T ≡ (T | x){0/x}. Also, a tree composed by a sole

4 FINDING A FOREST IN A TREE

variable trivially matches all subtrees; in fact, x has as many matches in T as nodes in
T. A subtler situation happens to patterns with “unguarded” variables, e.g. of the form
x | R. Intuitively, this pattern matches an occurrence of R “beside anything, possibly noth-
ing”. Thus, the unguarded variable allows to “move” subtrees between context and pa-
rameters in a match, yielding many redundant variants of the same. As an example, let
T = m[0] | n[k[0]] be the target and S = x | m[0] the pattern; then, we have three
different matches ((y, n[k[0]]), (n[y], k[0]), (n[k[0]], 0)), despite m[0] occurs only once
in T. Finally, sibling variables x|y in patterns can be replaced by a single one z, because
(x | y){D1/x, D2/y} = (z){D1 | D2/z}.

In all the cases above, a single occurrence of a pattern in a target yields many matches
which are all redundant variants of the same. In order to avoid this plethora of redundant
matches, we restrict our attention to a class of patterns, which we call solid after [11].

DEFINITION 4. A pattern �S(X) = S1(X1), . . . , Sn(Xn) is solid if for 1 ≤ i ≤ n: Si �≡ 0, for no
x ∈ X and S

� it is Si ≡ x|S�, and no two variables x, y ∈ Xi are siblings, that is, x | y cannot
occur in Si (up to ≡).

We can prove that any matching instance can be reduced to a matching instance whose
pattern is solid. Let us define a function solid over forest patterns (i.e., tree lists), which
drops empty trees and unguarded variables, and collapses sibling variables in one:

Transformation into solid patterns

solid(�) = � solid(T,�S) =






solid(�S) if T ≡ 0
solid(Q,�S) if T ≡ x | Q

solid(sld(T),�S) otherwise

sld(0) = 0
sld(x | T) = x | del(T)
sld(m[T] | S) = m[sld(T)] | sld(S)

del(0) = 0
del(x | T) = del(T)
del(m[T] | S) = m[sld(T)] | del(S)

Solid patterns suffice for checking match existence. In order to prove this property, we
need the following lemma, whose proof is in Appendix A.

LEMMA 5. |= T � solid(T) if and only if |= solid(T) � T.

THEOREM 6. |= T � solid(�S) if and only if |= T � �S.

PROOF. It follows directly from lemma 5 and proposition 3.

Actually, all matches against a pattern �S can be obtained from matches against solid(�S).

3 Complexity lower bounds for forest pattern matching
The main result in this section is that the problem of finding a sub-pattern matching of a
tree list pattern �S = S1, . . . , Sn for a tree T is NP-complete. We show it by a reduction from
3-SAT [6]. Although the reduction can be done directly, we do it in two steps, introducing
an intermediate problem which points out the real source of time-complexity hardness.

G. BACCI, M. MICULAN, R. RIZZI FSTTCS 2010 5

Let us define the intermediate problem first, called RAINBOWANTICHAIN. An instance
of RAINBOWANTICHAIN is a tree T (V , E) with nodes V and edges E , and a finite set P of
colors, said palette. Some of the nodes in T have been colored with colors taken from the
palette P . Note that the same color can be associated to different nodes, and each node can
be associated to more then a color. RAINBOWANTICHAIN asks to decide whether exists a
rainbow antichain R ⊆ V in T , that is, a colorful subset of nodes where each color c ∈ P
has exactly one representative in R with which c is associated, and for no pair u, v ∈ R of
distinct nodes u is an ancestor of v.

THEOREM 7. RAINBOWANTICHAIN is NP-complete.

PROOF. RAINBOWANTICHAIN is in NP, since, given a set of nodes R, checking whether
R is a rainbow antichain for T can be done in polynomial time by a breadth-first visit of
T , and for each v ∈ R found, first increase the node counter nc, then the color counter p[i]
(1 ≤ i ≤ |P|) if v has color ci ∈ P . The check fails whether nc > |P| or p[j] = 0 for some
1 ≤ j ≤ |P|, otherwise R is a rainbow antichain for T .

