Test di Matematica di Base Corsi di Laurea in Ingegneria e Scienze 17/5/2016 - ${\bf A}$

cognome		nome	scuola ai appartenenza
1.	Per quali $x \in \mathbf{R}$ è v	erificata la disequazione \sqrt{s}	$\overline{x^2 - 1} > 2x?$
	A. $x \geqslant -1$	V W	**
	B. $x \leqslant -1$		
	C. $-1 < x < 1$		
	D. per nessun $x \in$	R	
	E. $x \geqslant 1$		
2	r 1	. 1 11 100 4 00	
			grado di costruire un muro in 2 ore, mentre o lavoro, 6 ore. Se le due squadre si fondono
			eme quanto tempo impiegheranno a costruire
:	il muro?		
	A. 8 ore		
	B. 4 ore		
	C. 90 minuti		
	D. 60 minuti E. 40 minuti		
	L. 40 mmuu		
3.	Il polinomio $x^4 - 3$	$3x^3 + 3x^2 - 3x + 2 \text{è divisit}$	pile per
	A. $x^2 - 4$		
	B. $x^2 - 1$		
	C. x^2		
	D. $x^2 + 1$		
□ .	E. $x^2 + 4$		
4.	Nell'intervallo $[0,2\pi]$] le soluzioni dell'equazione	$\frac{\operatorname{sen}(3x)}{\operatorname{son} x} = 1 - 2\operatorname{sen}^2 x \text{sono}$
			$\operatorname{sen} x$
_	A. $x = 0, \pi, 2\pi$ B. $x = 0, \pi/2, \pi$		
	B. $x = 0, \pi/2, \pi$ C. $x = \pi/4, \pi/2$		
	D. $x = \pi/4, \pi/2$		
	E. $x = \pi/2, 3\pi/2$		
	, , ,		
	Il triangolo che ha c compreso che vale 4		spettivamente e il coseno dell'angolo tra essi
	A. isoscele e acuta	ngolo	
	B. isoscele e rettar	-	
	C. scaleno e rettar	-	
_	D. scaleno e ottus	-	
L .	E. scaleno e acuta	ngolo	

6.	La coppia di rette per l'origine e tangenti alla circonferenza $x^2 + y^2 - 10x + 16 = 0$ ha equazione
	A. $xy = 0$
	B. $x^2 - y^2 = 0$
	C. $9x^2 + 16y^2 = 0$ D. $16x^2 - 9y^2 = 0$
	E. $9x^2 - 16y^2 = 0$
7.	Nell'intervallo $[0,2\pi]$ le soluzioni della disequazione $-\sec x + \cos 2x < 0 - \sin$ i numeri reali x che soddisfano la condizione
	A. $0 < x < 7\pi/6 \lor 11\pi/6 < x < 2\pi$
_	B. $7\pi/6 < x < 11\pi/6$
_	C. $0 < x < 4\pi/3 \lor 5\pi/3 < x < 2\pi$
	D. $4\pi/3 < x < 5\pi/3$
	E. $4\pi/3 < x < 11\pi/6$
8.	Esternamente ad un triangolo equilatero ABC di lato $2a$ si costruiscano sui tre lati i tre quadrati di lato $2a$ e siano D , E ed F i loro centri. La lunghezza del lato del triangolo equilatero DEF vale
	A. $a\left(1+\sqrt{3}\right)$
	B. 2a
	C. $2a\sqrt{3}$
	D. $a(1+\sqrt{2})$
	E. $2a\sqrt{2}$
9.	Le soluzioni della disequazione $\frac{\sqrt{x+2}}{ x+1 } \geqslant \sqrt{2}$ sono i numeri $x \in \mathbf{R}$ che soddisfano la condizione
	A. $-\frac{3}{2} \leqslant x \leqslant 0 \land x \neq -1$
	$B. -2 \leqslant x \leqslant -\frac{3}{2} \lor x \geqslant 0$
	C. $x \neq -1$ D. $x \geqslant -2 \land x \neq -1$
	D. $x \geqslant -2 \land x \neq -1$
	$E. x \leqslant 0 \land x \neq -1$
10.	Sono date la retta r e la parabola $\mathcal P$ di equazione rispettivamente
	$6x + 3y - 4 = 0$ e $y = -3x^2 + 2x$.
