Test di Matematica di Base Corsi di Laurea in Ingegneria 14/06/2019 - A

ma	itricola	cognome	nome	$corso\ di\ laurea$
	A. ha tre B. non ha C. una sol D. le soluz	$e\sqrt{x+3} = \frac{2}{x}$ tale che soluzioni reali di cui soluzioni reali luzione è $x=-2$ zioni sono numeri re soluzione è $x=1$	due coincidenti	
	Ordinare in A. $a < d < d < d < d < d < d < d < d < d < $		guenti numeri reali $a =$	$-\frac{2}{5}, b = \sqrt[3]{3} - \frac{1}{2}, c = -\frac{1}{2}, d = \sqrt{2} - \frac{2}{5}.$
	Determinar A. $h = 2$ B. $h = -2$ C. $h = 1$ D. $h = -1$ E. $h = 3$	2	$h \in \mathbb{R}$ il polinomio x^2 -	$+2$ divide $x^4 + hx^3 + 3x^2 + 2x + 2h$.
	cui $n = 30$. A. 9000 B. 9100 C. 8900 D. 1000	$\frac{n(n+1)}{2}$ e $T = \frac{n(n+1)}{2}$ a delle precedenti	$\frac{(n+1)(2n+1)}{6}$, calcolared	e il valore di $T - \frac{1}{3}S - 300$ nel caso in
	A. $x \ge \frac{1}{3}$ B. $x \ge 1$ C. $x \le 3$ D. $x \le 1$	soluzioni della disequoppure $x \geq 2$	nazione $3x - 1 \ge \sqrt{x^2 + 1}$	$\overline{x+2}$

6. Risolvere l'equazione $ 1 - x + x = 1$
\square E. $0 \le x \le 1$
7. Dato il sistema $\begin{cases} x + y + z = 1 \\ x - y + z = 2 \\ -x + y + z = 1 \end{cases}$, quale affermazione è quella vera?
 □ A. la soluzione del sistema è una terna di numeri interi □ B. la soluzione del sistema è una terna di numeri irrazionali □ C. il sistema é impossibile
 □ D. il sistema ammette una sola soluzione □ E. le soluzioni del sistema sono infinite
8. Con le opportune restrizioni sul valore dei coefficienti, semplificare la frazione
$rac{a-b}{ab}\left(\sqrt[3]{rac{9ab}{a-b}} ight)^2$
$\square A. 3\sqrt{\frac{3(a-b)}{a^2b^2}}$
\square B. $\sqrt{\frac{81(a-b)}{ab}}$
\square C. $\sqrt[3]{\frac{27(a-b)}{ab}}$
\square D. $\sqrt[3]{\frac{9(a-b)}{ab}}$
$\square \text{E.} 3\sqrt[3]{\frac{3(a-b)}{ab}}$
9. Stabilire a quale espressione è equivalente
$\frac{\sqrt{3}}{2}\cos\alpha + \cos(\frac{\pi}{2} + \alpha) - \frac{1}{2}\cot(\frac{\pi}{2} - \alpha)\cos(4\pi - \alpha) + \sin(\alpha - \frac{\pi}{3})$
\square C. $\operatorname{tg} \alpha$
10. La misura della diagonale di un quadrato di lato l è il doppio della misura dell'altezza di un
triangolo equilatero; quanto vale il rapporto tra l'area del quadrato e l'area del triangolo?
$\square B. \frac{1}{2\sqrt{3}}$
\square C. $2\sqrt{3}$
$\Box D. \sqrt{3}$ $\Box E. \frac{\sqrt{3}}{3}$
\square E. $\frac{\sqrt{3}}{2}$