Let C = {c1, . . . , cm} be an instance of 3-SAT on variables {x1, . . . , xn}. From C we
define a colored tree T as follows. Let r be the root node which is left uncolored. For each
variable xi let xi and xi be child nodes of r, and color them with a fresh color cxi

, distinct for
each variable. For each clause cj ∈ C, let c

1
j
, c

2
j
, c

3
j

be children nodes of li in T if cj contains li

as negated, and assign to each of them a fresh color ccj
, distinct for each clause. An example

of construction for c1 = (x1 ∨ x2 ∨ x3), c2 = (x1 ∨ x2 ∨ x3) is shown below.

r

x1

c
1
1

x1

c
1
2

x2 x2

c
2
1 c

2
2

x3

c
3
1

x3

c
3
2

Let ϕ be a truth assignment satisfying the formula C.
By construction, selecting only literal nodes li which
are satisfied by ϕ, we obtain a rainbow antichain R� in
T for the palette {cxi

: 1 ≤ i ≤ n}. Now, we extend R�

to R adding all clause nodes which are not children of a
element in R�. Such R is clearly an antichain for T , but
we must ensure that is colorful and no more than one
representative per color is taken. To do this, it suffices

to prove that R is colorful, indeed if a color occurs more than once in R we remove the
others. By hypothesis, each clause cj is satisfied by ϕ, hence cj has at least one literal li such
that ϕ(li) = T. By construction of T , there exist a node c

k

j
(1 ≤ k ≤ 3) child of li, hence

already in R. This holds for all clauses cj, hence R is colorful.
Conversely, let R be a rainbow antichain for T . Let the function ϕ : {x1, . . . , xn}→ Bool

be defined by ϕ(xi) = T if xi is a node in R, and ϕ(xi) = F if xi is a node not in R. Since
R has exactly one representative per color, no opposite literals are in R, hence ϕ is a truth
assignment for C. By colorfulness of R, for all colors ccj

(1 ≤ j ≤ m) there exists a node
c

k

j
∈ R (1 ≤ k ≤ 3) such that c

k

j
has color ccj

. By construction of T , each c
k

j
∈ R is a children

of a literal node li /∈ R, and moreover the clause cj contains li. Since li /∈ R, by definition
ϕ(li) = T, hence ϕ(cj) = T. This holds for all 1 ≤ j ≤ m, hence ϕ satisfies C.

It is straightforward to see that an instance T , P = {c1, . . . , cn} of RAINBOWAN-
TICHAIN can be reduced to a forest pattern matching problem, namely, the one that solves
|= T � (c1[x1], . . . , cn[xn]), for a suitable tree term T defined upon T . This states that the

6 FINDING A FOREST IN A TREE

forest pattern matching problem is NP-complete. Formally,

THEOREM 8. The forest pattern matching problem is NP-complete.

PROOF. Given a match (C, �D) for T � �S, checking that T ≡ (C{�S/�X}){�D/�Z} corre-
sponds to a tree isomorphism test, which is in P for [9, 10].

Let a colored tree T and a palette P = {c1, . . . , cn} be and instance of RAINBOWAN-
TICHAIN. Let us transform T into a tree term T as follows. If T is a single node v (a leaf)
T is m[0], where m = c if v has color c, otherwise m = ∗, a fresh name not in P denot-
ing an uncolored node. If T has root r and T1, . . . , Tk are the (children) subtrees of r, T is
m[T1 | · · · | Tk], where m is as above for r, and T1, . . . , Tk are transformed trees of T1, . . . , Tk.

Suppose (C, �D) be a match for T � (c1[x1], . . . , ck[xn]). In C, each ci[xi] is grafted
into a variable zi ∈ vars(C). Since variables can appear in terms only as leaves, in the
transformation T of T, we have found a rainbow antichain for P , since the matching pattern
has all the colors in P exacty once.

Assume that T has a rainbow antichainR. In order to recover context C and parameters
�D, which are a match for T � (c1[x1], . . . , ck[xn]), it suffices to apply the construction
explained above with some adjustments: we obtain C applying the transformation from the
root of T, but if a node in R is reached it is transformed by a fresh variable zi (1 ≤ i ≤ n)
one for each element in R; Dj’s are recovered applying the original transformation starting
from the subtrees rooted at the children of nodes in R. It is straightforward to prove that
T ≡ (C{c1[x1]/z1, . . . , ck[xn]/zn}){�D/�X}, for X = {x1, . . . , xn}.

The previous NP-reduction proves that the complexity hardness is merely due to find-
ing a rainbow antichain in the given target, which corresponds to locate the list of trees of
the pattern so that they are not in overlap in the target tree.

