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Università di Verona

Dipartimento di Informatica
strada Le Grazie 15, 37134 Verona, Italy

December 9, 2010

Abstract

This paper revisits Noether’s theorem on the constants of motion for
Lagrangian mechanical systems in the ODE case, attempting a clarifica-
tion on both the theoretical and the applied side. Noether’s variational
theorem requires some form of (infinitesimal) invariance of the Lagrangian
with respect to some set of transformations, and provides conserved quan-
tities as a result. First of all, we obtain both a simpler theory and new
applications by allowing transforms that are not point functions. Then we
compare the three known formulations of Noether’s theorem, that involve
respectively (1) invariance without gauge transform, under both depen-
dent and independent variable transformation; (2) gauge-invariance under
a transformation of dependent variable; (3) gauge-invariance under trans-
formation of both dependent and independent variable. We show that,
in the case of one independent variable, all three formulations are equiv-
alent, in the sense that any conservation law, that can be deduced with
one, can also be deduced with any other. In the application sections we
work out several examples following a unified general scheme and using
some newly devised transformations, most notably in the derivation of the
Laplace-Runge-Lenz vector for Kepler’s problem.

1 Introduction

Emmy Noether’s classical 1918 work [8] proved that conservation laws in vari-
ational Mechanics follow whenever the Lagrangian function is invariant under
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a one-parameter continuous group that transforms both dependent and inde-
pendent variables. This result unifies under a single idea many old conservation
laws, suggests a way of discovering new ones, and imposes theoretical constraints
on how to build new Lagrangian theories. Since then, the literature has seen
a vast number of formulations, of various degrees of generality, all going under
the rubric of Noether’s theorem.

One generalization is so easy that we are still going to refer to it as the
“original” Noether’s setting: it consist in relaxing exact finite invariance to in-
finitesimal invariance, and relaxing the group of transformation to a mere fam-
ily of transformations. Noether kept her famous paper in the group framework,
probably because her other major focus was on a form of converse theorem.

As Bluman and Kumei recount in the historical notes of their book [3],
Bessel-Hagen already in 1921 [2] observed that infinitesimal invariance of the
Lagrangian can be replaced by the (apparently) more general invariance up to
a divergence, or, as we prefer to call it, gauge-invariance, under both dependent
and independent variable transformation.

Then Boyer [5] in 1967 noticed that Bessel-Hagen’s formulation was unnec-
essarily complicated, because one could get the same first integrals by means of
gauge-invariance under transformation of the dependent variable only.

Textbooks that feel like dwelling on Noether’s theorem as little as possible
usually do not touch the independent variable, and assume either gauge-less
invariance (Arnold’s book [1], for example) or, at most, gauge-invariance, as
recommended by Lévy-Leblond in 1970 [7]. Giaquinta and Hildebrandt [6] de-
velop the theory in the PDE case, first with independent and dependent variable
change, and then they add a version with invariance up do a divergence.

In this paper we only deal with the case of one independent variable, which
we call time, while the dependent variable(s) will be called space. In this sim-
pler setting we have tried to rethink and systematize both the theory and the
applications of Noether’s theorem.

Section 2 is devoted to general underpinnings and motivations. We will make
precise what we mean with the transformations and invariances. We have tried
to isolate the most general setting where we are able to deduce constants of
motions. We define a generalized notion of gauge invariance, in terms of what
we will call “gauge term” or simply “gauge”. We do not assume from the outset
that space change, time change and gauge are point functions of time, space,
velocity and the parameter: the advantage is that the theory is cleaner this way,
and we leave open the chance that those objects may be not point functions,
but, say, integral or delay functionals. In the methodological notes we describe
the abstract scheme that we will follow in the examples later on.

In Section 3 we turn to the issue of which invariance is more general than
the others. Our contribution is that the original Noether’s version is actually no
less general than Bessel-Hagen’s and Boyer’s versions. Schematically, we prove
the equivalence of the following three formulations:

1. invariance under time and space changes (original Noether).

2. gauge-invariance under space changes (Boyer);
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3. gauge-invariance under both time and space changes (Bessel-Hagen);

where invariance is in the infinitesimal sense. By equivalence we mean that
whenever one formulations holds for a system, then any other holds too, al-
though with a possibly different gauge or time change, and they all lead to the
same first integral. The precise statement is in Section 3 below (Theorems 1
and 2).

In Section 4 we apply the general method to the most basic textbook ap-
plications of Noether’s theorem: invariance by time-shift, space translation and
space rotation. In particular we give a fresh look at conservation of energy, with
an integral functional as a gauge. In Section 5 we try out various approaches to
the very simple system of the free fall of a weight.

In Section 6 we deduce Laplace-Runge-Lenz’s invariant for Kepler’s system
using an innovative, simpler space-change family, that uses a delay term q(t+ε),
in contrast to the traditional point function of q(t), q̇(t) that is affine in ε. Then,
using some variation on the theme, we show that, in principle, Noether’s theorem
may apply to single motions, and not necessarily to all motions at once.

Section 7 gives a Noetherian deduction of the first integrals of a family of
superintegrable systems that have recently been discovered by different meth-
ods [9]. Finally, in Section 8 we give a reworking of an example that we found
in a 1988 paper [4] by Bobillo-Ares. In both Section 7 and 8 we again use gauge
terms that do not fit directly into the customary “gauge transform” concept.

Notations

Throughout this work, Rn will be the usual Euclidean space, and we will use
the notation x · y for the inner product and ‖x‖ for the norm. The symbol q
will denote either a vector in Rn or an Rn-valued function of une variable, as
the context should clarify which is the case. Given two points x = (x1, x2), y =
(y1, y2) in the plane R2 we set det(x, y) := x1y2−x2y1. To make the statements
less cumbersome we will assume that our smooth functions L,G, τ . . . are defined
not on some open sets but on whole Euclidean spaces, and leave the obvious
generalizations to the reader. For partial derivatives of expressions with respect
to a variable x we use the fractional notation ∂

∂x , whilst for the partial derivatives
of a named function F we write more simply ∂xF (x, y) or ∂2

x,yF (x, y). The
gradient of a smooth scalar function q #→ f(q) of n variables will be denoted by
∂qf(q), and it will be treated as a vector in Rn. To clarify our usage without
a formal definition, here is Taylor’s formula for a scalar function of (p, q) ∈
Rn × Rn:

f(p + h, q + k) = f(p, q) + ∂pf(p, q) · h + ∂qf(p, q) · k + o
(
‖p‖+ ‖q‖

)
.
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2 Variational invariances

The variational approach to classical mechanics starts with a smooth Lagrangian
function L : R× Rn × RN → R, upon which the action functional is defined as

Aa,b(q) :=
∫ b

a
L

(
t, q(t), q̇(t)

)
dt . (1)

We then posit that the mechanical motions will be fixed-endpoint-stationary for
the action functional. Hamilton’s variational principle translates the stationar-
ity condition into the Lagrange differential equations:

d

dt
∂q̇L

(
t, q(t), q̇(t)

)
− ∂qL

(
t, q(t), q̇(t)

)
= 0 ∀t . (2)

Noether’s contribution was to show that mechanical conservation laws can be
deduced from some kind of invariance property of the action functional. Let us
review these invariances, starting from the simplest case.

