Test di Matematica di Base Corsi di Laurea in Ingegneria 15/1/2016 - D

matricola	cognome	nome	corso di laurea

- 1. Siano $a, b \in c$ tre numeri reali positivi tali che a < 2b < 3c. Allora
- \Box A. a < b < c
- \Box B. a > b > c
- \Box C. a < c < b
- \Box D. b < c < a
- ☐ E. non è possibile stabilire l'ordine dei tre numeri
- Per quali valori del parametro $k \in \mathbb{R}$, il centro della circonferenza di equazione

$$x^2 + y^2 + kx - 2ky - 1 = 0$$

appartiene all'iperbole di equazione $x^2 - y^2 = -1$?

- \square A. solo per $k = \frac{1}{\sqrt{3}}$
- \square B. per $k = \pm \frac{1}{\sqrt{3}}$
- $\square \quad \text{C.} \quad \text{per } k = \frac{4}{3}$
- $\Box \quad \text{D.} \quad \text{per } k = \pm \frac{2}{\sqrt{3}}$ $\Box \quad \text{E.} \quad \text{per } k = \frac{1}{\sqrt{3}} \text{ oppure } k = \frac{2}{\sqrt{3}}$
- Per quali valori di $k \in \mathbb{Z}$ la seguente frazione algebrica

$$\frac{x^2 - 2}{3x^3 + (1+3k)x^2 + (5+k)x + 5k}$$

è semplificabile?

- \square A. per tutti i valori di k
- \square B. per nessun valore di k
- \square C. per k=0
- \square D. per k=2
- \square E. per k=-2

4.	In un trapezio isoscele $ABCD$ di base maggiore AB le diagonali sono congruenti alla base maggiore. Posto $\alpha = C\hat{A}B$, determinare l'ampiezza di $C\hat{A}D$.		
	A. $\frac{\pi - 3\alpha}{2}$		
	B. $\frac{2}{2}$		
	C. $\frac{2}{\alpha+\alpha}$		
	D. α		
	E. $\alpha/2$		
5.	Il polinomio		
	$x^3 + (2k-1)x^2 + (k^2 - 2k)x - k^2$		
	possiede A. tre radici distinte per ogni valore di k		
	B. due radici distinte per ogni valore di k		
	C. una radice di molteplicità 3 per $k=1$		
	D. una radice di molteplicità 3 per $k = -1$ E. quattro radici distinte per $k = 0$		
-			
6.	Quante radici reali distinte ha il polinomio $x^7 - 4x^5 - x^3 + 4x$? A. 7		
	B. 5		
	C. 3		
	D. 1		
Ш	E. nessuna		
7.	Dato un quadrato $ABCD$ di lato 3, si prolunghi il lato CD dalla parte di C . Posto $\alpha=A\widehat{B}E$, se sen $\alpha=4/5$ la lunghezza di AE vale		
	A. $\sqrt{58}$		
	B. 8 C. $\frac{15}{2}$		
	2		
	D. $\sqrt{10}$		
Ш	E. $3\frac{\sqrt{65}}{4}$		
8.	Al variare del parametro $m \in \mathbb{R}$, l'equazione $y-1=m(x-1)$ rappresenta		
	A. tutte le rette passanti per $P = (1,1)$, eccetto una		
	B. tutte le rette passanti per $P = (1,1)$		
	C. tutte le rette passanti per $P = (1, -1)$, eccetto una		
	D. tutte le rette passanti per $P = (1, -1)$		
Ш	E. tutte le rette passanti per $P = (1, -1)$, eccetto due		
9.	Trovare il più grande valore di k per cui le tre rette $x-y-2=0,\ x+2y-14=0$ e $x=k$ formino un triangolo di area 12.		
	A. 2		
	B. 4		
	C. 6 D. 8		
	E. 10		