4 Tractability for bounded width
Despite the NP-completeness result from Theorem 8, in this section we give a tractability
result for the forest pattern matching problem, when the number of trees in the matching
pattern is bounded by a (relatively small) constant h and their roots have at most k chil-
dren, for some (relatively small) constant k. We propose a parameterized algorithm whose
running time is f (h, k) + O(ns · n

3/2
t

), for nt and ns the number of nodes in the target and
pattern, respectively. This proves that the forest pattern matching problem is in FPT [7].

In presenting the algorithm we switch from edge-labelled tree terms to a more conve-
nient node-labelled tree representations of them. This translation eases the description of
the proposed algorithm and provides a closer connection between the concept of (labelled)
subtree isomorphism and tree pattern matching. Formally, a (rooted) node-labelled tree
T (V , E , label) is a triple, where V is the node set, E ⊆ V × V the set of (oriented) edges, and
label : V → Λ+ × {op, cl} is a function associating to each node a label m ∈ Λ+ = Λ � {∗},
and a flag op or cl. In the following we often abbreviate T (V , E , label) with T and if
label(v) = (m, t) we say that v is m-labelled and open (resp. closed) if t = op (resp. t = cl);
root(T) denotes the root node; Ch(v) denotes the set of children of v; and T �v denotes the
subtree of T rooted at a node v ∈ V .

G. BACCI, M. MICULAN, R. RIZZI FSTTCS 2010 7

DEFINITION 9. Given an edge-labelled tree term T ≡ m1[T1] | · · · | mn[Tn] | x1 | · · · | xk,
for n, k ≥ 0, a node-labelled tree T (V , E , label) is said a graphical representation of T if the
following conditions hold:

1. if n = 0 then T is the empty tree (i.e. V = ∅);
2. if n > 0, then V = {r, v1, . . . , vn}∪V �, E =

�
i({(r, vi)}∪ {(vi, w) | w ∈ Ch(root(Ti))})∪

E �, and for v ∈ V

label(v) =






(∗, op) if v = r and k = 0
(∗, cl) if v = r and k > 0
(mi, t) if v = vi and label(root(Ti)) = (m, t)
labeli(v) if v ∈ Vi

where Ti(Vi, Ei, labeli) be graphical tree representation of Ti (1 ≤ i ≤ m) with pairwise
disjoint node sets not containing r and vi for 1 ≤ i ≤ n, V � =

�
i(Vi \ {root(Ti)}, and

E � = (
�

i Ei) ∩ (V � × V �).

The graphical representation of a tree term is always rooted on a ∗-labelled node and
converts m-labelled edges into m-labelled nodes, discarding variables. Note, however, that
nodes in T are open iff they have a variable as a child in its tree term representation. In
Figure 2 it is shown an example of translation into the graphical representation.

The following proposition relate the sub-isomorphism on trees with the notion of tree
pattern matching on terms, when the pattern is supposed to be solid.

PROPOSITION 10. For a term T and a solid one T
�, where T (V , E , label) and T �(V �, E �, label

�)
are their tree representations, respectively, then |= T � T

� if and only if there exists V �� ⊆ V ,
where |V �| = |V ��|, and ρ : V � → V �� a one-to-one function such that

1. (u, v) ∈ E � iff (ρ(u), ρ(v)) ∈ E ;
2. if v is m-labelled then ρ(v) is m-labelled, for m ∈ Λ;
3. if v ∈ V � \ {root(T �)} is closed then ρ(v) is closed and |Ch(v)| = |Ch(ρ(v))|.

Apart (3), the conditions listed in Proposition 10 correspond exactly to require that
there exists a subtree isomorphism between T and T � on Λ+-labelled trees (when ∗ acts as
a wildcard label). The last condition is required in situations like the following one: choose
T = m[n[0]] and T

� = m[0]; T
� has no match in T even though, considering their graphical

tree representations, there exists a function ρ satisfying conditions (1) and (2).
Proposition 10 induces the definition of the following relation: ρ |= T � T � iff there

exists ρ satisfying conditions (1–3). Obviously |= T � T
� iff ρ |= T � T � and T , T � are

graphical representations for T, T
�, respectively.

Now, let us consider the forest pattern matching problem, that is, when the pattern is a
list of arbitrary length h ≥ 0.