Suppose we have a smooth trajectory q(t) that for now may not necessarily
be a solution to the Lagrange equations. Let us embed the trajectory into a
one-parameter family of trajectories qε(t) (space change), so that q0(t) ≡ q(t).
We can visualize the family with the help of Figure 1. Notice that there is no
need for the endpoints qε(a), qε(b) to be fixed. In the picture the joint map
(ε, t) #→ qε(t) is one-to-one and with maximum rank, but this is only arranged
to make things readable, and it is not at all required for the theory.

Consider the action functional along the family as a function of ε:

ε #→ Aa,b(qε) . (3)

In Figure 1 it corresponds to the integral of L along the thicker arcs. One crucial
and easy fact is that the derivative of the action with respect to ε at ε = 0 has
an integral-free formula if we assume that q(t) is a solution to the Lagrange
equations:

∂Aa,b(qε)
∂ε

∣∣∣
ε=0

= ∂q̇L
(
ξ, q(ξ), q̇(ξ)

)
· ∂εqε(ξ)

∣∣∣
ε=0,ξ=b

−

− ∂q̇L
(
ξ, q(ξ), q̇(ξ)

)
· ∂εqε(ξ)

∣∣∣
ε=0,ξ=a

(4)

which is of the form
∂Aa,b(qε)

∂ε

∣∣∣
ε=0

= F (b)− F (a) (5)

where we have set

F (t) = ∂q̇L
(
t, q(t), q̇(t)

)
· ∂εqε(t)

∣∣
ε=0

. (6)

The basic idea is that if it somehow also happens that

∂Aa,b(qε)
∂ε

∣∣∣
ε=0

= 0 ∀a, b , (7)
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Figure 1: The continuous lines are the space change family t #→ qε(t). The
dashed lines are ε #→ qε(t). The integral of formula (3) is performed in dt over
the thicker arcs.
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Figure 2: The continuous lines are the space change family t #→ qε(t). The
dotted lines are ε #→ qε(τ(ε, t)). The integral of formula (13) is performed still
in dt over the thicker arcs.
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then the function F (t) will be constant in t, which is the kind of result we want.
When equation (7) is true, we will speak of infinitesimal invariance under space
change. Notice that equation (7) can be rewritten in differential form as

∂

∂ε
L

(
t, qε(t), q̇ε(t)

)∣∣∣
ε=0

= 0 ∀t . (8)

There are situations when not only the function ε #→ Aa,b(qε) has zero deriva-
tive at ε = 0, but it is actually constant, or, equivalently, L(t, qε(t), q̇ε(t)) does
not depend on ε. These will be called finite invariances under space change.
The most classic examples are the Lagrangians that are invariant under either
translations or rotations (Examples 2 and 3 below), whereby any smooth tra-
jectory q(t) can be embedded in a translated or rotated family qε(t) with the
property of finite invariance. When q(t) also solves the Lagrange equations,
the momentum or angular momentum will be conserved respectively. Although
very simple and neat, this concept of finite invariance does not seem powerful
enough to cover conservation of energy, for instance.

We will generalize in two independent steps. First, we can modify the func-
tion (3) by introducing a smooth real function G(ε, t), that for the purposes of
this paper we have chosen to call gauge, and then ask that the new function

ε #→ Aa,b(qε) + G(ε, b)−G(ε, a) (9)

has zero derivative at ε = 0, for all a, b. In terms of the Lagrangian, this is
expressed as

∂

∂ε

(
L

(
t, qε(t), q̇ε(t)

)
+ ∂tG(ε, t)

)∣∣∣
ε=0

= 0 . (10)

This generalized condition will be called infinitesimal gauge-invariance under
space change. Combined with (5), this invariance causes the modified function

t #→ F (t) + ∂εG(0, t) (11)

to be a constant of motion, when q(t) solves the Lagrange equations. Of course
we may speak of finite gauge-invariance in the rare instances when the func-
tion (9) is constant (Example 1)

The simplest meaningful example of infinitesimal gauge-invariance occurs
when the Lagrangian function L does not depend on t. We can embed any
smooth q(t) into its time-shift family qε(t) := q(t + ε), whose derivatives with
respect to t are the same as the derivatives with respect to ε. Let us try
a gauge G of the form G(ε, t) = εg(t). The gauge-invariance condition (10)
becomes

g′(t) = −
( ∂

∂ε
L

(
qε(t), q̇ε(t)

))∣∣∣
ε=0

= − d

dt
L

(
q(t), q̇(t)

)
. (12)

By inspection we see that (10) holds with the choice G(ε, t) := −ε ·L(q(t), q̇(t)).
We can deduce that when q(t) solves the Lagrange equations, we have conser-
vation of energy (Example 1).
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To add one more layer of complication, we modify the function (9), in its
turn, by letting the endpoints of the integration to depend on ε through a
smooth function τ(ε, t):

fa,b(ε) := Aτ(ε,a),τ(ε,b)(qε) + G(ε, b)−G(ε, a) =

=
∫ τ(ε,b)

τ(ε,a)
L

(
ξ, qε(ξ), q̇ε(ξ)

)
dξ + G(ε, b)−G(ε, a) ,

(13)

with the compatibility condition that τ(0, t) ≡ t. The function τ(ε, t) will be
called time change in this paper. An attempt at visualization is in Figure 2. If
f ′a,b(0) = 0 we will talk of infinitesimal gauge-invariance under space and time
change. This condition also leads to a conservation law (Theorem 2) when, as
usual, q(t) is a solution to Lagrange equations. There is an example (Section 8)
where qε, G, τ are all nontrivial. More commonly, though, the gauge will be
missing (i.e., G ≡ 0) and τ(ε, t) )≡ t, a situation that we will call infinitesimal
invariance with space and time change.

To reformulate the condition f ′a,b(0) = 0 in terms of L, let us perform the
change of variable ξ = τ(ε, t) for t ∈ [a, b] in equation (13), that brings us to a
fixed interval:

fa,b(ε) :=
∫ b

a
L

(
τ(ε, t), qε(τ(ε, t)), q̇ε(τ(ε, t))

)
∂tτ(ε, t) dt +

+ G(ε, b)−G(ε, a) .