	Possiamo affermare che
	A. non si intersecano
	B. r passa per il vertice di \mathcal{P}
	C. r passa per il fuoco di \mathcal{P}
	D. r è l'asse di simmetria di \mathcal{P}
	E. $r \in \mathcal{P}$ sono tangenti nel punto $\left(\frac{2}{3},0\right)$

11.		trapezio rettangolo $ABCD$ di base maggiore AB ha il lato obliquo BC congruente alla minore CD . Sapendo che $C\hat{B}D=\alpha$, l'ampiezza dell'angolo $A\hat{D}B$ vale
	В.	$\begin{array}{l} \alpha \\ 2\alpha \\ \pi - \alpha \end{array}$
		$\pi - \alpha$ $\pi/2 - \alpha$
_		dipende dalla lunghezza di CD
	12.	dipende dana lunghezza di CD
12.		corde AB e CD di una circonferenza si intersecano in un punto P . Sia $A\hat{C}B=\alpha$. npiezza dell'angolo somma $A\hat{C}B+A\hat{D}B$ vale
	A.	dipende dal raggio della circonferenza
Ц	В.	dipende dall'angolo formato dalle due corde
		π
	D.	
Ш	E.	$\alpha + \pi/2$
13.	L'es	pressione sen (3α) vale identicamente
		$3 \operatorname{sen} \alpha$
		$3 \operatorname{sen} \alpha - 4 \operatorname{sen}^3 \alpha$
		$2 \operatorname{sen} \alpha \operatorname{cos} \alpha + \operatorname{sen} \alpha$
		$3 \operatorname{sen} \alpha \cos^2 \alpha - \operatorname{sen}^3 \alpha$ $3 \operatorname{sen} \alpha \cos^2 \alpha + \operatorname{sen}^3 \alpha$
	Ľ.	$3 \operatorname{sen} \alpha \cos \alpha + \operatorname{sen} \alpha$
14.		le delle seguenti equazioni rappresenta un'iperbole che ammette come asintoto la retta di zione $y=2x$?
	equa	zione $y = 2x$? $x^2 - \frac{y^2}{2} = 1$
	A. B.	azione $y = 2x$? $x^2 - \frac{y^2}{2} = 1$ $x^2 + \frac{y^2}{2} = 1$
	A. B. C.	zione $y = 2x$? $x^{2} - \frac{y^{2}}{2} = 1$ $x^{2} + \frac{y^{2}}{2} = 1$ $\frac{x^{2}}{4} - \frac{y^{2}}{2} = 1$
	A. B. C.	zione $y = 2x$? $x^{2} - \frac{y^{2}}{2} = 1$ $x^{2} + \frac{y^{2}}{2} = 1$ $\frac{x^{2}}{4} - \frac{y^{2}}{2} = 1$ $x^{2} - \frac{y^{2}}{4} = 1$
	A. B. C.	zione $y = 2x$? $x^{2} - \frac{y^{2}}{2} = 1$ $x^{2} + \frac{y^{2}}{2} = 1$ $\frac{x^{2}}{4} - \frac{y^{2}}{2} = 1$
	A. B. C. D.	azione $y=2x$? $x^2-\frac{y^2}{2}=1$ $x^2+\frac{y^2}{2}=1$ $\frac{x^2}{4}-\frac{y^2}{2}=1$ $x^2-\frac{y^2}{4}=1$ $x^2+\frac{y^2}{4}=1$ Olume di un cubo inscritto in una semisfera di raggio r vale
	A. B. C. D. E.	azione $y=2x$? $x^2-\frac{y^2}{2}=1$ $x^2+\frac{y^2}{2}=1$ $\frac{x^2}{4}-\frac{y^2}{2}=1$ $x^2-\frac{y^2}{4}=1$ $x^2+\frac{y^2}{4}=1$ dume di un cubo inscritto in una semisfera di raggio r vale $\frac{2\sqrt{6}}{9}r^3$