10.	Se $\cos \alpha = 1/\sqrt{3}$ allora tg 2α è uguale a		
	A. $12/\sqrt{2}$ oppure $-12\sqrt{2}$		
	B. $6\sqrt{2}$		
H	C. $2\sqrt{2}$ appure $-2\sqrt{2}$		
\Box	C. $2\sqrt{2}$ oppure $-2\sqrt{2}$ D. $-4\sqrt{3}$ oppure $4\sqrt{3}$		
\Box	E. $2\sqrt{2}/3$		
ш	$E = 2\sqrt{2/3}$		
11.	Quali sono le soluzioni dell'equazione		
	$\operatorname{sen}^2 x - 4\operatorname{sen} x + 3 = 0$		
	che appartengono all'intervallo] $-\pi,\pi$ [?		
	A. $\pi/2$		
	B. $-\pi/2$		
	$C. \pi/4$		
	C. $\pi/4$ D. $\pi/3 e \pi/6$		
	E. $\pi/2 e \pi/4$		
12.	Il valore di x nell'equazione $5 = (2 + x)^3$ è		
	A. $\frac{\log 5}{2^3}$		
ш	$B. \frac{\log_3 5}{\log_3 2}$		
	C. $5^3 - 2$ D. $\sqrt[3]{5} - 2$		
	D. $\sqrt[3]{5} - 2$		
Ш	E. $\sqrt[3]{2} - 5$		
13.	La disequazione $ x \leqslant x^2$ è verificata se e solo se		
	A. $x = 0$		
	B. $x \geqslant 0$		
	C. $-1 \leqslant x \leqslant 1$		
	D. $x \leqslant -1 \lor x = 0 \lor x \geqslant 1$		
	E. $x \leqslant -1 \lor x \geqslant 1$		
14.	Il valore dell'espressione sen $(720^{\circ} + \alpha) \cdot \cos(180^{\circ} + \alpha) - \cos(450^{\circ} + \alpha) \cdot \sin(-270^{\circ} - \alpha)$ è		
	A. $\sin \alpha - \cos \alpha$		
	B. $\cos \alpha$		
	C. 0		
	D. $\operatorname{sen} \alpha$		
Ш	E. $\sin \alpha + \cos \alpha$		

15.	È data l'ellisse di equazione $\frac{x^2}{9} + \frac{y^2}{4} = 1 .$
	Qual è l'equazione della retta tangente all'ellisse e parallela a quella che unisce i vertici appartenenti ai semiassi positivi? A. $2x + 3y = 6$ B. $3x + 2y = 6$ C. $x + y = 6\sqrt{2}$ D. $2x + 3y = 6\sqrt{2}$ E. $3x + 2y = 6\sqrt{2}$
	Determinare in $[0,2\pi]$ le soluzioni di $\sqrt{3}$ sen $x-\cos x=\sqrt{3}$. A. $\pi/2,\pi/6$ B. $\pi/3,\pi/6$ C. $2\pi/3,\pi/6$ D. $\pi/2,5\pi/6$ E. non ci sono soluzioni
	L'equazione $\sqrt{x^2+1}=-x\sqrt{2}$ ammette come soluzione A. $x=0$ B. $x=1$ C. $x=-1$ D. $x=-\sqrt{2}$ E. $x=\sqrt{2}$
	Un triangolo con i lati $4\sqrt{3}$, $4\sqrt{2}$ e 3 A. è rettangolo B. è acutangolo C. non esiste D. è isoscele E. è ottusangolo
	In un rombo $ABCD$ la diagonale maggiore AC misura $4\sqrt{5}$ e l'altezza DH relativa al lato AB misura 4. Qual è il perimetro del rombo? A. 12 B. 16 C. 20 D. $8\sqrt{5}$ E. $12\sqrt{5}$
20.	Dato un triangolo ABC inscritto in una semicirconferenza di diametro $AB=2r$ e centro O , si considerino le tangenti alla semicirconferenza in B e C che si intersecano in D . Sapendo che ACO è equilatero, che tipo di triangolo è CBD ?
	 A. equilatero B. isoscele ma non equilatero C. scaleno D. rettangolo isoscele E. ottusangolo