(14)

We can take the derivative with respect to ε under the integral sign, obtaining

f ′a,b(ε) =
∫ b

a

∂

∂ε

(
L

(
τ(ε, t), qε(τ(ε, t)), q̇ε(τ(ε, t))

)
∂tτ(ε, t)

)
dt + (15)

+
∂

∂ε

(
G(ε, b)−G(ε, a)

)
= (16)

=
∫ b

a

∂

∂ε

(
L

(
τ(ε, t), qε(τ(ε, t)), q̇ε(τ(ε, t))

)
∂tτ(ε, t)

)
dt + (17)

+
∫ b

a

∂2

∂ε∂t
G(ε, t)dt . (18)

Asking that f ′a,b(0) vanish for all choices of a, b is equivalent to the formula

∂

∂ε

(
L

(
τ(ε, t), qε(τ(ε, t)), q̇ε(τ(ε, t))

)
∂tτ(ε, t) + ∂tG(ε, t)

)∣∣∣
ε=0

≡ 0 . (19)

For example, consider again a Lagrangian function L that does not depend
on t, and take the same space change qε(t) := q(t + ε) as before, but choose the
null gauge G(ε, t) ≡ 0 and the new time change τ(t, ε) := t − ε instead. It is
trivial to verify that fa,b(ε) does not depend on ε. This is a neat instance of finite
invariance with space and time change. The induced first integral is the energy,
again. Conservation of energy is the classical prototype of a conservation law
that can be obtained in two different ways: (1) with gauge but no time change,
and (2) with time change but no gauge. After Theorem 1 we will be able to
exhibit a host of new examples.
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Methodological notes

The reasoning above, specially the early part leading to F (t) to be constant, is
almost embarrassingly simple, because we have purified it from some assump-
tions that usually overload and obscure it. We propose that those assumptions
be made separately, when we set out to turn the theorem into a usable strategy.

The two conditions (5) and (7), that together lead to a constant of motion,
are quite different and independent of each other. The former only follows from
a property of q(t) (namely, Lagrange equations) and not at all from any special
form of the family qε. Instead, the infinitesimal invariance Equation (7) usually
requires a clever choice of the family qε, but it often has little or nothing to do
with the Lagrange equations. Also, nowhere in this paper is there a need that
t #→ qε(t) be a solution to Lagrange equation when ε )= 0, although of course it
does not hurt, and it may be important for other purposes.

First of all, we usually “have q(t)” not in the sense that we know a formula
for it: we will rather leave it as a symbol to which we may attach some im-
plicit assumption, on a when-needed basis. The most common assumption will
of course be that q(t) solves the Lagrange equations, because the first integral
ultimately requires it. However, we will see that the calculations for the in-
finitesimal invariance are often more natural with other conditions, that either
imply or are implied by the Lagrange equations. We may call them permissible
assumptions on q(t).

By definition, a mechanical first integral is meant to be a known function of
t, q(t), q̇(t), q̈(t). . . By looking at the possible formulas for the constant quanti-
ties (5), (11) and the most general (48), what we seem to need is that the three
subexpressions

∂εqε(t)|ε=0 , ∂ετ(ε, t)|ε=0 , ∂εG(ε, t)|ε=0 (20)

be known functions of t, q(t), q̇(t), q̈(t). . . , because the rest of formulas already
is. To ensure this, when we set out testing candidate qε, τ, G for infinitesimal
invariance, it is sufficient to restrict us to functions of ε, t, q(t), q(t+ε), q̇(t). In all
examples that we have seen, qε and τ are indeed of that form. One contribution
of this paper is a more liberal use of the q(t + ε) term in building qε.

The situation for the gauge term G is somewhat different. We do have one
example of a G which is an integral functional, and definitely not a function of
ε, t, q(t), q(t + ε), q̇(t). . . . Its special form is needed to get finite invariance, and
not merely infinitesimal invariance (Example 1 in Section 4).

If we are content with infinitesimal invariance, a gauge term G which is a
function of ε, t, q(t), q̇(t) turns up to be enough in all our examples. We have
found a role for the term q(t + ε) only in an alternative gauge at the end of
Section 8. Actually, all of our examples for infinitesimal invariance can be
worked out with a G(ε, t) of the even more special form ε · γ(t, q(t), q̇(t)) for a
known function γ.

Our calculations in the examples will follow this pattern: we propose a
formula for qε and τ , make permissible assumptions on qε as we see fit, and
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compute the quantity
(

∂

∂ε

(
L

(
ξ, qε(ξ), q̇ε(ξ)

)∣∣∣
ξ=τ(ε,t)

∂tτ(ε, t)
)∣∣∣∣

ε=0

. (21)

We need this expression to be equal to −∂2
ε,tG(ε, t)|ε=0 = −∂tγ(t, q(t), q̇(t)) =

−γ̇. In other words, we need the quantity in (21) to be (the opposite of) a total
time derivative of some γ(t, q, q̇).

In most, but not all, of our examples, the time change is missing, and the
function γ will turn out to depend only on t and q. This is where we reconnect
to the motivation that Levy-Leblond [7] gives when he introduces the gauge
term in Noether’s theorem: if we replace the Lagrangian L with Lγ := L + γ̇
(what is usually called a “gauge transform”), then the new Lagrangian has the
same Lagrange equations, and the infinitesimal invariance (10) can be written
as ( ∂

∂ε
Lγ

(
t, qε(t), q̇ε(t)

))∣∣∣
ε=0

= 0 , (22)

which has the simpler form of equation (8). In other terms, if the original
Lagrangian is not infinitesimally invariant under the space change qε, then try
with a gauge-transformed Lagrangian.

In Sections 7 and 8 our gauge terms depend on q̇, or even on q(t + ε), and
so they do not lend themselves directly to the gauge-transform interpretation.

3 Noether’s theorem

Theorem 1 (Equivalent invariance conditions). Let L : R×Rn ×Rn → R be a
C2 Lagrangian. Let I be an interval, and (ε, t) #→ qε(t) be a C2 mapping from
R× R to RN . Moreover, let τ, G : R× R → R be C2 functions such that

τ(0, t) ≡ t ∀t . (23)

Define the additional gauge G and time change T :

G(ε, t) := ε · L
(
t, q0(t), q̇0(t)

)(
∂ετ(ε, t)|ε=0

)
, (24)

T (ε, t) := ε ·
(
∂εG(ε, t)|ε=0

)

L
(
t, q0(t), q̇0(t)

) . (25)

(If needed, we will restrict the time t to an interval where the denominator of T
does not vanish). Then the following three conditions are equivalent:

1. the infinitesimal gauge-invariance of formula (19) holds with τ replaced by
the time change τ + T and the gauge G replaced by the trivial constant 0,
i.e.:

∂

∂ε

(
L

(
ξ, qε(ξ), q̇ε(ξ)

)∣∣
ξ=τ(ε,t)+T (ε,t)

(
∂tτ(ε, t) + ∂tT (ε, t)

))∣∣∣
ε=0

≡ 0 . (26)
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2. the infinitesimal gauge-invariance of formula (19) holds with τ replaced by
the trivial time change (ε, t) #→ t and the gauge G replaced by G + G, i.e.,

∂

∂ε

(
L

(
t, qε(t), q̇ε(t)

)
+ ∂tG(ε, t) + ∂tG(ε, t)

)∣∣∣
ε=0

≡ 0 ; (27)

3. the infinitesimal gauge-invariance of formula (19) holds for the given time
change τ and gauge G, i.e.,

∂

∂ε

(
L

(
ξ, qε(ξ), q̇ε(ξ)

)∣∣∣
ξ=τ(ε,t)

∂tτ(ε, t) + ∂tG(ε, t)
)∣∣∣

ε=0
≡ 0 . (28)