PROPOSITION 11. Given a term T and a solid (forest) pattern �S = S1, . . . , Sh, where T and
�S = S1, . . . ,Sh are their tree representations (with disjoint node sets), then |= T � �S iff

1. ρi |= T � Si, for 1 ≤ i ≤ h;
2. R = {ρi(v) | v ∈ Ch(root(Si)), 1 ≤ i ≤ h} is an antichain in T .

Condition (1) is obvious, and it is due to Proposition 10. Condition (2) states that the
children of each Si-root must be mapped by ρi to form an antichain in T ; this corresponds to

8 FINDING A FOREST IN A TREE

∗

n m

n

k

n

m

∗

m n

∗

m

T = n[0] | m[y1 | n[0]] | k[n[y2]] | m[0] | y3 S1 = m[x] | n[0] S2 = m[0]

Figure 2: The forest pattern �S = S1, S2 has a match in T: for C = z1 | k[n[y2]] | z2 | y3 and
D = y1 | n[0], it holds that T ≡ (C{S1/z1, S2/z2}){D/x}. Bold-circled nodes are closed.

ensure that the mapped trees of the pattern are not in overlap in T . Note that different roots
of the pattern can be mapped to one node, and the nodes to which the roots of the pattern
are mapped do not need to satisfy the antichain property (see Figure 2 for an example).

4.1 A parameterized algorithm for forest pattern matching

Proposition 11 offers an alternative characterization for the forest pattern matching problem
through which it is easier to provide a parameterized algorithm that solves it, when h = |�S|
and k = maxi |Ch(root(Si))| are the chosen parameters. The key idea is to find all possible
matches of each Si separately, identifying them by coloring nodes in T , and finally search
for a rainbow antichain. The proposed algorithm uses the reduction to kernel size technique.
Formally, the parameterized algorithm solving |= T � �S acts in three steps:

1. for each Si in the pattern, we identifies all possible mappings ρi satisfying ρi |= T � Si.
These mappings corresponds to tree matches and we identify them by means of colors:
each Si is associated with a color f ∈ F , and nodes in Ch(root(Si)) with colors from
the palette Pi (a color for each node). Palettes are supposed to be disjoint.

2. we bound the size of the returned colored target tree, yielding a kernel of size which
depends only on the parameters h and k.

3. we perform an exhaustive search for a rainbow antichain on palette
�

i Pi.

Coloring the target tree: By Proposition 10 we know that this correspond to solve the
subtree isomorphism problem for each Si in the pattern and ensuring that the closedness
property holds (that is, condition (3) in Proposition 10). It is not hard to see that the Matula’s
algorithm [12] for the subtree isomorphism can be adapted to our aims. Let M be a boolean
matrix of size ns × nt, where nt and ns are respectively the number of nodes of the target
tree and of the pattern (the summation of each node set of the whole tree list). By dynamic
programming on T and �S we can fill M as follows: for each node u in �S and node v in
T , M[u, v] = T if there exists an embedding (respecting node labeling and the closedness
property) of �S�u in T rooted at v, otherwise M[u, v] = F (see Matula [12] for details on how
the matrix M is obtained).

From the matrix M we can define the coloring functions for T . Let F and Pi, for 1 ≤ i ≤
h, be disjoint palettes such that |F | = h and |Pi| = |Ch(root(Si))| ≤ k, and α :

�
i{Si} → F

G. BACCI, M. MICULAN, R. RIZZI FSTTCS 2010 9

and βi : Ch(root(Si)) → Pi be bijections associating a color f ∈ F with each Si in the
pattern, and a color p ∈ Pi with each children of root(Si). We define V-indexed family color
sets colorR(v) ⊆ F and colori(v) ⊆ Pi, for 1 ≤ i ≤ h as follows:

α(Si) ∈ colorR(v) ⇐⇒ M[root(Si), v] βi(u) ∈ colori(v) ⇐⇒ M[u, v]

Note that nodes may take color from different palettes, indeed a subtree of the target may
have a match with more than one tree in the pattern. The family of color sets colorR and
colori enjoy the following property:

PROPOSITION 12. If α(Si) ∈ colorR(v) then
�

u∈Ch(v) colori(u) = Pi.

The above proposition says that if a node v in the target has color α(Si), then Si has a
match in T rooted at v, hence there must exists C ⊆ Ch(v) such that |C| = |Ch(root(Si))|
and for each u ∈ Ch(root(Si)), Si�u has a match rooted at a node in C.