	E.B.C.D.E.B.	ezione $y=2x$? $x^2-\frac{y^2}{2}=1$ $x^2+\frac{y^2}{2}=1$ $\frac{x^2}{4}-\frac{y^2}{2}=1$ $x^2-\frac{y^2}{4}=1$ $x^2+\frac{y^2}{4}=1$ Olume di un cubo inscritto in una semisfera di raggio r vale $\frac{2\sqrt{6}}{9}r^3$ $\frac{\sqrt{3}}{2}r^3$
115.	Equation (A)B.C.D.E.Il voiA.B.C.	ezione $y=2x$? $x^2-\frac{y^2}{2}=1$ $x^2+\frac{y^2}{2}=1$ $\frac{x^2}{4}-\frac{y^2}{2}=1$ $x^2-\frac{y^2}{4}=1$ $x^2+\frac{y^2}{4}=1$ Sulume di un cubo inscritto in una semisfera di raggio r vale $\frac{2\sqrt{6}}{9}r^3$ $\frac{\sqrt{3}}{2}r^3$ $\frac{\sqrt{27}}{8}r^3$
15.	Equation 1.A.B.C.B.C.D.	ezione $y=2x$? $x^2-\frac{y^2}{2}=1$ $x^2+\frac{y^2}{2}=1$ $\frac{x^2}{4}-\frac{y^2}{2}=1$ $x^2-\frac{y^2}{4}=1$ $x^2+\frac{y^2}{4}=1$ Olume di un cubo inscritto in una semisfera di raggio r vale $\frac{2\sqrt{6}}{9}r^3$ $\frac{\sqrt{3}}{2}r^3$

16.	L'equazione $x(a+a^2-x)=a^3$, essendo $x\in \mathbf{R}$ l'incognita e $a\in \mathbf{R}$ un parametro, ammette A. tre soluzioni distinte se $a\neq 1$ B. una soluzione doppia se $a=a^2$ C. al più una soluzione per ogni $a\in \mathbf{R}$ D. due soluzioni distinte se $a\neq 1$ E. una soluzione doppia se $a=-1$
	Sia n un numero intero diverso da 0 e da -1 , $a=\frac{1}{n}$ e $b=\frac{1}{n+1}$. Quale delle seguenti affermazioni è corretta? A. $a < b$ B. $a > b$ C. esiste sempre un numero intero compreso tra a e b D. ci sono infiniti numeri razionali tra a e b E. esiste al più un numero razionale tra a e b
18.	Scegliere l'insieme A affinché, al variare di $k \in A$, l'equazione
	$k^2x^2 + (3-2k)y^2 + (3-k)x + 6y + 2 = 0$
	non rappresenti mai una circonferenza A. $A = \{1, -3, 2\}$ B. $A = \{0, -3, 4\}$ C. $A = \{-2, 4, 1\}$ D. $A = \{-1, 1, 3\}$ E. $A = \{-1, 0, 1\}$
19.	Il vertice della parabola $y = \left(\frac{k^2}{2} + 1\right)x^2 + (2k-1)x + \frac{1}{4}$
	appartiene all'asse x per A. ogni $k > 0$ B. $k = -7/8$ C. $k = 7/8$ D. $k = -8/7$ E. $k = 8/7$
	Quali sono tutti i numeri reali α per i quali esistono due numeri reali x e y il cui prodotto vale 1 e la somma α ? A. $\alpha = -1 \lor \alpha = 1$ B. $\alpha = -2 \lor \alpha = 2$ C. $\alpha < -1 \lor \alpha > 1$ D. $\alpha \leqslant -2 \lor \alpha \geqslant 2$ E. $\alpha < -2 \lor \alpha > 2$