Proof. It is convenient to set

L(ε, ξ) := L
(
ξ, qε(ξ), q̇ε(ξ)

)
. (29)

In terms of L, the left-hand sides of equations (26), (27) and (28) are respectively

ν1(t) :=
∂

∂ε

(
L

(
ε, τ(ε, t) + T (ε, t)

)
∂t

(
τ(ε, t) + T (ε, t)

))∣∣∣
ε=0

, (30)

ν2(t) :=
∂

∂ε

(
L(ε, t) + ∂tG(ε, t) + ∂tG(ε, t)

)∣∣∣
ε=0

, (31)

ν3(t) :=
∂

∂ε

(
L

(
ε, τ(ε, t)

)
∂tτ(ε, t) + ∂tG(ε, t)

)∣∣∣
ε=0

. (32)

We claim that these expressions are identically the same. Their common value
can be expanded out in terms of L, τ, G as:

L(0, t)∂2
ε,tτ(0, t) + ∂tL(0, t)∂ετ(0, t) + ∂εL(0, t) + ∂2

ε,tG(0, t) . (33)

This is a straightforward brute-force computation using basic two-variable chain
rule calculus, with a little care due to nesting, and using the simplification rules

τ(0, t) ≡ t , ∂tτ(0, t) ≡ 1 . (34)

However, a more meaningful proof employs the following three integral functions
of the parameter ε:

f1,a,b(ε) := A(τ+T )(ε,a),(τ+T )(ε,b)(qε) =

=
∫ (τ+T )(ε,b)

(τ+T )(ε,a)
L

(
ε, qε(ξ), q̇ε(ξ)

)
dξ =

=
∫ (τ+T )(ε,b)

(τ+T )(ε,a)
L(ε, ξ) dξ = (35)

=
∫ b

a
L

(
ε, (τ + T )(ε, t)

)
∂t(τ + T )(ε, t) dt , (36)
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f2,a,b(ε) := Aa,b(qε) + G(ε, b) + H(ε, b)−G(ε, a)−H(ε, a) =

=
∫ b

a
L(ε, t) dt + G(ε, b) + G(ε, b)−G(ε, a)− G(ε, a) , (37)

f3,a,b(ε) := Aτ(ε,a),τ(ε,b)(qε) + G(ε, b)−G(ε, a) =

=
∫ τ(ε,b)

τ(ε,a)
L(ε, ξ) dξ + G(ε, b)−G(ε, a) = (38)

=
∫ b

a
L

(
ε, τ(ε, t)

)
∂tτ(ε, t) dξ + G(ε, b)−G(ε, a) . (39)

By derivating formulas (36), (37) and (39), whose integrals have fixed endpoints,
it is clear that

f ′i,a,b(0) =
∫ b

a
νi(ξ)dξ for i = 1, 2, 3. (40)

Let us now recalculate f ′1,a,b(0) by differentiating the alternative formula (35)
with respect to ε under the integral sign:

f ′1,a,b(ε) =
∫ (τ+T )(ε,b)

(τ+T )(ε,a)
∂εL(ε, ξ) dξ +

+ L
(
ε, (τ + T )(ε, ξ)

)
∂ε(τ + T )(ε, ξ)

∣∣∣
ξ=b

− (41)

− L
(
ε, (τ + T )(ε, ξ)

)
∂ε(τ + T )(ε, ξ)

∣∣∣
ξ=a

. (42)

From equations (25) and (34) we obtain

(τ + T )(ε, ξ)
∣∣
ε=0

= τ(0, ξ) + T (0, ξ) = ξ ,

∂ε(τ + T )(ε, ξ)
∣∣
ε=0

= ∂ετ(0, ξ) +
∂εG(0, ξ)
L(0, ξ)

,

so that, when ε = 0, the common form of the two terms (41) and (42) rewrites
in terms of L, τ, G this way:

L(0, (τ + T )(0, ξ))∂ε(τ + T )(0, ξ) =

= L(0, ξ)∂ετ(0, ξ) + L(0, ξ) · ∂εG(0, t)
L(0, ξ)

= L(0, ξ)∂ετ(0, ξ) + ∂εG(0, ξ) .

Hence the following additional form for f ′1,a,b(0):

f ′1,a,b(0) =
∫ b

a
∂εL(ε, ξ)

∣∣
ε=0

dξ + (43)

+
(
L(0, ξ)∂ετ(0, ξ) + ∂εG(0, ξ)

)∣∣∣
ξ=b

− (44)

−
(
L(0, ξ)∂ετ(0, ξ) + ∂εG(0, ξ)

)∣∣∣
ξ=a

. (45)
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At exactly this same right-hand side, but with much less effort, the readers will
end up if they recalculate f ′2,a,b(0) and f ′3,a,b(0) by differentiating the alternative
formulas (37) and (38) respectively. In particular,

f ′1,a,b(0) = f ′2,a,b(0) = f ′3,a,b(0) ∀a, b .

As announced, we deduce that ν1 ≡ ν2 ≡ ν3 and that Conditions 1, 2 and 3 are
indeed equivalent to each other and to

f ′1,a,b(0) = 0 ∀a, b. (46)

Observation 1. Formula (25) is not the only possible auxiliary time change that
makes the theorem work. An alternative choice is

T̃ (ε, t) :=
G(ε, t)

L
(
t, q0(t), q̇0(t)

) , (47)

which is possibly nonlinear in ε.

Theorem 2 (Noether’s theorem). Given L, q, τ, G as in Theorem 1, suppose
that the three equivalent conditions hold, and that also t #→ q0(t) is a solution
to the Lagrange equation. Then the following function is constant:

N(t) := ∂q̇L
(
t, q0(t), q̇0(t)

)
· ∂εqε(t)|ε=0 +

+ L
(
t, q0(t), q̇0(t)

)
∂ετ(ε, t)|ε=0 +

+ ∂εG(ε, t)|ε=0 .

(48)

Observation 2. One can check that the value of the constant of motion in equa-
tion (48) does not change if we perform either the replacements τ → τ + T ,
G → 0 of Condition 1, or the replacements τ → t, G → H + G of Condition 2.

Proof. We continue where we left off with the proof of Theorem 1. We already
detect a piece of N(t) in formulas (44) and (45). Let us turn our attention
to the integral term (43). Using the chain rule in the original Lagrangian and
reversing the order of the mixed derivatives ∂2

ε,ξ, the expression ∂εL(ε, ξ) can
be expanded out as

∂εL(ε, ξ) = ∂qL
(
ξ, qε(ξ), q̇ε(ξ)

)
· ∂εqε(ξ) + ∂q̇L

(
ξ, qε(ξ), q̇ε(ξ)

)
· ∂

∂ξ
∂εqε(ξ) .