Reduction to kernel size: The reduction of T to kernel size consists in a decoloring pro-
cedure that aims at leaving as much nodes as possible completely uncolored in order to
remove them from T . Indeed, uncolored nodes have no influence in the detection of a pos-
sible rainbow antichain in T .

Before starting with the description of the reduction, we need some technical definitions
and notations. We say that a node is c-decolored if we remove c from all its color sets (note
that colorR and colori are disjoint, hence the set deletion of c influences only the right color
set). By T \ v we denote the tree obtained from T removing the node v and such that the
children of u are adopted by its parent (if u is the root node we just decolor it).

DEFINITION 13. Let T be a tree and u a node in T . We denote by fout(u) the fan-out of
u, defined as fout(u) = ∑v∈an(u) |Ch(v)|− 1, where an(v) is the set of all ancestors of v. We
define fout(T) = maxv∈V fout(v), denoting the maximal node fan-out in T .

Intuitively, fout(u) is the out-degree of the whole path from u to the root of T .

LEMMA 14. For u uncolored, if T admits a P-rainbow antichain then also T \ v has one.

LEMMA 15. If T has a P-rainbow antichain, then it has one also when u is c-decolored, for
color c ∈ P , if one of the following conditions hold:

(a) u is an ancestor of v, and both u, v are c-colored;
(b) T has only c-colored leaves and u is a leaf such that fout(u) ≥ |P|.

Applying (a) we c-decolor all nodes that have a c-colored descendant, and by Lemma 14
we remove all the nodes left uncolored. Note that this procedure can be applied both on
palette F and on palette Pi, for 1 ≤ i ≤ h. This reduction returns a tree where all paths do
not have color repetitions, hence, by Proposition 12 its height is at most 2h.

Condition (b) induces another decoloring procedure. In fact, once the previous reduc-
tion is applied, node colored the same must form an antichain and, in particular for each
f ∈ F we can apply (b) just ignoring paths from a leaf up to a f -colored node. Note that
this time we do not apply the reduction on palettes Pi’s.

PROPOSITION 16. If fout(T) ≤ m, then T has at most 2m leaves.

10 FINDING A FOREST IN A TREE

By Proposition 16, the reduced target tree have at most 2|F | (hence, 2h) f -colored nodes,
for each f ∈ F . Note, however, that we do not have a bound on the total number of nodes
in the reduced tree, indeed the reduction (b) is not applied on c-colored nodes, for c ∈ �

i Pi.
This problem is overcome just checking that for each color f ∈ F , all f -colored nodes have
no more than |�i Pi| c-colored children, for c ∈ �

i Pi. Since |�i Pi| ≤ h · k, we obtain a
reduced tree Tred with at most h (k + 1) · 2h nodes.

Look for rainbow antichains: What we actually need is the following for each node v in
the reduced target tree: for each X ⊆ F , determine whether the pattern trees corresponding
to color in X can be mapped simultaneously in the subtree Tred�v. To calculate this, we deter-
mine all the possible tuples t = (c1, . . . , c|Ch(v)|) of colors associated to each child of v, then
we check that for each α(Si) ∈ X, the tuple t contains Pi. Since both Ch(v) and

�
i Pi have

at most h · k elements, for each node v and subset X we need to check at most (h · k)2 tuples
at a cost of h · k per tuple. We denote this by the predicate N(v, X).

In order to determine whether there exists a rainbow antichain in the reduced target
tree T, we need to check that A(Tred,F) hold, where the predicate A(T , X), for T , subtree
of Tred, and X ⊆ F , is defined as follows:

A(T , X) = N(v, X) ∨
�

Y⊆X

�
A(T �, Y) ∧ A(T ��, Y \ X)

�
,

where, v = root(T), T � = T �u1 and T �� is the tree obtained by collecting all T �uj under a
fresh copy of the node v, for Ch(v) = {u1, . . . , um} and 2 ≤ j ≤ m.

Saying that the predicate A(T , X) holds means that T admits a rainbow antichain R
for the palette

�
α(Si)∈X Pi. Indeed, the antichain is either a subset of the immediate children

of root (in this case N(root(T), X) holds), or it is split in the subtrees of T (in this case the
right part of the formula holds). A formal argument for this intuition can be provided by a
straightforward induction on the height of T .

In order to calculate A(T , X) we must solve a subset convolution problem for each node
in the reduced target tree. Each subset convolution can be calculated in time O(h

2 · 2h), by
means of the fast subset convolution algorithm of [2], hence we can check A(Tred,F) in time
O(h · k)3 + O(h

3(k + 1) · 22h) using a dynamic programming algorithm working bottom-up
on the structure of Tred.

