Test di Matematica di Base Corso di Laurea in Scienze dell'Architettura 17/5/2016 - A

ma	trice	ola	cognome		nome		7
1.	А. В. С.	$x \geqslant -1$ $x \leqslant -1$ $-1 < x$		icata la disequazi	one $\sqrt{x^2-}$	$\overline{1} > 2x$?	
	A. B. C. D.	polinomio $x^2 - 4$ $x^2 - 1$ x^2 $x^2 + 1$ $x^2 + 4$	$x^4 - 3x^3$	$+3x^2 - 3x + 2$	è divisibile p	oer	
3.		preso ch isoscele isoscele scaleno scaleno	che ha due e vale $4/$ e acutango e rettango e rettango e ottusang e acutango	41 è olo lo olo olo	e $\sqrt{41}$ rispet	tivamente e il co	seno dell'angolo tra essi
4.	x chA.B.C.	ne soddis $0 < x < 7\pi/6 < 0 < x < 4\pi/3 <$	fano la con $7\pi/6 \lor 11$ $x < 11\pi/6$	$\pi/6 < x < 2\pi$	isequazione	sen x + cos 2x <	< 0 sono i numeri reali

Sono date la retta r e la parabola $\mathcal P$ di equazione rispettivamente

$$6x + 3y - 4 = 0$$
 e $y = -3x^2 + 2x$.

Possiamo affermare che

- \square A. non si intersecano
- \square B. r passa per il vertice di \mathcal{P}
- \square C. r passa per il fuoco di \mathcal{P}
- \Box D. r è l'asse di simmetria di ${\mathcal P}$
- \square E. $r \in \mathcal{P}$ sono tangenti nel punto $\left(\frac{2}{3},0\right)$
- Un trapezio rettangolo ABCD di base maggiore AB ha il lato obliquo BC congruente alla base minore CD. Sapendo che $C\hat{B}D = \alpha$, l'ampiezza dell'angolo $A\hat{D}B$ vale
- \square A. α
- \square B. 2α
- \square C. $\pi \alpha$
- \square D. $\pi/2 \alpha$
- \square E. dipende dalla lunghezza di CD
- Quale delle seguenti equazioni rappresenta un'iperbole che ammette come asintoto la retta di equazione y = 2x?
- \Box A. $x^2 \frac{y^2}{2} = 1$
- \Box B. $x^2 + \frac{y^2}{2} = 1$

- \Box E. $x^2 + \frac{y^2}{4} = 1$
- Il vertice della parabola

$$y = \left(\frac{k^2}{2} + 1\right)x^2 + (2k - 1)x + \frac{1}{4}$$

appartiene all'asse x per

- \square A. ogni k > 0
- □ B. k = -7/8
- \Box C. k = 7/8
- \Box D. k = -8/7
- \Box E. k = 8/7