From now on, assume that q0 is a solution to the Lagrange equations (2). Then

∂εL(ε, ξ)
∣∣
ε=0

=
( d

dξ
∂q̇L

(
ξ, q0(ξ), q̇0(ξ)

))
· ∂εqε(ξ)

∣∣
ε=0

+

+ ∂q̇L
(
ξ, q0(ξ), q̇0(ξ)

)
· d

dξ

(
∂εqε(ξ)

∣∣
ε=0

)
=

12



=
d

dξ

(
∂q̇L

(
ξ, q0(ξ), q̇0(ξ)

)
· ∂εqε(ξ)

∣∣
ε=0

)
.

The fundamental theorem of calculus now exposes the remaining piece of N(t)
in the integral of formula (43):

∫ b

a
∂εL(ε, ξ)

∣∣
ε=0

dξ =
∫ b

a

d

dξ

(
∂q̇L

(
ξ, q0(ξ), q̇0(ξ)

)
·
(
∂εqε(ξ)

∣∣
ε=0

))
dξ =

= ∂q̇L
(
ξ, q0(ξ), q̇0(ξ)

)
· ∂εqε(ξ)

∣∣∣
ε=0,ξ=b

−

− ∂q̇L
(
ξ, q0(ξ), q̇0(ξ)

)
· ∂εqε(ξ)

∣∣∣
ε=0,ξ=a

.

This leads to one last expression for f ′1,a,b(0):

f ′1,a,b(0) = N(b)−N(a) . (49)

which, combined with the null derivative assumption (46), implies that N(b)
= N(a). Since a, b are arbitrary, we conclude that N is constant whenever q0

solves the Lagrange equations and the equivalent Conditions 1, 2 and 3 hold.

Observation 3. We may feel uneasy that formula (25) for T contains the La-
grangian L at the denominator:

T (ε, t) := ε
∂εG(0, t)

L
(
t, q0(t), q̇0(t)

) . (50)

What happens if the Lagrangian vanishes for some values of t? Are those values
of any intrinsic importance in the no-gauge approach? Luckily the answer is neg-
ative, thanks to this simple trick: choose a constant k so that L(t, q0(t), q̇0(t))+k
does not vanish in a compact interval we are interested in, and define the mod-
ified functions:

Lk = L + k , Tk(ε, t) := ε
∂εG(0, t)− k∂ετ(0, t)
L

(
t, q0(t), q̇0(t)

)
+ k

. (51)

Then we may substitute the following Condition 4 for Condition 1 in Theorem 1:

4. the infinitesimal gauge-invariance of formula (19) holds with L replaced
by Lk, the time change τ replaced by τ + Tk and the gauge G replaced by
the trivial constant 0, i.e.:

∂

∂ε

(
Lk

(
ξ, qε(ξ), q̇ε(ξ)

)∣∣
ξ=τ(ε,t)+Tk(ε,t)

(
∂tτ(ε, t) + ∂tTk(ε, t)

))∣∣∣
ε=0

≡ 0 .

(52)

Of course the Lagrangians L and Lk have the same Lagrange equations. Also,
the value of the first integral in equation (48) does not change if L is replaced
by Lk, and τ by τ + Tk.
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4 Energy, momentum, angular momentum

Example 1. Let us see how Theorem 1 works out for Conservation of Energy
when the Lagrangian L(q, q̇) is autonomous. As already noted in Section 2,
there is infinitesimal invariance of Condition 3 type with the choices

qε(t) := q(t + ε) , τ1(ε, t) := t , G1(ε, t) := −εL
(
q(t), q̇(t)

)
. (53)

Formulas (24) and (25) then become

G1(ε, t) := 0 , T1(ε, t) := ε
∂εG(0, t)

L
(
q(t), q̇(t)

) = ε
−L

(
q(t), q̇(t)

)

L
(
q(t), q̇(t)

) = −ε , (54)

Theorem 1 says that there is infinitesimal invariance also of Condition 1 type,
that is, with the alternative choices

qε(t) := q(t + ε) , τ2(ε, t) := τ1(ε, t) + T1(ε, t) = t− ε , G2(ε, t) := 0 . (55)

If we had started out with these last choices (55), we would get

G2(ε, t) := εL
(
q(t), q̇(t)

)(
∂ετ2(ε, t)

∣∣
ε=0

)
= −εL

(
q(t), q̇(t)

)
, T2 := 0 , (56)

and we would be led back to infinitesimal invariance of Condition 2 type with
the original choice (53). Whichever the approach, in the end the energy first
integral of equation (48) becomes

∂q̇L(q, q̇) · q̇ − L(q, q̇) . (57)

It is unpleasant that the invariance with nontrivial time change given by (55)
is actually a finite invariance, while the invariance with gauge given by (53) is
merely infinitesimal. We propose here the following alternative gauge choice

qε(t) := q(t + ε) , τ2(ε, t) := t , G2(ε, t) := −
∫ t+ε

t
L

(
q(ξ), q̇(ξ)

)
dξ (58)

which recovers a perfect finite invariance. In fact, the quantity

fa,b(ε) := Aτ2(ε,a),τ2(ε,b)(qε) + G2(ε, b)−G2(ε, a) = (59)

=
∫ τ(ε,b)

τ(ε,a)
L

(
qε(ξ), q̇ε(ξ)

)
dξ + G2(ε, b)−G2(ε, a) =

=
∫ b

a
L

(
q(ξ + ε), q̇(ξ + ε)

)
dξ + G2(ε, b)−G2(ε, a) =

=
∫ b+ε

a+ε
L

(
q(t), q̇(t)

)
dt + G2(ε, b)−G2(ε, a) =

=
∫ b+ε

a+ε
L

(
q(t), q̇(t)

)
dt−

∫ b+ε

b
L

(
q(ξ), q̇(ξ)

)
dξ +
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+
∫ a+ε

a
L

(
q(ξ), q̇(ξ)

)
dξ = (60)

=
∫ b

a
L

(
q(t), q̇(t)

)
dt , (61)

does not depend on ε. Or again, if your favourite mnemonic reference is the
non-integrated formula (19), the expression

L
(
qε(ξ),q̇ε(ξ)

)∣∣∣
ξ=τ1(ε,t)

∂tτ1(ε, t) + ∂tG2(ε, t) =

= L
(
q(t + ε), q̇(t + ε)

)
−

(
L

(
q(t + ε), q̇(t + ε)

)
− L

(
q(t), q̇(t)

))

= L
(
q(t), q̇(t)

)
(62)

does not depend on ε. The associated first integral is again the energy. The
gauge choice (58) seems to be unusual, because it is an integral functional, and
not a point function of q(t), q̇(t).

We could apply again Theorem 1 to the triple qε, τ2, G2 and get a new
variant with trivial gauge and nontrivial time change, but unfortunately we
have to relinquish the finiteness of the invariance.

Example 2. Suppose that L(t, q, q̇) is invariant in the direction of u ∈ Rn:

L(t, q + εu, q̇) ≡ L(t, q, q̇) ∀t, ε ∈ R, q, q̇ ∈ Rn . (63)

Then for any q(t) there is obvious finite invariance for the translated family

qε(t) := q(t) + εu, τ(ε, t) ≡ t, G ≡ 0 . (64)

The constant of motion when q(t) solves the Lagrange equations is the compo-
nent of the momentum in the direction of u:

∂q̇L
(
t, q(t), q̇(t)

)
· u . (65)

Of course here G = T ≡ 0, and all three conditions of the theorem literally
collapse into one.