Complexity analysis of the algorithm: The coloring phase costs O(ns · n
3/2
t

) where nt and
ns are the number of nodes in the target and pattern, respectively, [12]. Note that while
coloring the nodes from leaves up to the root, it can be easily performed the fist decoloring
step, just do not coloring nodes by colors already assigned to some descendant.

The second decoloring phase must be performed after the previous decoloring. This
is both necessary for the correctness of the reduction, and useful to increase the node fan-
outs. The decoloring, for each f ∈ F , first calculates the fan-out of each f -colored node
just performing a simple depth-fist visit of the tree, then it decolors the nodes by other h

depth-fist visits, one for each color in F . The overall cost of the reduction is linear in nt.
The cost for checking the existence of rainbow antichains in Tred has been already shown

to be in O(h · k)3 + O(h
3(k + 1) · 22h).

G. BACCI, M. MICULAN, R. RIZZI FSTTCS 2010 11

Concluding, the overall cost of the algorithm is O(h
3(k + 1) · 22h) + O(ns · n

3/2
t

).
Notice that the proposed algorithm proves also that the forest pattern matching prob-

lem is fixed-parameter tractable also if we choose as parameter simply K = |�i Ch(Si)|;
indeed, in this case the upper bound would be O(K

3 · 22K) + O(ns · n
3/2
t

). We have preferred
to consider the two parameters h, k, instead of the single K, because our approach leads to a
lower and more precise upper-bound for the problem.

5 Conclusions
In this paper we have considered the problem of finding a forest within an unordered tree,
with no overlaps. This problem arises often with languages using unordered hierarchi-
cal structures, e.g. to represent scoping, containment, etc. Although the problem is NP-
complete in general, we have shown that the combinatorial explosion depends only on the
forest width. This parameter is usually fixed (i.e., reduction rules do not change, for a given
calculus) and often it is small (i.e. ≤ 3), thus the problem is feasible. We have given an algo-
rithm for computing the solutions for this problem, respecting this complexity bounds. As a
side result of our proof techniques, we have singled out the new rainbow antichain problem,
which is NP-complete but finite parameter tractable; we think that this problem can be a
useful tool also for other complexity analysis and reductions of problems about trees.

Future work. First, we plan to apply the results and algorithm presented in this paper to
real calculi and frameworks. The cases of Bigraphical Reactive Systems [13], BioBigraphs [1]
and Synchronized Hyperedge Replacement [8] are of particular interest. In these cases, we
have to integrate forest pattern matching with sub(hyper)graph isomorphisms (needed to
match e.g. the link part of bigraphs). Subgraph isomorphism is a notoriously hard problem;
we hope that the tractability results given in this paper will help to tame its hardness.

An important question is whether there are other possible reductions to be applied in
the target tree in order to yield a smaller kernel instance. A positive result in this direction
would provide a significant improvement of both time and space complexity upper-bounds.
At the moment, we know only that our problem does not fulfill the criteria in [3] that would
imply the nonexistence of a polynomial-bounded kernel, so there is still hope.

Another interesting situation is when we consider rules with reaction rates.These cases
are of great interest in quantitative models of networks, biological systems, etc. Here, we
are interested to pick out a single match among many possible matches of many different
rules, but still respecting rates and stochastic distributions. We plan to adapt our results
accordingly, with a suitable counting algorithm from the one presented in this paper.

References
[1] G. Bacci, D. Grohmann, and M. Miculan. Bigraphical models for protein and membrane

interactions. In G. Ciobanu, editor, Proc. MeCBIC’09, volume 11 of EPTCS, 2009.
[2] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets möbius: fast subset

convolution. In STOC ’07: Proceedings of the thirty-ninth annual ACM symposium on

Theory of computing, pages 67–74, New York, NY, USA, 2007. ACM.

12 FINDING A FOREST IN A TREE

[3] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without
polynomial kernels (extended abstract). In L. Aceto, I. Damgård, L. A. Goldberg, M. M.
Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, editors, ICALP (1), volume 5125 of
Lecture Notes in Computer Science, pages 563–574. Springer, 2008.

[4] M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessions and pipelines for structured
service programming. In G. Barthe and F. S. de Boer, editors, Proc. FMOODS, volume
5051 of Lecture Notes in Computer Science, pages 19–38. Springer, 2008.