11.	Date le rette di equazioni $(k+1)x + (1-k)y + k - 1 = 0$ e $kx + 6y - 18 = 0$, determinare per quali valori di $k \in \mathbb{R}$ le due rette sono perpendicolari.				
	A.	k = -2 oppure $k = -3$			
		k=1 oppure $k=-1$			
		k = 0			
		k = 2 oppure $k = 3k = -4$			
	ъ.				
12.	Data	Data l'equazione $\frac{x^2}{9} + \frac{y^2}{b^2} = 1$, quale delle seguenti affermazioni è vera ?			
	A.	se $b < 0$ è l'equazione di una iperbole			
	В.	per ogni $b>0$ è l'equazione di una circonferenza			
		per ogni $b \in \mathbb{R} - \{0\}$ è l'equazione di una ellisse			
		se $b=1$ é l'equazione di una parabola			
Ш	Ε.	nessuna delle risposte precedenti			
13.	Considerata la parabola di equazione $y = x^2$ e i punti $O = (0,0)$ e $A = (-3,9)$, determin le coordinate di un punto B della parabola tale che il triangolo OAB sia rettangolo in O .				
	Α.	$B = (\frac{1}{3}, \frac{1}{9})$			
		$B = (-\frac{1}{3}, \frac{1}{9})$			
		9 2			
		B = (1,1)			
		B = (-1,1)			
Ш	E.	B = (2,4)			
14.		e le circonferenze C_1 e C_2 di equazioni rispettivamente $x^2+y^2=1$ e $x^2+y^2-3x+\frac{44}{25}=0$,			
	il pu	into $A = (\frac{9}{10}, 0)$ risulta			
	A.	interno a C_1 ed esterno a C_2			
	В.	esterno a C_1 ed interno a C_2			
		interno a C_1 e C_2			
		esterno a C_1 e C_2			
Ш	Ε.	sulla circonferenza C_1 ed esterno a C_2			
15.		a la retta $r: x+2y-1=0$ e il punto $P=(2,1)$, la proiezione ortogonale del punto P			
		a retta r $\tilde{\mathbf{A}}$ " il punto di coordinate			
		(1,-1)			
		(2,1)			
		(-1, -5) (-2, -7)			
Ш	E.	$(\frac{7}{5}, -\frac{1}{5})$			

16.	In un cerchio di raggio R è contenuto un quadrato di lato ℓ . Qual è il valore massimo del lato del quadrato?				
	A. $\ell = R$ B. $\ell = 2R$ C. $\ell = \sqrt{2}R$ D. $\ell = \sqrt{2}$ E. $\ell = \frac{R}{\sqrt{2}}$				
	E. $\ell = \frac{R}{\sqrt{2}}$				
	Risolvere nell'intervallo $[-\pi,\pi]$ l'equazione $\sin^2 x - \cos x + 1 = 0$				
	A. $x = \pi$ B. $x = 0$ C. $x = -\pi$ D. $x = \frac{\pi}{2}$				
	$C. x = -\pi$				
	$E. x = \frac{\pi}{4}$ $E. x = \frac{\pi}{4}$				
	x = 4				
18.	Risolvere nell'intervallo $[0,2\pi]$ la disequazione $\frac{3-4\sin^2 x}{\cos x} < 0$				
	A. $0 \le x \le 2\pi$				
	B. $\frac{\pi}{3} < x < \frac{\pi}{2} \lor \frac{2}{3}\pi < x < \frac{4}{3}\pi \lor \frac{3}{2}\pi < x < \frac{5}{3}\pi$				
	C. $0 < x < \frac{\pi}{3} \lor \frac{\pi}{2} < x < \frac{2}{3}\pi \lor \frac{4}{3}\pi < x < \frac{3}{2}\pi \lor \frac{5}{3}\pi < x < 2\pi$				
	D. $\frac{\pi}{3} < x < \frac{2}{3}\pi \ \lor \ \frac{4}{3}\pi < x < \frac{5}{3}\pi$				
	E. La disequazione è impossibile				
19. Il raggio di una sfera circoscritta a un cubo di spigolo ℓ misura					
	A. $\sqrt{2}\ell$				
	B. $\sqrt{3}\ell$ C. $\frac{\sqrt{2}}{2}\ell$				
	D. $\frac{\sqrt{3}}{3}\ell$ E. $\frac{\sqrt{3}}{2}\ell$				
	E. $\frac{1}{2}\ell$				
	$m^2 + m = 1$ $5m = 4$				
20.	Data l'equazione razionale fratta $\frac{x^2+x-1}{x-1}=\frac{5x-4}{x-1}+2$, quale delle seguenti affermazioni è vera?				
	A. $x = 5$ è l'unica soluzione dell'equazione				
	B. $x = -4$ è l'unica soluzione dell'equazione C. $x = 1$ è soluzione				
	D. l'equazione non ha soluzioni reali				
Ш	E. l'equazione ha due soluzioni				