Example 3. Consider a point in the R2 plane that is driven by a (possibly
time-dependent) central force field:

L(t, q, q̇) :=
1
2
‖q̇‖2 + V

(
t, ‖q‖

)
. (66)

Given a smooth trajectory q(t) in R2, define the rotation family

qε(t) :=
(

cos ε − sin ε
sin ε cos ε

)
q(t) , τ(ε, t) := t, , G(ε, t) := 0 . (67)

It is clear that we have finite invariance:

∂

∂ε
L

(
t, qε(t), q̇ε(t)

)
= 0 . (68)
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Noether’s theorem gives the first integral of angular momentum for all Lagrange
motions

∂q̇L · ∂εqε|ε=0 = q̇ ·
(

0 −1
1 0

)
q = det(q, q̇). (69)

Again G ≡ T ≡ 0.

5 The free fall

Consider the familiar free fall of a particle q = (x, y, z) ∈ R3, subject to its own
weight, with uniform gravity acceleration g pointing in the negative z direction,
and no air resistance. The Lagrange function is the difference of kinetic and
potential energy:

L(q, q̇) =
1
2
‖q̇‖2 − (0, 0, g) · q =

1
2
‖q̇‖2 + gz . (70)

The associated Lagrange equation is of course q̈ = (0, 0,−g). Noether’s theorem
applies to this system in various ways. One is because it is an autonomous
system, so that using either (53) or (55) we obtain conservation of energy:

∂q̇L(q, q̇) · q̇ − L(q, q̇) = q̇ · q̇ − L(q, q̇) =
1
2
‖q̇‖2 + gz . (71)

Another obvious invariance is with respect to horizontal translations: if we
choose u = (u1, u2, 0) we can use the translation family (64) and obtain the
conservation of

∂q̇L(q, q̇) · u = q̇ · u = u1ẋ + u2ẏ (72)

for any u1, u2 ∈ R, whence ẋ, ẏ are constant.
A third invariance is less obvious. Let us try with the vertical translation

family
qε(t) := q(t) + (0, 0, ε) . (73)

The Lagrangian is not itself invariant, but we can write

∂

∂ε
L

(
qε, q̇ε

)
= g = ∂2

ε,t(εgt) , (74)

which suggests that to get (finite) invariance it is enough to introduce a non-
trivial gauge term:

G(ε, t) := −εgt, τ(ε, t) = t . (75)

The first integral that follows is

∂q̇L
(
q(t), q̇(t)

)
· ∂εqε(t)|ε=0 + ∂εG(ε, t)|ε=0 = ż − gt, (76)

which can be combined with the other integrals ẋ, ẏ into the vector first integral

q̇ − (0, 0, gt) . (77)

16



Following Theorem 1 we can define

T (ε, t) := ε
∂εG(0, t)

L
(
q(t), q̇(t)

) = −ε
gt

L
(
q(t), q̇(t)

) . (78)

and obtain infinitesimal invariance with the family (73), time change (ε, t) #→ t+
T (ε, t) and null gauge. We can check this fact directly with a simple calculation:

∂

∂ε

(
L

(
qε(t− εgt/L), q̇ε(t− εgt/L)

)(
1− εg/L + εgtL̇/L2

))∣∣∣
ε=0

=

= g + L̇(−gt/L) + L
(
−g/L + gtL̇/L2

)
≡ 0 . (79)

Also, the conserved function (76) can be obtained from the general formula (48)
with the substitutions G → 0 and τ → t + T :

∂q̇L
(
q(t), q̇(t)

)
· ∂εqε(t)|ε=0 + L

(
q(t), q̇(t)

)
∂ετ(ε, t)|ε=0 =

= q̇ · (0, 0, 1) + L(−gt/L) = ż − gt . (80)

The free fall system can also be described in a different way. As well known
(and trivially checked), two Lagrangian functions give the same Lagrange equa-
tion if they differ by the total time derivative of a function of (t, q)

Lγ(t, q, q̇) = L(t, q, q̇) + ∂tγ(t, q) + ∂qγ(t, q) · q̇ . (81)

Changing L into Lγ is called a gauge transform. Let us take γ(t, q) = −gtz and
define the new Lagrangian function for the free fall

Lγ(t, q, q̇) = L(q, q̇) +
d

dt
(−gtz) =

1
2
‖q̇‖2 − gtż . (82)

An advantage of Lγ is that it is independent of q, so that we get finite invariance
under the translation family qε(t) := q(t) + εu for any u ∈ R3, with trivial
τ(ε, t) ≡ t and G ≡ 0. The formula for the resulting first integral is ∂q̇Lγ · u =
(ẋ, ẏ, ż − gt) · u, which leads directly to the vector first integral of formula (77).

Of course, energy conservation becomes more difficult, because the new La-
grangian is not anymore autonomous. Let us take again the time-shift family
qε(t) := q(t + ε), trivial τ(t, ε) := t, and calculate

∂

∂ε
Lγ

(
t, q(t + ε), q̇(t + ε)

)∣∣∣
ε=0

=
d

dt
Lγ

(
t, q(t), q̇(t)

)
− ∂tLγ(t, q(t), q̇(t)) =

=
d

dt
Lγ

(
t, q(t), q̇(t)

)
− gż(t) =

d

dt

(
Lγ

(
t, q(t), q̇(t)

)
+ gz(t)

)
. (83)

This formula suggests to introduce a new gauge

G1(ε, t) := −ε
(
Lγ(t, q(t), q̇(t)) + gz

)
, (84)

which realizes infinitesimal invariance

∂

∂ε

(
Lγ

(
t, qε(t), q̇ε(t)

)
+ ∂tG1(ε, t)

)∣∣∣
ε=0

≡ 0 . (85)
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The resulting first integral is the energy:

∂q̇Lγ

(
t, q(t), q̇(t)

)
· ∂εqε(t)|ε=0 + ∂εG1(ε, t)|ε=0 =

= q̇ · q̇ − gtż − Lγ − gz =
1
2
‖q̇‖2 − gz . (86)

Again according to Theorem 1, we can define

T1(ε, t) := ε
∂εG1(0, t)

Lγ

(
t, q(t), q̇(t)

) = −ε
(
1 +

gz(t)
Lγ

(
t, q(t), q̇(t)

)
)

, (87)

and get infinitesimal invariance with the same qε and the replacements τ →
τ + T1, G1 → 0, leading again to conservation of energy. The reader can check
this by direct calculation.

6 Kepler’s problem

In all the examples that we have seen so far, the infinitesimal invariance does
not require any precondition on q(t). In this Section we will see examples where
we need such preconditions, and we must be careful that they are compatible
with being a solution to Lagrange equations.

The Lagrangian function of Kepler’s problem is

K
(
q, q̇

)
=

1
2
‖q̇‖2 +

k

‖q‖ , (88)

with its associated Lagrange equation

q̈(t) = −k
q(t)
‖q(t)‖3 , (89)

where k > 0 is a parameter. Notice that for all Kepler motions q is parallel to q̈.
We will assume that q is a vector in R2 to simplify some formulas.