[5] L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of Software Science

and Computation Structures: First International Conference, FOSSACS ’98, pages 140–155.
Springer-Verlag, Berlin Germany, 1998.

[6] S. A. Cook. The complexity of theorem-proving procedures. In STOC ’71: Proceedings

of the third annual ACM symposium on Theory of computing, pages 151–158, New York,
NY, USA, 1971. ACM.

[7] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness i:
Basic results. SIAM J. Comput., 24(4):873–921, 1995.

[8] G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, and E. Tuosto. Synchronised hyper-
edge replacement as a model for service oriented computing. In F. S. de Boer, M. M.
Bonsangue, S. Graf, and W. P. de Roever, editors, Proc. FMCO, volume 4111 of Lecture

Notes in Computer Science, pages 22–43. Springer, 2005.
[9] J. E. Hopcroft and R. E. Tarjan. A v2 algorithm for determining isomorphism of planar

graphs. Inf. Process. Lett., 1(1):32–34, 1971.
[10] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar graphs

(preliminary report). In Proceedings of Conference Record of 6th Annual ACM Symposium

on Theory of Computing, (STOC ’74), pages 172–184, 1974.
[11] J. Krivine, R. Milner, and A. Troina. Stochastic bigraphs. In Proc. 24th MFPS, volume

218 of ENTCS, pages 73–96, 2008.
[12] D. W. Matula. Substree isomorphism in O(n

5/2). Annals of Discrete Mathematics, 2:91–
106, 1978.

[13] R. Milner. The Space and Motion of Communicating Agents. Cambridge University Press,
New York, NY, USA, 2009.

A Proofs of technical lemmata
In this appendix we have collected the proofs of the minor results present in the paper. The
proofs are listed following the order of appearance.
PROOF. [Proposition 3] We have to prove that if |= T � �S and |= Si � �Q, for some 1 ≤ i ≤
n and n = |�S|, then |= T � S1, . . . , Si−1, �Q, Si+1, . . . , Sn.

Since |= T � �S and |= Si � �Q there exist contexts C, C
� and parameters �D, and �D� such

that

T ≡ (C{S1/x1, . . . , Sn/xn}){�D/�Z} for some x1, . . . , xn ∈ vars(C)

Si ≡ (C
�{�Q/�X�}){�D�/�Z�} for some X

� ⊆ vars(C
�)

Without loss of generality, suppose X
� disjoint from {x1, . . . , xn}, otherwise a variable re-

naming can be applied. Now, by an easy replacement of Si and some rearrangements on the

G. BACCI, M. MICULAN, R. RIZZI FSTTCS 2010 13

context and parameters, we obtain

T ≡ (C{S1/x1, . . . , Si/xi, . . . , Sn/xn}){�D/�Z}
≡ (C{S1/x1, . . . , (C

�{�Q/�X�}){�D�/�Z�}/xi, . . . , Sn/xn}){�D/�Z}
≡ ((C{C

�/xi}){S1/x1, . . . , �Q/�X�, . . . , Sn/xn}){�D, �D�/�Z, �Z�}

This states that (C{C
�/xi}, (�D, �D�)) is a match for S1, . . . , Si−1, �Q, Si+1, . . . , Sn, in T hence,

|= T � S1, . . . , Si−1, �Q, Si+1, . . . , Sn.
Similarly, we can prove that (C{Si/x1, . . . , C

�/xi, . . . , Sn/xn}, �D�) is a match for �Q in T,
hence |= T � �Q holds too.

In order to prove lemma 5 we need the following proposition first.

PROPOSITION 17. The following statements hold:

(a) no empty trees: |= T � 0,�S ⇐⇒ |= T � �S;
(b) no sibling variables: |= T � x | y ⇐⇒ |= T � x;
(c) no unguarded variables: |= T � x | S ⇐⇒ |= T � S.

PROOF. (a, =⇒) Since |= T � 0,�S, there exist a context C and parameters �D such
that T ≡ (C{0/z,�S/�Z}){�D/�X} for some {z} � Z ⊆ vars(C). It is simple to prove that
C{0/z,�S/�Z} ≡ C{0/z}{�S/�Z}, hence, by associativity of substitution composition, T ≡
((C{0/z}){�S/�Z}){�D/�X}, that is, |= T � �S.