As for all autonomous Lagrangians, the energy

∂q̇K · q̇ − L =
1
2
‖q̇‖2 − k

‖q‖ (90)

is conserved. The Lagrangian is also invariant under rotations around the origin.
Noether’s theorem gives the first integral of angular momentum det(q, q̇).

Kepler’s system enjoys also a recondite infinitesimal invariance. Let us take
again a smooth trajectory q(t) in R2 \ {(0, 0)} (not necessarily a solution to
Lagrange equations, for now), a vector u ∈ R2, and define the family

qε(t) := q(t) +
(
q(t) · u

)
q(t + ε)−

(
q(t + ε) · u

)
q(t) =

= q(t) + det
(
q(t), q(t + ε)

)
u⊥

(91)

with u⊥ = ( 0 −1
1 0 )u. It is clear that q0(t) = q(t). You can visualize some sample

trajectories in Figure 3. This family qε is different and simpler than the one
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u

u!

q!t"
q!t ! Ε"

qΕ!t"

Figure 3: The qε family for the Laplace-Runge-Lenz vector, built around an
elliptic orbit (the thick curve). For fixed t the various qε(t) are on a straight
line parallel orthogonal to u

found in the literature (for example, see Lévy-Leblond [7], formula (36)), whose
formula would be

q(t) +
ε

2

(
2
(
q(t) · u

)
q̇(t)−

(
q̇(t) · u

)
q(t)−

(
q̇(t) · q(t)

)
u
)
. (92)

The reader can check that the following relations hold:

∂

∂ε
K

(
qε(t), q̇ε(t)

)∣∣∣
ε=0

= (93)

= det
(
q(t), q̈(t)

)
det

(
u, q̇(t)

)
− k

det
(
u, q(t)

)
det

(
q(t), q̇(t)

)
∥∥q(t)

∥∥3 = (94)

= det
(
q(t), q̈(t)

)
det

(
u, q̇(t)

)
+

∂

∂t

(
k

q(t) · u
‖q(t)‖

)
. (95)

If we define the gauge

G(ε, t) := −εk
q(t) · u
‖q(t)‖ , (96)

then

∂

∂ε

(
K

(
qε(t), q̇ε(t)

)
+ ∂tG(ε, t)

)∣∣∣∣
ε=0

= det
(
q(t), q̈(t)

)
det

(
u, q̇(t)

)
. (97)
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If q(t) is any motion for which q̈(t) is parallel to q(t), then we have infinitesimal
invariance of the form (10):

∂

∂ε

(
K

(
qε(t), q̇ε(t)

)
+ ∂tG(ε, t)

)∣∣∣∣
ε=0

≡ 0 , (98)

which is covered by Theorem 1, condition 3, with the trivial τ(ε, t) ≡ t. Also,
q̈(t) and q(t) are parallel whenever q(t) is a solution to Kepler’s equation (89).
Therefore Noether’s Theorem 2 yields the following constant of motion:

∂q̇K
(
q(t), q̇(t)

)
· ∂εqε(t)|ε=0 + ∂εG(ε, t)|ε=0 =

= (q · u)‖q̇‖2 − (q̇ · u)(q̇ · q)− k
q · u
‖q‖ . (99)

Since the vector u ∈ R2 is arbitrary, we have the vector-valued first integral

q‖q̇‖2 − (q̇ · q)q̇ − k
q

‖q‖ , (100)

which is called the Laplace-Runge-Lenz vector.
According to Theorem 1, if we define the additional time change T as

T (ε, t) := ε
∂εG(0, t)

K
(
q(t), q̇(t)

) = −εk
q(t) · u

‖q(t)‖K
(
q(t), q̇(t)

) . (101)

there is infinitesimal invariance also under the nontrivial time change (ε, t) #→
t + T ε, t), without gauge.

Let us show a simple example where Noether’s theorem is applied to a partic-
ular solution, leading to a nontrivial function that is constant along that single
solution, but not along most others. Consider the following family of uniform
circular motions in the plane with the same period but a phase shift:

qε(t) := eε
(
cos(

√
k(ε + t)), sin(

√
k(ε + t))

)
(102)

The function t #→ qε(t) is a Kepler motion only when ε = 0, as we check at once.
Still, there is infinitesimal invariance with trivial τ(ε, t) ≡ 0, G ≡ 0:

∂

∂ε
K

(
qε(t), q̇ε(t)

)∣∣∣
ε=0

=
∂

∂ε

(
k

2
e2ε +

k

eε

) ∣∣∣
ε=0

= 0 (103)

If we apply Noether’s theorem we obtain that the (square of) the speed t #→
‖q̇0(t)‖2 is constant along the circular motion. The speed is clearly a nontrivial
function that is not constant along any Kepler motions except circular ones.

Let us generalize the Kepler Lagrangian this way:

Kα

(
q, q̇

)
=

1
2
‖q̇‖α +

k

‖q‖ , (104)

for a real exponent α. If we carry out the computations with the same family qε

and G as in formulas (91) and (96), we get
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∂

∂ε

(
Kα

(
qε(t), q̇ε(t)

)
+ ∂tG(ε, t)

)∣∣∣∣
ε=0

=

=
α

2
‖q̇(t)‖α−2 det

(
q(t), q̈(t)

)
det

(
u, q̇(t)

)
. (105)

As before, we have infinitesimal invariance whenever q̈(t) and q(t) are parallel
for all t. Unfortunately, this condition is not generically satisfied by solutions to
the new Lagrange equations. One odd exception is the degenerate case α = 1,
when all solutions to Lagrange equations are uniform circular motions.

7 Some superintegrable systems

A recent paper [9] introduced the following Lagrangian systems in two dimen-
sions:

L(x, y, ẋ, ẏ) = ẋẏ − g(x)y, (106)

which are interesting because for suitable choices of the function g there is either
weak Lyapunov instability or isochronicity. What matters here is that those
isochronous cases exhibit the rare property of being super-integrable, because
they have three independent first integrals. Now we are going to investigate the
matter in terms of Noether’s theorem.

Two first integrals are obvious, and they do not need any assumption on g:

ẋ

2
+ V (x) , ẏẋ + g(x)y (107)

where V is any primitive of g. Notice that the Lagrange equations are

ẍ = −g(x) , ÿ = −g′(x)y . (108)

Let us search for a third constant of motion starting from the following space-
change family:

qε(t) :=
(
xε(t), yε(t)

)
=

(
x(t) + f

(
x(t)

)
y(t + ε)− f

(
x(t + ε)

)
y(t), y(t)

)
(109)

where f is a function to be determined. We can compute, using also the La-
grange equations (108):

∂

∂ε

(
L

(
xε(t), yε(t), ẋε(t), ẏε(t)

)∣∣∣
ε=0

= (110)

= y(t)2
(
x′(t)f ′(x(t))g′(x(t))

)
+ (111)

+ 2y(t)y′(t)
(1

2
g(x(t))f ′(x(t))− (112)

− f(x(t))g′(x(t))− 1
2
x′(t)2f ′′(x(t))

))
. (113)

To make the previous expression into a total time derivative we impose that
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d

dt

(
x′(t)f ′(x(t))g′(x(t))

)
=

=
1
2
g(x(t))f ′(x(t))− f(x(t))g′(x(t))− 1

2
x′(t)2f ′′(x(t))

)
. (114)

Expanding out the derivative on the left hand side and using again the Lagrange
equations (108), equation (114) becomes

x′(t)
(
f ′′′(x)x′(t)2 − 3g(x)f ′′(x) + 3f ′(x)g′(x) + 2f(x)g′′(x)

)
= 0 . (115)

Let us now assume that f is a polynomial of degree ≤ 2, so that the third
derivative f ′′′ vanishes. Then equation (115) simplifies to

− 3g(x)f ′′(x) + 3f ′(x)g′(x) + 2f(x)g′′(x) = 0 . (116)

This is a second order linear differential equation in g with polynomial coeffi-
cients. If we assume that g solves equation (116), we can take

G(ε, t) = −εy(t)2
(1

2
g(x(t))f ′(x(t))− f(x(t))g′(x(t))− 1

2
ẋ(t)2f ′′(x(t))

)
, (117)

and obtain the desired infinitesimal invariance:

∂

∂ε

(
L

(
xε(t), yε(t), ẋε(t), ẏε(t)

)
+ ∂tG(ε, t)

)∣∣∣
ε=0

= 0 , (118)

with its associated additional first integral

ẏ
(
f(x)ẏ − yẋf ′(x)

)
+

1
2
y2

(
ẋ2f ′′(x)− g(x)f ′(x) + 2f(x)g′(x)

)
. (119)

Notice that the gauge term (117) depends on ẋ.
Among the known functions g that give rise to an isochronous systems one

is
g(x) = 2ω2

(
1− 1√

1 + x

)
, (120)

which is a solution of (116) for the choice f(x) = 1 + x. Another isochronous
case is

g(x) =
ω2

4

(
1 + x− 1

(1 + x)3
)

(121)

which can be obtained for the choice f(x) = (1 + x)2. One more isochronous
system is given by g(x) = d

dx (1− h(x))2, where

h(x) =
−1− x +

√
1− 2x− 3x2

2
; (122)

this g is a solution of (116) for the choice f(x) = 3x2 +2x−1. A fourth is given
by g(x) = d

dx (1 − h(x))2, where h(x) = 1 −
√

1 + 2x− x2; this g is a solution
of (116) for the choice f(x) = x2 − 2x− 1.
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8 Particle in a plane-wavelike external field

The following time-dependent Lagrangian is taken from a paper [4] by Bobillo-
Ares:

L(t, q, q̇) =
1
2
‖q̇‖2 − V

(
q − tu

)
, q, q̇ ∈ Rn, (123)

where u is a fixed vector in Rn and V a smooth potential. The associated
Lagrange equation is

q̈ +∇V
(
q − tu

)
= 0 (124)

In terms of the energy

E(t, q, q̇) = ∂q̇L(t, q, q̇) · q̇ − L(t, q, q̇) =
1
2
‖q̇‖2 + V

(
q − tu

)
, (125)

it is easy to check that q̇ ·u−E is a first integral. Let us see how we can deduce
it from Noether’s theorem in our framework. Starting from a smooth q(t) and
following Bobillo-Ares, we introduce the following space and time changes:

qε(t) = q(t) + εu, τ(ε, t) := t + ε . (126)

Let us try infinitesimal invariance:

∂

∂ε

(
L

(
ξ, qε(ξ), q̇ε(ξ)

)∣∣∣
ξ=τ(ε,t)

∂tτ(ε, t)
)

=

=
∂

∂ε

(1
2
‖q̇(t + ε)‖2 − V

(
q(t + ε) + εu− (t + ε)u

))
=

= q̇(t + ε) · q̈(t + ε)− ∂

∂ε
V

(
q(t + ε)− tu

)
=

= q̇(t + ε) · q̈(t + ε)−∇V
(
q(t + ε)− tu

)
· q̇(t + ε) =

= q̇(t + ε) ·
(

2q̈(t + ε)−
(
q̈(t + ε) +∇V

(
q(t + ε)− tu

)))
=

=
∂

∂t
‖q̇(t + ε)‖2 − q̇(t + ε) ·

(
q̈(t + ε) +∇V

(
q(t + ε)− tu

))
.

When ε = 0 this expression becomes

∂

∂ε

(
L

(
ξ, qε(ξ), q̇ε(ξ)

)∣∣∣
ξ=τ(ε,t)

∂tτ(ε, t)
)∣∣∣

ε=0
=

=
d

dt
‖q̇(t)‖2 − q̇(t) ·

(
q̈(t) +∇V

(
q(t)− tu

))
. (127)

which further reduces to
∂

∂ε

(
L

(
ξ, qε(ξ), q̇ε(ξ)

)∣∣∣
ξ=τ(ε,t)

∂tτ(ε, t)
)∣∣∣

ε=0
=

d

dt
‖q̇(t)‖2 . (128)

if q(t) solves Lagrange equations (124). This means that we have infinitesimal
invariance as in formula (28) with the following choice of gauge function:

G(ε, t) := −ε‖q̇(t)‖2 , (129)
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and the first integral (48) given by Noether’s theorem is

(
∂q̇L

(
t, q(t), q̇(t)

)
· ∂εqε(t) + L

(
t, q(t), q̇(t)

)
∂ετ(ε, t) + ∂εG(ε, t)

)∣∣∣
ε=0

=

= q̇(t) · u + L(t, q(t), q̇(t))− ‖q̇(t)‖2 . (130)

as expected. We do not know another example where it is natural enough to
have infinitesimal invariance with space change, time change and gauge, all all
them nontrivial. Also, notice that the gauge G depends on q̇, so that is not of
the more familiar form ε · γ(t, q(t)).

According to Theorem 1, if we define the additional time change and gauge

G(ε, t) := ε · L
(
t, q(t), q̇(t)

)(
∂ετ(ε, t)|ε=0

)
= ε · L

(
t, q(t), q̇(t)

)
, (131)

T (ε, t) := ε
∂εG(0, t)

L
(
t, q(t), q̇(t)

) = −ε
‖q̇(t)‖2

L
(
t, q(t), q̇(t)

) , (132)

we can attain infinitesimal invariance also with either of the alternative choices

τ1(ε, t) := τ(ε, t) + T (ε, t) , G1(ε, t) ≡ 0 , (133)

and
τ2(ε, t) := t , G2(ε, t) := G(ε, t) + G(ε, t) , (134)

for the same space change qε.
A possible alternative choice for the gauge term in (126) is the following

G3(ε, t) :=

{
−

∥∥q(t + ε)− q(t)
∥∥2

/ε if ε )= 0
0 if ε = 0 ,

(135)

which is not linear in ε, and is not a point function of q(t), q̇(t).
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