(a, ⇐=) Since |= T � �S, there exist a context C and parameters �D such that T ≡
(C{�S/�Z}){�D/�X} for some Z ⊆ vars(C). Now, observing that C ≡ C | 0 ≡ (C | z){0/z} for
some z /∈ Z, we obtain T ≡ ((C | z){z/0,�S/�Z}){�D/�X}, that is, |= T � 0,�S.

(b, =⇒) Since |= T � x | y, there exist a context C and parameters �D such that
T ≡ (C{x | y/z}){�D/�X} for some z ∈ vars(C). Observing that C{x | y/z} ≡ C{y |
w/z}{w/x} (for w fresh), by associativity of substitution composition, we obtain T ≡
((C{y | w/z}){x/w}){�D/�X}, that is, |= T � x.

(b, ⇐=) Since |= T � x, there exist a context C and parameters �D such that T ≡
(C{x/z}){�D/�X} for some z ∈ vars(C). It is easy to prove that C{x/z} ≡ C{x | 0/z} ≡
C{x | y/z}{0/y} for y fresh. Now by associativity and from the freshness of y, we obtain
T ≡ (C{x | y/z}){0/y, �D/�X}, that is, |= T � x | y.

(c) has the same proof of (b), just replace x in (b) with S.

PROOF. [Lemma 5] It is an easy application of proposition 17 and proposition 3. In fact,
proposition 3 ensures that it suffices to check |= �T � �T� ⇐⇒ |= �T� � �T for each equation
�T = �T� defining solid. This is just a straightforward application of (a), (b), (c) of Proposi-
tion 17.
PROOF. [Lemma 15]

(a) Let T be a colored tree on palette P , where there exist two nodes u and v, such that
u is an ancestor of v and c ∈ P is assigned both to u and v. We want to prove that if T has a
rainbow antichain, it continues to have one also if we c-decolor node u.

Suppose R be a rainbow antichain for T such that u ∈ R. Since u belongs to R, for
some color cR ∈ P assigned to u, R must be rainbow on the palette P . If we decolor u by

14 FINDING A FOREST IN A TREE

c, there are two cases. If c �= cR, R continues to be a rainbow antichain for T , conversely,
if c = cR, R is no more colorful on P , since one of the representative of P lacks (i.e. c). By
hypothesis, u has a c-colored descendant v. It is easy to see that R� = (R \ {u}) ∪ {v} is
still an antichain and moreover it is colorful for P .

(b) Let T be a colored tree on palette P such that, all its leaves are colored by c ∈ P , and
v is a leaf in T for which fout(v) ≥ |P|. We want to prove that if T has a rainbow antichain,
it continues to have one also if we c-decolor v. Let P be the path from the leaf v to the root
of T . To each outer-neighbour ni (1 ≤ i ≤ fout(v)) of P corresponds a subtree T �ni with all
leaves colored by c, since T has only c-colored leaves. It is worth noting that all T �ni are
not overlapping with each other, since

�
i{ni} is an antichain for T .

Suppose R be a rainbow antichain for T such that v ∈ R. Since v ∈ R, for some color
cR ∈ P assigned to v, R must be rainbow on the palette P . If we c-decolor v, there are
two cases. If c �= cR, R continues to be a rainbow antichain for T , conversely, if c = cR,
R is no more rainbow on P , since one of the representative of P lacks. Note that R, apart
v, must reside in

�
i T �ni. Since fout(v) ≥ |P|, there are more then |P| subtrees T �ni (1 ≤

i ≤ fout(v)), hence there is no way to choose |P| distinct nodes from
�

i T �ni such that each
T �ni as at lest one of these nodes. Therefore, since each T �ni contains at least one node
colored by c (all leaves are c-colored!), we can substitute the node v ∈ R with one of the
leaf node in the “untouched” T �ni, thus obtaining a new antichain where v is not choosen
(hence v can be safely decolored).

PROOF. [Proposition 16] The proof is by induction on m. If m = 0, then fout(T) = 0, hence
T must be a single path, hence it has exactly one leaf. Let m > 0, and T be a tree with
t > 0 children under its root (the case when t = 0 is trivial). By inductive hypothesis, each
subtree rooted at a child of the root have at most 2k−t+1 leaves, since their fan-out is at most
k − (t − 1). Since there are t of those subtrees, the number of the leaves in T is at most
t · 2k−t+1. We have:

t · 2k−t+1 = 2 · t

2t
· 2k ≤ 2k (since ∀t > 0.

t

2t
≤ 1

2
)

